CompsSci 201, L5: Sets
and Maps

Logistics, Coming up

* Today, Monday 9/12
* Project 0: Person201 due

* This Wednesday, 9/14
 APT2 due
* Hashing

* This Friday 9/16

e Discussion

* Next Monday, 9/19
* Project 1: NBody due
* Runtime efficiency

WOTO
Go to duke.is/v3mgn

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

https://duke.is/v3mgn

Array vs. Collection

Array

e Stores primitives (int,
char, etc.) or objects
(String, etc.)

* Does not print “nicely”
to terminal, print one
at a time.

* API static utility
methods in
java.util.Arrays

Collection

* Stores objects only, use
wrapper (e.g., Integer)
for primitives

* Prints "nicely” to the
terminal.

* API static utility
methods in

java.util.Collect
ions

9/12/22 Compsci 201, Fall 2022, Sets Maps

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Arrays.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Collections.html

ArraylList <-> Array
Conversion, Object Types

ArrayList is basically an Array of objects, easy to
convert with APl methods.

6 ArrayList<String> strList = new ArraylList<>();

7 String[] strArray = {"CS", "201", "is", "the", "best"};
8

9 // Convert a String Array to a List using

10 // the static Arrays.asList method and the

11 // ArrayList addAll method
12 strList.addAL1((Arrays.asList(strArray)));
13
14 // Convert a String List to a String Array the
15 // ArrayList toArray() method and casting
16 String[] newStrArray = strList.toArray(new String[@]);

9/12/22 Compsci 201, Fall 2022, Sets Maps 5

ArraylList <-> Array
Conversion, Primitive Types

Primitive types more “manual”, remember Lists only
use Object types (1nt vs. Integer)

18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
9/12/22

ArraylList<Integer> intList = new ArraylList<>();
int[] intArray = {2, 0, 1};

// Convert a int (or other primitive type) Array

// to a List by adding one at a time

for (int number : intArray) {
intList.add(number);

}

// Convert an Integer list to an int[] or

// other primitive type array one at a time

int[] newIntArray = new int[intList.size()];

for (int 1=0; i<intList.size(); i++) {
newIntArray[i] = intList.get(i);

}

Compsci 201, Fall 2022, Sets Maps

Sets

public interface Set<E>
extends Collection<E>

Set Review

A collection that contains no duplicate elements.

Java APl documentation

* Stores UNIQUE elements
* Check if element in Set (using . contains())

* Add element to set (using .add())
* Returns false if already there

* Remove element (with .remove())
* Not guaranteed to store them in the order added

9/12/22 Compsci 201, Fall 2022, Sets Maps 8

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/Set.html

Set FAQsS

'jshell> mySet
mySet ==> [(S, 201]

Enhanced for
1. How do | loop over a Set? loop

'jshell> for (String s : mySet) { System.out.println(s); }
CS
201

2. How do | convert between lists and sets?
'jshell> List<String> mylList = new ArraylList<>();

myList ==> []

addA11() method
'jshell> myList.addAl1(mySet); convenient, same as looping
$21 ==> true and adding one at a time

'jshell> myList
myList ==> [CS, 201]

9/12/22 Compsci 201, Fall 2022, Sets Maps 9

HashSet implementation of Set is
very efficient

Constant time = does not
depend on the number of
values stored in the Set.

public class HashSet<E>
extends AbstractSet<E>
implements Set<E>, Cloneable, Serializgk

#Cked by a hash table (actually a HashMap instance). It makes no
¥ the set; in particular, it does not guarantee that the order will remain
its the null element.

This class implements the Set interfacg
guarantees as to the iteration ord
constant over time. This class g

This class offers constant time performance for the basic operations (add, remove, contains and size),
assuming the hash function disperses the elements properly among the buckets. Iterating over this set
requires time proportional to the sum of the HashSet instance's size (the number of elements) plus the
"capacity" of the backing HashMap instance (the number of buckets). Thus, it's very important not to set the
initial capacity too high (or the load factor too low) if iteration performance is important.

Java APl documentation

9/12/22 Compsci 201, Fall 2022, Sets Maps 10

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/util/HashSet.html

Count Unique Words?

public static int countWordsHashSet(String[] words) {
HashSet<String> mySet = new HashSet<>();

for (String w : words) {

mySet.add(w); For each word, constant
} time operation. “Linear
complexity.”

return mySet.size();

hy

public static int countWordsArrayList(String[] words) {
ArrayList<String> myList = new ArraylList<>();
for (String w : words) {

if (!myList.contains(w)) { For each word, must check
myList.add(w); all the words so far.

} “Quadratic complexity.”

}

return myList.size();

}.

9/12/22 Compsci 201, Fall 2022, Sets Maps 11

TreeSet stores sorted

Two important implementations of Set interface:
 HashSet — Very efficient add, contains
* TreeSet — Nearly as efficient, keeps values sorted.

5 String message = "computer science is so much fun";

6 char[] messageCharArray = message.toCharArray();

7 TreeSet<Character> uniqueChars = new TreeSet<>();

8 for (char c : messageCharArray) {

9 uniqueChars.add(c);

10 }

11 System.out.printlnCuniqueChars); Prints all unique

characters in order.

[) C’ e’ F, h, :L’ m’ n, O, p’ r’ S’ t’ u]

9/12/22 Compsci 201, Fall 2022, Sets Maps 12

HashSet and TreeSet
Implementations

HashSet and HashMap both
public class HashSet<E> implemented with a hash

extends AbstractSet<E> o table data structure, will
implements Set<E>, Cloneable, Serializable . .
discuss next time.

This class implements the Set interface, backed by a hash table (actually a HashMap instance). It makes no
guarantees as to the iteration order of the set; in particular, it does not guarantee that the order will
remain constant over time. This class permits the null element.

TreeSet and TreeMap both

oublic class TreeSet<E> implemented using a special
extends AbstractSet<E> kind of binary tree, will discuss

implements NavigableSet<E>, Cloneable, Serializable later in the course.

ed using their natural
on which constructor is used.

A NavigableSet implementation based on a TreeMap. The elements g
ordering, or by a Comparator provided at set creation time, depg

public class TreeMap<K, V>
extends AbstractMap<K,V
implements Navigable#@p<K,V>, Cloneable, Serializable

A Red-Black tree based NavigableMap implementation. The maj

9/12/22 - Compsci 201, Fall 2022, Sets Maps 13

WOTO
Go to duke.is/gdShy

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

https://duke.is/gd9hy

Maps

Map pairs keys with values

* Like an address book, lookup the value (address) of
a key (person). Like a dictionary in Python.

Bob 101 E. Main St.
Naomi 200 Broadway
Xi 121 Durham Ave.

* Map is an interface, must have methods like:
* put(k, Vv):Associate value v with key k
« get (k) : Return the value associated with key k
e containsKey(k): Return true if key k is in the Map

9/12/22 Compsci 201, Fall 2022, Sets Maps 16

Implementations: HashMap,
TreeMap ; v o e
3 import java.util.TreeMap;
Two major implementations:
* HashMap: Very efficient put, get, containsKey

* TreeMap: Nearly as efficient, keeps keys sorted

Map<KEY_TYPE, VALUE_TYPE> (?eauaaTreeMapto
implement this Map

8 Map<String, String> addressBook = new TreeMap<>();

9 addressBook.put("Bob", "101 E. Main St.");

10 addressBook.put("Naomi", "200 Broadway"); Sorted by keys due to
11 addressBook.put("Xi", "121 Durham Ave."); TreeMap
12 System.out.println(addressBook);

{Bob=101 E. Main St., Naomi=200 Broadway, Xi=121 Durham Ave.}

9/12/22 Compsci 201, Fall 2022, Sets Maps 17

Check before you get

If you call .get(key) on a key not in the map,
returns null, can cause program to crash.

6 Map<String, Integer> myMap = new HashMap<>();
7 int val = myMap.get("hi");

Exception in thread "main" java.lang.NullPointerException: Cannot invoke "java.lang.
Integer.intValue()" because the return value of "java.util.Map.get(Object)" is null

Instead, check first with . containsKey().

Map<String, Integer> myMap = new HashMap<>();
if (myMap.containsKey("hi")) {
int val = myMap.get("hi™);

O 0 N O

}

9/12/22 Compsci 201, Fall 2022, Sets Maps 18

Adding “default” values

Often want a “default” value associated with new
keys (examples: 0, empty list, etc.). Two options:

e .putIfAbsent(key, val)
* Check if does not contain key

6 Map<String, Integer> myMap = new HashMap<>();
7

8 myMap .putIfAbsent("hi", 0);

9

10 // Equivalent to line 8

11 1f (ImyMap.containsKey("hi")) {

12 myMap .put("hi", 0);

13 t

9/12/22 Compsci 201, Fall 2022, Sets Maps

19

10
11

Updating maps

Single values Collection values
o .get() returnsacopyof < .get() returnsreference
the value. to collection.

* Must use .put() again * Update the collection
to update. directly.

9/12/22

Map<String, Integer> myMap = new HashMap<>();
myMap.put("hi", 0);

int currentVal = myMap.get("hi");
myMap.put("hi", currentVal + 1);

14 Map<String, List<Integer>> otherMap = new HashMap<>();
15 otherMap.put("hi", new ArraylList<>());
16 otherMap.get("hi").add(@);

Compsci 201, Fall 2022, Sets Maps 20

Counting with a Map

In this example we count how many of each
character occur in message.

String message = "computer science is so much fun";
char[] messageCharArray = message.toCharArray();
TreeMap<Character, Integer> charCounts = new TreeMap<>();

for (char c : messageCharArray) { Check if we have not
if (!charCounts.containsKey(c)) {
10

charCounts.put(c, 1);

11 } Else get current value
12 else { and increase

O 0 N O U

13 int currentVal = charCounts.get(c);

14 charCounts.put(c, currentVal + 1);

15 }

16 } Comes in order because
17 System.out.println(charCounts); using TreeMap

{ =5, c=4, e=3, f=1, h=1, i=2, m=2, n=2, o=2, p=1, r=1, s=3, t=1, u=3}

9/12/22 Compsci 201, Fall 2022, Sets Maps 21

