
CompSci 201, L6: 
Hashing, HashMap, 

HashSet
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Logistics, Coming Up
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• Today, Wednesday 9/14
• APT 2 due

• Friday 9/16
• Discussion 3

• Monday 9/19
• Project 1: Nbody due



Efficiency claims about 
HashSet/HashMap
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• HashSet: .add(), .contains(), both constant 
time complexity.
• HashMap: .put(), .get(), .containsKey(), 

all constant time complexity.

• Constant time? Methods take about the same time 
on a Set/Map with 1 hundred elements as on a 
Set/Map with 1 billion elements!

Seems like magic! How to search (contains()) 
without looping over everything?!?



Aside: Does constant time lookup 
(contains(), get(), etc.) matter?
• Social media: When you login, server needs to 

lookup to display the correct page for you.
• Billions of accounts! Look it up in a List? NO! Constant 

time lookup with hashing.

• Routing/directions application: Need to lookup 
roads from a given intersection.
• How many possible roads? Search through a list? NO! 

Constant time lookup with hashing.

• Could go on! 
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Big questions about hashing

Last class: Usage of API HashSet/HashMap.

Today:
1. How does a hash table work to implement 

HashMap/HashSet?
2. Why do .equals() and .hashCode() matter?
3. Why are the add(), contains(), put(), 

get(), and containsKey(), etc., all constant 
time?
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Hash Table Concept

• Implemented an ArrayList using an Array
• Implement HashMap with an ArrayList

• Of <key, value> pairs

• Rather than adding to position 0, 1, 2, …
• Big idea: Calculate hash (an int) of key to 

determine where to store & lookup
• Java OOP: Will use the hashCode() method of 

the key to get the hash

• Same hash to put and get, no looping over list
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0
1 <“hi”, 5>
2
3
4 <“ok”, 3>
5
6
7

hash(“ok”)== 4



HashMap methods at a high level 
Always start by getting the hash = 
Math.abs(key.hashCode()) % list.size()

• put(key, value)
• Add (<key, value>) to list at index hash
• If key already there, update value

• get(key)
• Return value paired with key at index hash 

position of list
• containsKey(key)
• Check if key exists at index hash position of 

list
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0
1 <“hi”, 5>
2
3
4 <“ok”, 3>
5
6
7

Absolute value and % (remainder when 
dividing by) list size ensures valid index



HashMap put/get example

• Suppose we have the <key, value> 
pair <“cs”, 201>.
• hash is Math.abs(“cs”.hashCode()) 
% 8 which is 0.

• put(“cs”, 201) in position 0
• get(“cs”) by looking up position 0, 

returning the value
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0
1 <“hi”, 5>
2
3
4 <“ok”, 3>
5
6
7

<“cs”, 201>

return 201



Collisions

• Suppose now we want to put 
<“fain”, 104>.
• hash=Math.abs(“fain”.hashCode(
)) % 8 which is 0.

• put(“fain”, 104) in position 0
• But <“cs”, 201> is already stored at 

position 0! Call this a collision.
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1 <“hi”, 5>
2
3
4 <“ok”, 3>
5
6
7

<“cs”, 201>



Dealing with collisions: concepts

• Think of the hash table as an 
ArrayList of “buckets”.
• Each bucket can store multiple 

<key, value> pairs.
• put(key, value)
• Add to hash index bucket
• Update value if key already in bucket

• get(key)
• Loop over keys in hash index bucket
• Return value of one that equals() key 

9/14/22 Compsci 201, Fall 2022, Hashing 10

0

1

2

3

4

5

6

7

<“cs”, 201>
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<“hi”, 5>

<“ok”, 3>



Dealing with collisions: details

• Bucket is really another 
list.
• Hash table is really a list 

of lists of <key, value> 
pairs.
• We call this technique 

for dealing with 
collisions chaining.
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Illustration credit: By Jorge Stolfi - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=6471915

ArrayList<ArrayList<Pair>> myTable…



WOTO
Go to duke.is/mt2ms

9/14/22 Compsci 201, Fall 2022, Hashing 12

Not graded for correctness, 
just participation. 

Try to answer without looking 
back at slides and notes.

But do talk to your neighbors!

https://duke.is/mt2ms


Where does equals() come in?

• If multiple <key, value> pairs in same bucket, need 
to know which to get() or update on a put() call.

• Always the pair where the key in the bucket 
equals() the key we put() or get().

• Need equals() to work correctly for the key type
• String keys? Integer? Already implemented for you.
• Storing objects of a class you write? Need to override 

and implement equals().
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What happens without equals()? 
Hashing cats
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Even though all cat objects have 
the same hashCode() of 0 and 

so go to the same bucket…

And these 2 Cat objects 
have the same values

Prints 2, cannot detect 
duplicates without 

equals()



hashCode Correctness

• Need hashCode() to work correctly for the key 
type.
• String keys? Already implemented for you.
• Storing objects of classes you write? Need to override 

and implement hashCode().

• What makes a hashCode() “correct” (not 
necessarily efficient)?
• Any two objects that are equals() should have the 

same hashCode().
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What happens without 
hashCode()? Hashing more cats
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Fixed equals() but removed 
hashCode(), using default

Still prints 2! equals() works, 
but they get hashed to 

different buckets.



Cat with equals() and 
hashCode() 
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equals() if have same 
name and age

Uses String hashCode() of name 
concat with age, if equals() will 

have same hashCode()



Aside: toString()
Don’t need for hashing, but toString() method 
allows “nice” printing.
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toString() method used for 
printing, including inside a Collection

Prints [kirk]
instead of 
[Cat@...]



What is the String hashCode()?
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Java API String 
documentation

Remember how hashCode() is 
used to get the bucket index.

Interprets each character as an 
int, does arithmetic.

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/String.html


Revisiting Hashing Efficiency

• Real runtime of get(), put(), and 
containsKey() =
• Time to get the hash
• + Time to search over the hash index “bucket”, 

calling .equals() on everything in the bucket

àHashMaps faster with more buckets
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Constant, does not depend on 
number of pairs in Map

Depends on 
number of pairs 

per bucket



“correct” but inefficient 
hashCode()

Correctness requirement: Any 
.equals() keys should have the 
same hashCode().

Still satisfies, but not good…
Stores everything in the first bucket! 
No more efficient than ArrayList!
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Correct and efficient 
hashCode()

From the Java 17 API documentation:
• Correctness: “If two objects are 

equal…hashCode…must produce the same integer 
result.”
• Efficiency: “…producing distinct integer results for 

unequal objects may improve the performance of 
hash tables.”

• String hashCode() satisfies both
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https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html


Cat hashCode() revisited
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equals() if have same 
name and age

If equals() will have 
same hashCode() If unequal? Unlikely (but 

possible!) to have the 
same hashCode().



Simple uniform hashing 
assumption (SUHA)

• Suppose we hash N pairs to M buckets.

• Simple uniform hashing assumption: Probability 
two random (unequal) keys hash to same bucket is 
just 1/M.
• Spread of pairs to buckets looks random (but is not).
• Ways to design such hash functions, not today
• We will make the assumption to analyze efficiency in 

theory, can verify runtime performance in practice
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Implications of SUHA

• Expected number of pairs per bucket under SUHA? 
N/M [N pairs, M buckets].
• Stronger statements are true: Very high probability 

that a bucket has approximately N/M pairs.
• Runtime implication?
• Time to get the hash
• Time to search over the hash index “bucket” 
• Calling .equals() on everything in the bucket
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Constant, does not depend on N or M.

Roughly N/M pairs to search



Memory/Runtime Tradeoff

• N pairs, M buckets, assuming SUHA / good hashCode()

• Case 1: N >> M – too many pairs in too few buckets
• Overall runtime is ~N/M is NOT constant

• Case 2: M >> N – too many buckets, not many pairs
• Overall runtime constant, NOT memory efficient 

• Case 3: M slightly larger than N – sweet spot
• Overall runtime constant, memory usage reasonable
• Still uses more than a simple ArrayList – “No free lunch”
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Load Factor and HashMap Growth

• N pairs, M buckets

• Load factor = maximum N/M ratio allowed
• Java default is 0.75

• Whenever N/M exceeds the load factor?
• Create a new larger table, rehash/copy everything
• Double the size, geometric growth pattern for amortized 

efficiency just like ArrayList!
• Called resizing
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Hash table resizing 
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WOTO
Go to duke.is/2caye
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Not graded for correctness, 
just participation. 

Try to answer without looking 
back at slides and notes.

But do talk to your neighbors!

https://duke.is/2caye


Grace Hopper
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• PhD in math from Yale in 1930s
• Joined Navy Reserve during WW2
• 1940s, began working on developing 

early computers:
• Mark 1
• UNIVAC 1

• 1950s, began work on the earliest 
“high level” programming languages
• FLOW-MATIC
• COBOL – Still in use!

• Annual Grace Hopper Celebration of 
Women in Computing, usually in the 
Fall. Consider attending!

USS Hopper


