
Detective Strategies for Defective Code

No matter how skilled a programmer is, no one programs perfectly the first time. Finding and fixing errors is as
much a part of the programming process as typing in the program to start with. If you believe that you are the
exception and that you rarely create bugs in your code, it may be that you are failing to adequately test your
code!

So, what do you do when your program just doesn’t work?
A) Randomly change some stuff and try again
B) Go ask for help
C) Declare the program “finished” and hope no one notices
D) Employ methodical debugging strategies until the software passes all tests

While choice D might seem the “obvious” one, it may feel out of reach if you have never been taught how to
debug. If you feel like debugging is harder than programming, you may be right. The programming process
and the debugging process require two separate (but overlapping) skill sets, and some will be naturally better
at one part than the other. However, just like programming skills, debugging skills can be honed with some
training and practice. The aim of this article is to explicitly lay out some good strategies and tried-and-true
principles for debugging so that when faced with buggy code we need not feel helpless. For this article, I will
give “student” debugging examples, since that is my experience as a professor. I will also talk about “testing”
code. This may refer to an automatic test suite or just simply running a program. Finally, “tracing” code is the
process of stopping the running of a program and examining the state of the variables. This can be done with
print statements, but is usually done with the help of a debugger.

We will approach the problem of finding code bugs by donning a deerstalker hat and chewing on a pipe as we
attempt to play the role of detective. In order to solve the mystery, we will need to define the crime, victim, and
suspects. Then we will follow the clues and collect evidence until we have located the problem and applied a
fix.

Define the Crime

The first task is to define the crime. What makes you think the code does not work? Is there a test case that
fails? Is an error message given? Is the wrong answer computed? Make note of any error messages you see.
They are important clues.

Categorize the bug as a syntax error, runtime error, or logic error:
- A syntax (or compiler) error is when code violates the rules of the programming language. This could

be misspellings, missing punctuation, or misusing a key word in the language. Usually these are the
easiest to find and fix. Most IDEs will mark exactly where they occur. The important thing to remember
is to fix syntax errors from the top of the program down. Early errors can cause other lines of code to
be highlighted as incorrect that are not actually wrong. Only the first error is trustworthy.

- A runtime (or fatal) error is when code is running and crashes. Once again, the IDE will help by telling
you which error occurred and where. The message that you see is called a “stack trace”. You should
focus on the line that comes closest to the top but also refers to a line of code you wrote (not anything
imported from a library.)

- A logic error is the most difficult to find and fix. This type of error occurs when the code runs but simply
doesn’t do the right thing. Comprehensive testing is the only way to know this “silent” bug even exists.

After categorizing the error, you should compare the expected behavior of your program with its observed
behavior. Articulate each, perhaps to a friend you can recruit to be your Dr. Watson. Often in explaining the
desired and observed behavior of code we gain insight into the nature of the bug (and sometimes immediately
see what the problem is.)

Next, challenge your assumptions. Make sure the answer or behavior you think is in error actually is. For
example, one student came saying that his program was in an infinite loop (“frozen”) and that he didn’t actually
have any loops in the code! I began to challenge those assumptions - a quick search told me there were no
loops. Next, I looked for recursion - a loop in a clever disguise! - but that didn’t exist either. Finally, I
challenged the notion that the program was frozen. It was not. As it turns out, the program was waiting on
input from the console (and the student had failed to write a prompt.) The path to the bug was in reviewing the
expected behavior of the program (it was supposed to wait for input) and challenging our assumptions about
the observed behavior.

Identify the Victim

Generally speaking, when code doesn’t work, there is a (more or less) clear top-level entity in the code that we
can identify as wrong (which I am calling the victim). For example,

- There’s a compiler error on line X.
Line X is the victim.

- The code crashed with a null pointer exception. The line that it crashed on is:
alistair.getIdentity();

The “alistair” variable is the victim.
- The program was supposed to calculate an answer of “100” but instead computed the answer “101”.

The answer quantity is the victim.
- The program is stuck in an infinite loop. Now the victim may not be so clear. With the debugger we

should be able to find the loop that was entered, but it may take some tracing to determine why the stop
condition is not met.

The challenge of debugging is finding how the victim came to be attacked, but skipping the step of identifying
the victim means that we may go on a wild goose chase, investigating entities that are unrelated. For example,
one student asked for help in debugging a null pointer exception occurring on this line of code:

account.runBalance(checker.getTest());

The student had spent a lot of time ensuring that the account variable couldn’t possibly ever be set to null. A
quick look at the values of the variables at the time of the crash would have helped the student identify the
checker variable as the actual victim.

Re-create the Crime Scene

In order to systematically debug the program we need to be able to reproduce it at will. Note the inputs and
sequence of actions that led to the bug. Try to define a sequence of actions that is as short as possible and
uses as small inputs as possible and that faithfully recreates the bug each time. Often I have seen students
give up on debugging because they only did one massive run of a big program, which failed. The task of
tracing or hand-simulating the code for a massive test isn’t practical, so they were stuck. To debug, it is vital to
have as small a test as possible so that at each step of the code we are sure what the expected behavior
should be, and so that our list of code entities potentially causing the problem (suspects!) can start out short.

Identify the Suspects

Now that you have the crime and victim identified, you can identify the suspects: any code entity that had
means and opportunity to commit the crime. In other words, identify the classes and methods that have
access to the victim. If the victim is a variable, is it local? public? final? If the victim is a line of code, look at
the modifiers of the method - which entities are allowed to call the method? This step underscores the
importance of information hiding - the more private we keep our data and methods the smaller our list of
suspects.

Use the Process of Elimination

At this point, we generally have in mind the nature of the bug, the entity that is corrupt, and the places in the
code that have access to that entity. Before we begin to trace code line by line, we want to narrow down the
suspect list by getting the “alibis” of the suspects. That is, use either breakpoints or print statements for each
large code entity that comes into contact with the victim to find where in the overall algorithm things went
wrong. If, for example, there is a method that extensively uses a “victim” variable, that method will obviously
be a strong suspect. However, if at the end of the method a print statement shows that the variable is correct,
the method can be eliminated as a suspect without doing a line-by-line trace. Personally, when I do this
process I tend to pay attention to the beginnings and ends of entities (methods, loops) and I generally work
backwards from the line where the error occurred.

Follow the Trail of Evidence

The process described above can localize the area of code that you should examine further. At this point it is
again important to articulate the expected and observed behavior of the code at hand (which may be a different
focus than the overall bug). Use the debugger or print statements to trace the code line by line, and at each
step make sure the observed and expected behavior match.

Don’t ignore evidence - if there is a code entity other than the victim that gets an incorrect value, pay attention.
If there is an error message given, read it and make sure you know what it means. Don’t skip past errors
because it isn’t the exact error you are looking for. Remember that computers work linearly, and an error early
on can cause many problems later. That also means that fixing a bug earlier in the code can cascade into
other errors going away.

Formulate a Hypothesis and Test it

Once you have a guess at what might be occurring, test it out by making one change and re-running the test.
Making more than one change at a time or making unfounded changes just to see what works (known as
“shotgun debugging”) is a really bad idea because you won’t know which change made the effect. Many times
I have pointed out an error to a student and heard them say, “but I tried changing that an hour ago.” Most
likely, the student changed more than one thing at a time and the other changes re-introduced the bug.

When you make a single change, note the effect. Make sure you understand why the effect happened so that
you can tell if the change is a step in the right direction or not. If you do not understand why the code behaves
as it does, you should stop and look up implementation details about the code so that you understand it.

Rehabilitate the Offender?

While the detective work may stop once you have found the bug, it is important to be thoughtful in fixing the
bug. Resist the urge to make a quick “if statement” patch. Sometimes a special case if statement is exactly
what is needed, but sometimes it only fixes the problem for the exact test you ran. Running the next test will
likely fail, and your process will start all over again. The key to making a good bug fix is understanding why the
bug occurred in the first place and fixing the source of the error.

Take Your Success - Don’t Believe the Negative Press

When you are sure that you have successfully fixed the bug in your code, it is time to celebrate. This is true
regardless of the status of the rest of your code. I have often seen a student delete an error fix because the
code failed more test cases with the fix than without! The number of visible errors in terms of failed test cases
or compiler messages is not always directly related to the number of actual bugs in the code.

The Usual Suspects (For this section, I will focus on the Java programming language.)

You know - every time I play the game Clue, the murderer is always one of the same six people! Weird, right?
When we program, we often find the same bugs crop up over and over as well. Being on the lookout for these
usual suspects will make them easier to find and fix.

- Ms. Nell X. Ception (Null Pointer Exception)
A null pointer exception is one of the most common types of runtime errors. In order to understand
what is happening, it is important to know what “null” means. When objects are declared but not
created (that is, use the word “new” for example) the variable is given a space in memory which is filled
with zero bits. Suppose for example, I have these instance variables:

int num;

Car vroom;

If I proceed to use these variables:

int half = num/2;

vroom.drive();

The first line would use the value zero for “num” and proceed to make a “half” variable also with value
zero. However, the next line trying to use the “vroom” object would give a null pointer exception
because a “zero” value for an object doesn’t contain information on how to perform any functions.

Here’s what a Null Pointer Exception looks like in Eclipse:

Notice that the first line of the stack trace is DFS.java - that’s a file I wrote. Clicking on the blue part
that tells me the exception occurred on line 35 takes me to the line:

maze.markVisited(current);

The problem being flagged is that the “maze” variable is null - it was never created. To fix the bug, you
should navigate to the code where “maze = new …” was supposed to happen. Either that line got left
out or the method that has the line was never called.

- Mr. E. Qualls (== vs .equals)
If your “victim” is an incorrect variable, check its type. Remember that primitive types (int, char,
boolean, etc) check for equality with ==. However object types (notably, String) use .equals to check for
EQUIVALENCY (that is, two identical “twin” objects) and == to check for EQUALITY (two names that
refer to one object only). Don’t forget that each class is responsible for implementing the .equals
method for that class. Check the implementation details if you are unsure how equivalency is defined.

- Ms. Wonoff (one off error)
One of the most common types of logic errors is a “one off” error. If the expected result and calculated
result differ by 1, check your loops. It could be that the initialization of an accumulator variable is
incorrect, or that the loop runs one time too few or one time too many.

- Mr. Otto Bounds (out of bounds exception)
An “out of bounds” exception occurs when trying to use an invalid index within a collection. This
generally occurs with Strings and arrays. Remember that index numbering starts at 0. The last valid
index is the size of the collection minus 1. To debug this type of error, trace the value of the collection
and the indexing variable.

- Ms. Ordera Operashun (order of operations)
If an if statement is executing and you don’t know why, check for an order of operations error.

Most people are familiar with the order of mathematical operations from grade school, which tells us
that multiplication happens before addition, and so forth.

Therefore a line of code like this:

int answer = 3+2*4;

gives the variable answer the value 11 (not 20). While misusing the order of operations in math is a
potential source of errors, a more likely source of error comes from the order of logical operators. This
misunderstanding in particular can make for if statements that execute at the wrong time. For example,

if(3 > 4 && 1 == 0 || 1 != 0)

If we perform the OR first, the boolean condition will be false, but if the AND happens first, the boolean
is true. In fact, the AND does happen first. The order of operations for logical operators is !, followed
by &&, followed by ||.

The good news is that you don’t need to memorize the order of operations. You need only to make
sure there are parentheses making your meaning clear.

Detective Strategies for Defective Code - Worksheet/Recap

Define the Crime
What is the expected behavior and observed behavior of your code? Be sure to justify it - don’t assume. Be
specific - categorize the kind of error messages you see.

Identify the Victim
Which coding entity do you believe to be corrupt? Justify your belief.

Re-create the Crime Scene
What is the shortest sequence of steps with the smallest inputs that consistently produces the bug?

Identify the Suspects
Using the stack trace and the modifiers of the “victim”, which pieces of code could possibly contain the bug?

Use Process of Elimination
Narrow down the suspect code by using breakpoints or print statements at the beginning and end of entities to
follow the victim.

Follow the Trail of Evidence
Re-articulate the observed and expected behavior of the code, this time line-by-line.

Formulate a Hypothesis and Test It
Make a single change in the code, note the effect it had, and seek to understand the effect.

Rehabilitate the Offender
Make a thoughtful fix to your bug, and thoroughly test the code again.

