CompsSci 201, L4:
Interfaces and
Implementations,
ArrayList

Logistics, Coming up

* Wednesday 9/7 (Today)
 APT1 due, complete at least 4 for full credit

* Friday 9/9
* APTs, Working with Sets, Strings, Git

* Monday 9/12

* Project 0: Person201 due
* Studying Sets and Maps

Abstract Data Type (ADT)

* ADT specifies what a data structure does (functionality)
but not how it does it (implementation).

* API (Application Program Interface) perspective: What
methods can | call on these objects, what inputs do
they take, what outputs do they return?

* For example, An abstract List should...
Keep values in an order

Be able to add new values, grow

Be able to get the first value, or the last, etc.
Be able to get the size of the list

Java Interface

* One primary way Java formalizes ADTs is with
interfaces, which “specify a set of abstract methods
that an implementing class must override and

define.” — ZyBook 13.3

* 3 most important ADTs we study are all interfaces

in Java!
e L1st: An ordered sequence of values

» Set: An unordered collection of unigue values

« Map: A collection that associates keys and
values

The Java Collection Hierarchy

Collection

e -
HashSet HashMap

Implementing Classes

ArraylList LinkedlL1ist TreeMap

9/7/22 Compsci 201, Spring 2022, Interfaces, ArrayList 5

What is a collection?

public interface Collection<E>
extends Iterable<E>

The root interface in the collection hierarchy. A _collection represents a group of objects,
known as its elements. Some collections allow duplicate elements and others do not.

Some are ordered and others unordered. The JDK does not provide any direct
implementations of this interface: it provides implementations of more specific
subinterfaces like Set and List. This interface is typically used to pass collections

around and manipulate them where maximum generality is desired.

 Java APl data structures storing groups of objects
likely based on the Collection interface.

* Lists, Sets, Maps, and more

e Useful static methods (such as sorting) in
java.util.Collections (like Java.util.Arrays), see API
documentation

9/7/22 Compsci 201, Spring 2022, Interfaces, ArrayList 6

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collections.html

Interface vs. Implementation

Interfaces need an implementing class specified at
creation.

1 public class InterfaceExample {
List cannot be resolved to a type

Run | Debug
2 public static void main(String[l View Problem Quick Fix... (2.)
3 \ List<String> strList = new List<>();
4 b

What is an implementation? Can have any instance
variables. Must override and implement all methods.

@® DIYList.java > 42 DIYList

6 bublic class DIYList implements List {
1 port java.util.List; 7
8

@0verride

2 public class DIYList implements List {

3 | T T 9 public int size() {

: _— 10 // TODO_Auto-generated method stub
11 return 0;

> 12 }

9/7/22 Compsci 201, Spring 2022, Interfaces, ArrayList 7

Multiple Implementations of the
Same Interface

2.4.17: List ADT using array and linked lists data structures.

e 1 2 3 <2xspeed

.) agesList (List ADT):
agesList = new List

Append(agesList, 55)

Append(agesList, 88) @ . .
Append(agesList, 66)

Print(agesList)

Print result: 55, 88, 66

Array-based implementation Linked list-based implementation
head tail
55| 88 | 66
length: 3
length: 3

Alist ADT is commonly implemented using array and linked list data structures. But, a programmer need
not have knowledge of which data structure is used to use the list ADT.

9/7/22 Compsci 201, Spring 2022, Interfaces, ArrayList

Implementations all have (at least)
the same methods as the Interface
Doesn’t matter for correctness whether the

argument Lists are ArrayList or LinkedList, because
both implement . contains().

17 public static List<String> inBothLists(List<String> alist,

18 List<String> bList) {

19 List<String> retList = new ArraylList<>();

20 for (String s : alList) {

21 if (bList.contains(s)) {

22 retList.add(s);

>3 3 (s) Method doesn’t even
>4 } “know” how alList and
55 return retlist; bList are implemented.
26

Since retList is an ArrayList which

implements List, it is a valid return.

9/7/22 Compsci 201, Spring 2022, Interfaces, ArrayList 9

Algorithmic tradeoffs depend on
the implementation

Often, we are interested in how the efficiency of operations on
data structures depends on scale. For an ArrayList with N
values how efficient is...

« get(). Directlookup in an Array. “Constant time” — does
not depend on size of the list.

 contains(). Loops through Array calling .equals() at
each step. Takes longer as list grows.

 size(). Returns value of an instance variable tracking size,
does not depend on size of the list.

 add(). Depends.

How does ArraylList add work?

Implements List (can grow) with Array (cannot
grow). How?

Keep an Array with extra space at the end. Two cases
when adding to end of ArrayList:

1. Space left —add to first open position.

2. No space left — Create a new (larger) array, copy
everything, then add to first open position.

Array representing List

14 - 41 ~ 1

TO—IZZ21I 15 12 21 33

DIY (do it yourself) ArrayList

Live Coding é

WOTO
Go to duke.is/ggtfc

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

But do talk to your neighbors!

https://duke.is/ggtfc

How efficient is ArrayList add?

For an ArrayList with N values, 2 cases:

1. Space left — One Array assignment statement,
constant time, does not depend on list size.

2. No space left — Copy entire list! Takes N array
assignments!

How often are we in the second slow case? Depends
on how much we increase the Array size by in case 2.

ArrayList Growth

Starting with Array length 1, if you keep creating a
new Array that...

Is twice as large (geometric Has 100 more positions

growth) (arithmetic growth)
* Must copy at sizes: * Must copy at sizes:
e 1,2,4,8, 16, 32, ... * 1,101, 201, 301, ...
 Total values copied to Total values copied to
add N values: add N values:
e 1+2+4+8+16+...N * 1+101+201+301+...+N

Algebra to our rescue!

ArrayList Growth and Algebra

Geometric growth Arithmetic growth

1+2+4+--+N 1+101+201+--+ N

~log, N ~N /100
= 2 2 = Z 1+ 1001
1=0 (=0 N2
~ 200

Geometric series formula:

Arithmetic series formula:

_ h+1 i

r

)

a; = (g) (a; + ay)
=1

9/7/22 Compsci 201, Spring 2022, Interfaces, ArrayList

Math and Expectations in 201

* Do not expect you to formally derive closed form
expressions / give proofs.

* Do expect you to recognize:
* Geometricgrowth: 1+ 2+ 4+ ---+ Nislinear, = 2N.
* Arithmetic growth: 1 + 101 4+ 201+ -+ N is
2

. N
quadratic, = —.
200

e Patterns like these show up again and again!

int n = 100;
int numIterations = 0;
for (int i=0; i<n; i++) {

£ nt e G<ic d .
or (int 3=0; j<i; J++ { numIterations: 4950
numIterations += 1;

3 n*(n-1)/2): 4950
3

O o N O U1 p W

Which version is more efficient?

600
500
400
300
200
100

9/7/22

Small N?

Total number of values copied while growing ArrayList
with different growth patterns

r——e— f ©® =
2 4 8 16 32 64 128 256

——Double when full (2N)
——|ncrease size by 100 when full NA2/200

Compsci 201, Spring 2022, Interfaces, ArrayList

Which version is more efficient?
Larger N?

Total number of values copied while growing ArrayList

with different growth patterns
25000

20000
15000
10000

5000

0 o = ==

64 128 256 512 1024 2048
——Double when full (2N)
——|ncrease size by 100 when full NA2/200

9/7/22 Compsci 201, Spring 2022, Interfaces, ArrayList 19

Experiment to verity hypothesis

Live Coding é

ArraylList add (to end)is
(amortized) efficient

According to the Java 17 APl documentation:
“The add operation runs in amortized constant
time...” — What does that mean?

e With geometric growth (e.g., double size of Array

whenever out of space): Need = 2N copies to add
N elements to ArraylList.

* The average number of copies per add is thus 2N

2, a constant that does not depend on N.

ArraylList add to the frontis
not efficient

add

public void add(int index, Java 17 API documentation of add
E element)

Inserts the specified element at the specified position in this list. Shifts the
element currently at that position (if any) and any subsequent elements to
the right (adds one to their indices).

Always requires shifting the entire Array, even if
there is space available.

Array representing List

23
T~ 15 12

9/7/22 Compsci 201, Spring 2022, Interfaces, ArrayList 22

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ArrayList.html

ArraylList contains revisited

contains loops through the Array calling
.equals() at each step. May check every element!

list.contains(33)

| | | 33.equals(33)
15 12 21 33 return true

12.equals(33) 21.equals(33)

15.equals(33)
False, continue

false, continue false, continue

9/7/22 Compsci 201, Spring 2022, Interfaces, ArrayList 23

