Graphs

this is a flow chart, but
it is similar to a graph

Snarf today’s code

DEAR VARIOUS PARENTS, GRANDPARENTS, CO-WORKERS,
AND OTHER “NOT COMPUTER PEOPLE."

WE DON'T MAGICALLY KNOW HOW TO D0 EVERYTHING IN EVERY
PROGRAM. WHEN WE HELP YOU, WE'RE USUALLY JUST DOING THIS:

FIND A

MENU ITEM OR

BUTTON WHICH LOOKS

RE\ATED TO WHAT

YoU WANT TO
Do.

RELATEDTO WHAT
WANTTO DO, Fouow
ANY INSTRUCTIONS.

PLEASE PRINT THIS FLOWCHART OUT AND TAPE IT NEAR YOUR SCREEN.
CONGRATULATIONS; YOU'RE NOW THE LOCAL COMPUTER EXPERT!

* Qur last topic

Today

* Intro to graphs

* Coding with graphs

11/20/13



Trees

Graphs

11/20/13



Graphs

* set of vertices
- {1,2,3,4,5,6}
* set of edges
* {(1,2),(1,4),(2,5),(5,3), (5, 6)}

)
fofne

5

Graphs

* directed graphs™ — edge sets are ordered

© {(1,2),(1,4),(2,5), (5, 3), 5, 6);
* 1 points to 2 — notice the arrow

* (2, 1)isnot an edge

*a.k.a. digraphs \

6

11/20/13



Graphs

 undirected graphs — edge sets are not ordered

* {(1,2),(1,4),(2,5), (5, 3), (5, 6)}
* (1,2)1sthe sameas (2, 1)

o ()
ks,

u 7

* edges can have weights

11/20/13



11/20/13

Graphs

* Why do you care?

e Kevin Bacon

10




Ceo o

1

United States
transmission grid
Source: FEMA

12

11/20/13



Graphs

* Traveling salesperson problem

* Given a list of cities and the distance between
each pair of cities, what 1s the shortest possible
route that visits each city exactly once and returns
to the original city?

BROTE-FORCE DYNAMIC :
SOL-UTTON: PROGRAMMING SELUNG ON EBAY:
0(n) ALGORITHMS: 0(1)
) O (n*2")
STILL WORKING
ON YOUR ROUTE?
\
~
SHUT THE
HEW UP

13

Graphs

* Depth-first-search
* explore as far as possible before backtracking

Start at root

dfs(vertex) e

if(visited vertex) return;

visit vertex e e

for(adjacent vertices to vertex)

dfs(adjacent vertex) @ e @

14

11/20/13



Graphs

* Depth-first-search
* explore as far as possible before backtracking

Start at root

dfs(vertex)
if(visited vertex) return;

visit vertex e e
for(adjacent vertices to vertex)

dfs(adjacent vertex)

15

Graphs

* Depth-first-search
* explore as far as possible before backtracking

Start at root

dfs(vertex)
if(visited vertex) return;

visit vertex e e
for(adjacent vertices to vertex)

dfs(adjacent vertex)

A B

11/20/13



Graphs

* Depth-first-search
* explore as far as possible before backtracking

Start at root

dfs(vertex)
if(visited vertex) return;

visit vertex e e
for(adjacent vertices to vertex)

dfs(adjacent vertex)

A BD

17

Graphs

* Depth-first-search
* explore as far as possible before backtracking

Start at root

dfs(vertex)
if(visited vertex) return;

visit vertex e e
for(adjacent vertices to vertex)

dfs(adjacent vertex)

A BDF

11/20/13



Graphs

* Depth-first-search
* explore as far as possible before backtracking

Start at root

dfs(vertex)
if(visited vertex) return;

visit vertex e e
for(adjacent vertices to vertex)

dfs(adjacent vertex)

A BDUFE

19

Graphs

* Depth-first-search
* explore as far as possible before backtracking

Start at root

dfs(vertex)
if(visited vertex) return;

visit vertex e e
for(adjacent vertices to vertex)

dfs(adjacent vertex)

A BDFETZC

11/20/13

10



Graphs

* Depth-first-search
* explore as far as possible before backtracking

Start at root

dfs(vertex)
if(visited vertex) return;

visit vertex e e
for(adjacent vertices to vertex)

dfs(adjacent vertex)

A BDFETCG

Graphs

 Breadth-first-search
* explore as far as possible before backtracking

Start at root

bfs(vertex)
myQ.enqueue(vertex)

while(!myQ.isEmpty() e e
v = myQ.dequeue

for(adj vertices of v)
if(adj not visited)
myQ.enqueue (adj)

11/20/13

11



e Breadth-first-search

Graphs

* explore as far as possible before backtracking

Start at root

bfs(root)
myQ.enqueue (root)

while(!myQ.isEmpty()
v = myQ.dequeue
for(adj vertices of v)
if(adj not visited)
myQ.enqueue (adj)

P
o ® @

e Breadth-first-search

Graphs

* explore as far as possible before backtracking

Start at root

bfs(root)
myQ.enqueue (root)

while(!myQ.isEmpty()
v = myQ.dequeue
for(adj vertices of v)
if(adj not visited)
myQ.enqueue (adj)

A B CE

P
o ® @

11/20/13

12



11/20/13

Graphs

* Breadth-first-search
* explore as far as possible before backtracking

Start at root

bfs(root)
myQ.enqueue (root)

while(!myQ.isEmpty() e e
v = myQ.dequeue

for(adj vertices of v)
if(adj not visited)
myQ.enqueue (adj)

A BCEVDF

Graphs

 Breadth-first-search
* explore as far as possible before backtracking

Start at root

bfs(root)
myQ.enqueue (root)

while(!myQ.isEmpty() e e
v = myQ.dequeue

for(adj vertices of v)
if(adj not visited)
myQ.enqueue (adj)

A BCEUDTFG

13



Code time

* snarf today’s code
* this will be helpful for APT set 7

27

Before you go

* Today
* Intro to graphs
e Coding with graphs

* How are things going?

* http://goo.gl/loleSx
* (lower-case L, lower-case O, #1, e, 5, X)

28

11/20/13

14



