
Recitation 8
Recursion & Linked Lists

Ben Stoddard
Tabitha Peck

Covered in Recitation

More Recursion!

Linked Lists!

Using Recursion for Linked Lists!

Why Recursion?
Many of these methods would work better with loops.

Recursion will be very useful to you later (trees, midterms,
finals) though, so it’s better to practice now.

These problems are another chance to think about how
recursion works. What are your base cases? How do you
simplify the problem?

Unique to this Recitation
● Private Variables

○ Using Getter/Setter methods
● Private Helper Methods

○ User calls the public method for the answer, and the
public method uses the private helper methods
■ In this recitation, the helper methods will be

recursive (see next slide)

Add To Tail (Example)
public void addToTailNoRecursion(int value) {

 if(head == null) {

 head = new IntListNode(value);

 } else {

 IntListNode current = head;

 while(current.getNext() != null) {

 current = current.getNext();

 }

 current.setNext(new IntListNode(value));

 }

 size++;

}

public void addToTail(int value){

 if(head == null) {

 head = new IntListNode(value);

 } else {

 addToTail(value, head);

 }

 size++;

}

private void addToTail(int value, IntListNode n) {

 if(n.getNext() == null) {

 n.setNext(new IntListNode(value));

 } else {

 addToTail(value, n.getNext());

 }

}

Non-Recursive Recursive

← Base Case: No Head (Empty List)

← Call to Private Helper

Private Helper:

← Base Case: No Next Node

← Recursive Case:
Call again with next
node (advances the
“pointer”).

← Base Case: No Head (Empty List)

← Loop to advance

Add New →

Fill out the rest of the private helper function (which are
recursive).
● Contains: Check for a value.
● countOccurences: Counts a value.
● sum: Sums the list.
● sumEven: Sums only the even values in the list.
● reverseList: Reurns the same list, but in reverse order.
● mergeLists: Merges this list with another and returns the resulting list.

○ *Assumes both lists are sorted. Result should be sorted as well.
Do as much as you can, and do it all recursively. Problems should be listed in
increasing order of difficulty.

What You Will Be Doing:

Go For It!
You shouldn’t have to change any given code.
You should be able to pass unit tests if you are done.

These slides are online for your reference.

Please do as much as you can (asking UTAs for help if you
get stuck), and submit what you finish before you leave.

