CompsSci 201, Lb:
Hashing, HashMap,
HashSet

Logistics, Coming Up

* Today, Wednesday 9/14
 APT 2 due

* Friday 9/16

e Discussion 3

* Monday 9/19
* Project 1: Nbody due

Efficiency claims about
HashSet/HashMap

» HashSet: .add(), .contains(), both constant
time complexity.

e HashMap: .put(), .get(), .containsKey(),
all constant time complexity.

* Constant time? Methods take about the same time
on a Set/Map with 1 hundred elements as on a
Set/Map with 1 billion elements!

Seems like magic! How to search (contains())

without looping over everything?!?

9/14/22 Compsci 201, Fall 2022, Hashing 3

Aside: Does constant time lookup
(contains(), get(), etc.) matter?

lookup to display the correct page for you. g

* Billions of accounts! Look it up in a List? NO! Constant
time lookup with hashing.

e Social media: When you login, server needs to
]

* Routing/directions application: Need to lookup
roads from a given intersection.

 How many possible roads? Search through a list? NO!
Constant time lookup with hashing.

X

* Could go on!

Big questions about hashing

Last class: Usage of APl HashSet/HashMap.

Today:

1. How does a hash table work to implement
HashMap/HashSet?

2. Whydo .equals() and .hashCode() matter?

3. Why are the add (), contains(), put(),
get(), and containsKey(), etc., all constant

time?

Hash Table Concept

* Implemented an ArrayList using an Array

* Implement HashMap with an ArrayList
* Of <key, value> pairs

hash(“ok”)==4

e Rather than adding to position 0, 1, 2, ...

 Big idea: Calculate hash (an int) of key to
determine where to store & lookup

 Java OOP: Will use the hashCode () method of
the key to get the hash

* Same hash to put and get, no looping over list

9/14/22 Compsci 201, Fall 2022, Hashing

<ffhi)})

5>

<“0ij,

3>

N ounn|pbhlw N RO

HashMap methods at a high level

Always start by getting the hash =
Math.abs(key.hashCode()) % list.size()

Absolute value and % (remainder when

dividing by) list size ensures valid index

* put(key, value)
* Add (<key, value>) to list at index hash
* |f key already there, update value

° get(key) <“hi”, 5>
* Return value paired with key at index hash
position of list oo 35

e containsKey(key)

. ICheck if key exists at index hash position of
Ist

N oo v bhhlwWNIRPRIO

9/14/22 Compsci 201, Fall 2022, Hashing 7

HashMap put/get example

* Suppose we have the <key, value> i SRR
pair <“cs”, 201>. ’

* hash is Math.abs(“cs”.hashCode()
% 8 which is 9.

jshell> Math.abs("cs".hashCode()) % 8
$7 ==> 0

», 3s

e put(“cs”, 201) in position O

* get(“cs”) by looking up positi

returning the value
return 201

9/14/22 Compsci 201, Fall 2022, Hashing

Collisions

<“cs”, 201>
<“hi”, 5>

e Suppose now we want to put
<“fain”, 104>.

* hash=Math.abs(“fain”.hashCod
)) % 8 whichis@.

jshell> Math.abs("fain".hashCode()) % 8
$11 ==> 0

e put(“fain”, 104) in position O

<“ok”, 3>

N vl | bW NN (o

* But <““cs™, 201> is already stored at
position 0! Call this a collision.

Dealing with collisions: concepts

] 0 {3 .u, 201
* Think of the hash table as an zigln 154>
ArrayList of “buckets”. 1 <“hi”, 5>
* Each bucket can store multiple 2
<key, value> pairs.
3
* put(key, value)
* Add to hash index bucket : <“ok”, 3>
* Update value if key already in bucket |-
» get(key) :

* Loop over keys in hash index bucket
e Return value of one that equals() key |7

Dealing with collisions: details

* Bucket is reaIIy another ArraylList<ArraylList<Pair>> myTable..

list.

keys

* Hash table is really a list
of lists of <key, value> —
pairs. sz Smith
* We call this technique —
for dealing with Sandra Dee
collisions chaining. Ted Baker

Illustration credit: By Jorge Stolfi - Own work, CC BY-SA 3.0,

https://commons.wikimedia.org/w/index.php?curid=6471915

9/14/22 Compsci 201, Fall 2022, Hashing

buckets entries
000 | X
i O’/' X Lisa Smith 521-8976
002 | X
: * John Smith 521-1234
151 | x ¢
E X Sandra Dee 521-9655
154 | X
X Ted Baker 418-4165
253 | X
254 | @
=1 X Sam Doe 521-5030
11

WOTO
Go to duke.is/mt2ms

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

But do talk to your neighbors!

https://duke.is/mt2ms

Where does equals() comein?

* If multiple <key, value> pairs in same bucket, need
to know which to get() or update on a put() call.

* Always the pair where the key in the bucket
equals() the key we put() or get().

* Need equals () to work correctly for the key type
 String keys? Integer? Already implemented for you.

 Storing objects of a class you write? Need to override
and implement equals ().

What happens without equals()?
Hashing cats

4 public class Cat {

> §tr1ng name; Even though all cat objects have

) 1nt age; the same hashCode () of 0 and

/ . so go to the same bucket...

8 @Jverride

9 public int hashCode() {

10 return 0;

11 } And these 2 Cat objects
12 have the same values

Run | Debug

13 public static void main(String[] args) {

14 Set<Cat> myCats = new HashSet<>();
15 myCats.add(new Cat("kirk", 2)); Prints 2, cannot detect
16 myCats.add(new Cat("kirk", 2)); duplicates without
17 System.out.println(myCats.size()); equals()
18 }

9/14/22 Compsci 201, Fall 2022, Hashing 14

hashCode Correctness

* Need hashCode () to work correctly for the key
type.
* String keys? Already implemented for you.

 Storing objects of classes you write? Need to override
and implement hashCode().

* What makes a hashCode () “correct” (not
necessarily efficient)?

* Any two objects that are equals () should have the
same hashCode().

O o N O U1

10
11
12
13
14
15
16

17
18
19
20
21
22

What happens without
hashCode()? Hashing more cats

public class Cat {
String name;
int age; Fixed equals () but removed
hashCode(), using default
@0verride
public boolean equals(Object 0) {
Cat other = (Cat) o;
if ((other.name.equals(this.name)) && (other.age == this.age)) {
return true;

}
return false;
3 Still prints 2! equals () works,
but they get hashed to
Run | Debug different buckets.

public static void main(String[] args) {
Set<Cat> myCats = new HashSet<>();
myCats.add(new Cat("kirk", 2));
myCats.add(new Cat("kirk", 2));
System.out.println(myCats.size());

9/14/22 Compsci 201, Fall 2022, Hashing 16

Cat with equals() and
hashCode ()

4 public class Cat {

5 String name; equals() if have same
? int age; name and age

8 @Jverride

9 public boolean equals(Object o) {

10 Cat other = (Cat) o;

11 if (Cother.name.equals(this.name)) && (other.age == this.age)) {
12 return true;

13 } Uses String hashCode () of name
14 return false; concat with age, if equals () will
15 } have same hashCode()

16

17 @Jverride

18 public int hashCode() {

19 return (name + Integer.toString(age)).hashCode();

20 }

9/14/22 Compsci 201, Fall 2022, Hashing 17

Aside: toString()

Don’t need for hashing, but toString() method
allows “nice” printing.

4 public class Cat {
5 String name; toString() method used for
6 int age; printing, including inside a Collection
I4
8 @0verride
9 public String toString(Q) {
10 return name;
11 }
12

Run | Debug Prints [kirk]
13 public static void main(String[] args) { instead of
14 Set<Cat> myCats = new HashSet<>(); [Cat@. ..]
15 myCats.add(new Cat("kirk", 2));
16 System.out.println(myCats);
17 }

9/14/22 Compsci 201, Fall 2022, Hashing 18

What is the String hashCode()?

Remember how hashCode() is

used to get the bucket index.

42 private int getBucket(String s) {
43 int val = Math.abs(s.hashCode()) % myTable.size();
44 return val;

hashCode 'jshell> "hello".hashCode();

. $4 ==> 99162322
public int hashCode()

Returns a hash code for this string. The hash code for a String object is 1[3 shell> " hellp " hashCode() -
s[0]*31~(n-1) + s[11*31~(n-2) + ... + s[n-1] $5 ==> 99162323

using int arithmetic, where s[i] is the ith charactl€ be string, n is th[j shell> "what".hashCode() H
the string, and ~ indicates exponentiation. (The hash value's Rty s §6 ==> 3648196

Overrides:
neheole ce s ce Java API String Interprets each character as an
it documentation int, does arithmetic.

a hash code value for this object.

9/14/22 Compsci 201, Fall 2022, Hashing 19

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/String.html

Revisiting Hashing Efficiency

* Real runtime of get (), put(), and
ContainSKey() = Constant, does not depend on

. number of pairs in Map
* Time to get the hash

* + Time to search over the hash index “bucket”,
calling .equals() on everything in the bucket

Depends on

—>HashMaps faster with more buckets

number of pairs
per bucket

9/14/22 Compsci 201, Fall 2022, Hashing 20

“correct” but inefficient
hashCode ()

Correctness requirement: Any
.equals() keys should have the C T 1 |i?
same hashCode().

28 @0verride
29 public int hashCode() {

30 return 0; S ‘ ‘

31 !

Still satisfies, but not good...

Stores everything in the first bucket!
No more efficient than ArraylList!

9/14/22 Compsci 201, Fall 2022, Hashing 21

Correct and efficient
hashCode ()

From the Java 17 APl documentation:

* Correctness: “If two objects are
equal...hashCode...must produce the same integer

result.”

e Efficiency: “...producing distinct integer results for
unequal objects may improve the performance of

V44
hash tables. jshell> "hello".hashCode();
$4 ==> 99162322

jshell> "hellp".hashCode();

* String hashCode() satisfies both % ==> 99162323

jshell> "what".hashCode();
$6 ==> 3648196

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html

O 0o N O Ul

10
11
12
13
14
15
16
17
18
19
20

9/14/22

public class Cat {

Cat hashCode () revisited

String name; equals() if have same
int age; name and age

@0verride
public boolean equals(Object o) {
Cat other = (Cat) o;
if ((other.name == this.name) && (other.age == this.age)) {
return true;

}
return false; [URKCLEISI@RVIINEWE
} same hashCode() If unequal? Unlikely (but
possible!) to have the
@0verride same hashCode().

public int hashCode() {
return (name + Integer.toString(Cage)).hashCode();

}

Compsci 201, Fall 2022, Hashing 23

Simple uniform hashing
assumption (SUHA)

* Suppose we hash N pairs to M buckets.

* Simple uniform hashing assumption: Probability
two random (unequal) keys hash to same bucket is
just 1/M.

* Spread of pairs to buckets looks random (but is not).
e Ways to design such hash functions, not today

* We will make the assumption to analyze efficiency in
theory, can verify runtime performance in practice

Implications of SUHA

* Expected number of pairs per bucket under SUHA?
N/M [N pairs, M buckets].

e Stronger statements are true: Very high probability
that a bucket has approximately N/M pairs.

e Runtime implication?
* Time to get the hash

 Time to search over the hash index “bucket”
* Calling .equals() on everything in the bucket

Roughly N/M pairs to search

9/14/22 Compsci 201, Fall 2022, Hashing 25

Memory/Runtime Tradeoff

N pairs, M buckets, assuming SUHA / good hashCode()

Case 1: N >> M — too many pairs in too few buckets
* Overall runtime is *“N/M is NOT constant

Case 2: M >> N — too many buckets, not many pairs
e Overall runtime constant, NOT memory efficient

Case 3: M slightly larger than N — sweet spot
* Overall runtime constant, memory usage reasonable
e Still uses more than a simple ArrayList — “No free lunch”

Load Factor and HashMap Growth

* N pairs, M buckets

* Load factor = maximum N/M ratio allowed
e Java defaultis 0.75

 Whenever N/M exceeds the load factor?
* Create a new larger table, rehash/copy everything

* Double the size, geometric growth pattern for amortized
efficiency just like ArrayList!

* Called resizing

Hash table resizing

jshell> Math.abs("cs".hashCode()) % 4
$15 ==> 0
jshell> Math.abs("hi".hashCode()) % 4
$16 ==> 1

‘jshell> Math.abs("ok".hashCode()) % 4
$17 ==> 0

jshell> Math.abs("cs".hashCode()) % 8

jshell> Math.abs("hi".hashCode()) % 8

jshell> Math.abs("ok".hashCode()) % 8

$19 ==> 0
$20 ==> 1
$21 ==> 4
0 <“cs”, 201>
<“ok”, 3>
1 3
<“hi”, 5>
2
3

Resizing

9/14/22 Compsci 201, Fall 2022, Hashing

<“cs”, 201>

<“hi”, 5>

<“ok”, 3>

28

WOTO
Go to duke.is/2caye

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

But do talk to your neighbors!

https://duke.is/2caye

Grace Hopper
* PhD in math from Yale in 1930s

* Joined Navy Reserve during WW2

* 1940s, began working on developing
early computers:
* Mark 1
* UNIVAC1

* 1950s, began work on the earliest
“high level” programming languages
* FLOW-MATIC
 COBOL - Still in use!

* Annual Grace Hopper Celebration of ...,,... '
Women in Computing, usually in the 3
Fall. Consider attending!

USS Hopper

9/14/22 Compsci 201, Fall 2022, Hashing 30

