
11/20/13	

1	

Graphs

this is a flow chart, but
it is similar to a graph

Snarf today’s code

Today

•  Our last topic
•  Intro to graphs
•  Coding with graphs

2

11/20/13	

2	

Trees

d	

k	
 u	

e	
 !	

3

Graphs

d	

k	
 u	

e	
 !	

4

11/20/13	

3	

Graphs

•  set of vertices
•  {1, 2, 3, 4, 5, 6}

•  set of edges
•  {(1, 2), (1, 4), (2, 5), (5, 3), (5, 6)}

1	

2	

3	

4	

5	

6	

5

Graphs

•  directed graphs* – edge sets are ordered
•  {(1, 2), (1, 4), (2, 5), (5, 3), (5, 6)}
•  1 points to 2 – notice the arrow

•  (2, 1) is not an edge

*a.k.a. digraphs
1	

2	

3	

4	

5	

6	

6

11/20/13	

4	

Graphs

•  undirected graphs – edge sets are not ordered
•  {(1, 2), (1, 4), (2, 5), (5, 3), (5, 6)}
•  (1, 2) is the same as (2, 1)

1	

2	

3	

4	

5	

6	

7

Graphs

•  edges can have weights

1	

2	

3	

4	

5	

6	

4	

7	

2	

6	

3	

8

11/20/13	

5	

Graphs

•  Why do you care?

9

Graphs

•  Kevin Bacon

10

11/20/13	

6	

Graphs

11

Graphs

12

11/20/13	

7	

Graphs

•  Traveling salesperson problem
•  Given a list of cities and the distance between

each pair of cities, what is the shortest possible
route that visits each city exactly once and returns
to the original city?

13

Graphs

•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

14

11/20/13	

8	

Graphs

•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 15

Graphs

•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 16

11/20/13	

9	

Graphs

•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 17

Graphs

•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 18

11/20/13	

10	

Graphs

•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 19

Graphs

•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 20

11/20/13	

11	

Graphs

•  Depth-first-search
•  explore as far as possible before backtracking

Start at root!
!
dfs(vertex)!
 if(visited vertex) return;!
!
 visit vertex!
!
 for(adjacent vertices to vertex)!
 dfs(adjacent vertex)!
!
!

A B D F E C G!
! 21

Graphs

•  Breadth-first-search
•  explore as far as possible before backtracking

Start at root!
!
bfs(vertex)!
 myQ.enqueue(vertex)!

!!
!
 while(!myQ.isEmpty()!

 v = myQ.dequeue!
 for(adj vertices of v)!
 if(adj not visited)!
 myQ.enqueue(adj) !

!

22

11/20/13	

12	

Graphs

•  Breadth-first-search
•  explore as far as possible before backtracking

Start at root!
!
bfs(root)!
 myQ.enqueue(root)!

!!
!
 while(!myQ.isEmpty()!

 v = myQ.dequeue!
 for(adj vertices of v)!
 if(adj not visited)!
 myQ.enqueue(adj) !

!

A B C E D F G!
! 23

Graphs

•  Breadth-first-search
•  explore as far as possible before backtracking

Start at root!
!
bfs(root)!
 myQ.enqueue(root)!

!!
!
 while(!myQ.isEmpty()!

 v = myQ.dequeue!
 for(adj vertices of v)!
 if(adj not visited)!
 myQ.enqueue(adj) !

!

A B C E D F G!
! 24

11/20/13	

13	

Graphs

•  Breadth-first-search
•  explore as far as possible before backtracking

Start at root!
!
bfs(root)!
 myQ.enqueue(root)!

!!
!
 while(!myQ.isEmpty()!

 v = myQ.dequeue!
 for(adj vertices of v)!
 if(adj not visited)!
 myQ.enqueue(adj) !

!

A B C E D F G!
! 25

Graphs

•  Breadth-first-search
•  explore as far as possible before backtracking

Start at root!
!
bfs(root)!
 myQ.enqueue(root)!

!!
!
 while(!myQ.isEmpty()!

 v = myQ.dequeue!
 for(adj vertices of v)!
 if(adj not visited)!
 myQ.enqueue(adj) !

!

A B C E D F G!
! 26

11/20/13	

14	

Code time

•  snarf today’s code
•  this will be helpful for APT set 7

27

Before you go

•  Today
•  Intro to graphs
•  Coding with graphs

•  How are things going?

•  http://goo.gl/lo1e5x
•  (lower-case L, lower-case O, #1, e, 5, x)

28

