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Graphs


this is a flow chart, but 
it is similar to a graph 

 
Snarf today’s code 

Today

•  Our last topic 
•  Intro to graphs 
•  Coding with graphs 
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Graphs

•  set of vertices  
•  {1, 2, 3, 4, 5, 6} 

•  set of edges  
•  {(1, 2), (1, 4), (2, 5), (5, 3), (5, 6)} 
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Graphs

•  directed graphs* – edge sets are ordered 
•  {(1, 2), (1, 4), (2, 5), (5, 3), (5, 6)} 
•  1 points to 2 – notice the arrow 

•  (2, 1) is not an edge 

*a.k.a. digraphs 
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Graphs

•  undirected graphs – edge sets are not ordered 
•  {(1, 2), (1, 4), (2, 5), (5, 3), (5, 6)} 
•  (1, 2) is the same as (2, 1) 
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Graphs

•  edges can have weights 
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Graphs

•  Why do you care? 
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Graphs

•  Kevin Bacon 
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Graphs
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Graphs
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Graphs

•  Traveling salesperson problem 
•  Given a list of cities and the distance between 

each pair of cities, what is the shortest possible 
route that visits each city exactly once and returns 
to the original city? 
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Graphs

•  Depth-first-search 
•  explore as far as possible before backtracking 

Start at root!
!
dfs(vertex)!
    if(visited vertex) return;!
!
    visit vertex!
!
    for(adjacent vertices to vertex)!
        dfs(adjacent vertex)!
!
!
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Graphs

•  Breadth-first-search 
•  explore as far as possible before backtracking 

Start at root!
!
bfs(vertex)!
   myQ.enqueue(vertex)!

!!
!
   while(!myQ.isEmpty()!

    v = myQ.dequeue!
    for(adj vertices of v)!
        if(adj not visited)!
            myQ.enqueue(adj) !

!
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Code time

•  snarf today’s code 
•  this will be helpful for APT set 7 
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Before you go

•  Today 
•  Intro to graphs 
•  Coding with graphs 

•  How are things going? 

•  http://goo.gl/lo1e5x 
•  (lower-case L, lower-case O, #1, e, 5, x) 
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