
CompSci 201, L6: 
Hashing, HashMap, 

HashSet

9/14/22 Compsci 201, Fall 2022, Hashing 1



Logistics, Coming Up

9/14/22 Compsci 201, Fall 2022, Hashing 2

• Today, Wednesday 9/14
• APT 2 due

• Friday 9/16
• Discussion 3

• Monday 9/19
• Project 1: Nbody due



Efficiency claims about 
HashSet/HashMap

9/14/22 Compsci 201, Fall 2022, Hashing 3

• HashSet: .add(), .contains(), both constant 
time complexity.
• HashMap: .put(), .get(), .containsKey(), 

all constant time complexity.

• Constant time? Methods take about the same time 
on a Set/Map with 1 hundred elements as on a 
Set/Map with 1 billion elements!

Seems like magic! How to search (contains()) 
without looping over everything?!?



Aside: Does constant time lookup 
(contains(), get(), etc.) matter?
• Social media: When you login, server needs to 

lookup to display the correct page for you.
• Billions of accounts! Look it up in a List? NO! Constant 

time lookup with hashing.

• Routing/directions application: Need to lookup 
roads from a given intersection.
• How many possible roads? Search through a list? NO! 

Constant time lookup with hashing.

• Could go on! 

9/14/22 Compsci 201, Fall 2022, Hashing 4



Big questions about hashing

Last class: Usage of API HashSet/HashMap.

Today:
1. How does a hash table work to implement 

HashMap/HashSet?
2. Why do .equals() and .hashCode() matter?
3. Why are the add(), contains(), put(), 

get(), and containsKey(), etc., all constant 
time?

9/14/22 Compsci 201, Fall 2022, Hashing 5



Hash Table Concept

• Implemented an ArrayList using an Array
• Implement HashMap with an ArrayList

• Of <key, value> pairs

• Rather than adding to position 0, 1, 2, …
• Big idea: Calculate hash (an int) of key to 

determine where to store & lookup
• Java OOP: Will use the hashCode() method of 

the key to get the hash

• Same hash to put and get, no looping over list

9/14/22 Compsci 201, Fall 2022, Hashing 6

0
1 <“hi”, 5>
2
3
4 <“ok”, 3>
5
6
7

hash(“ok”)== 4



HashMap methods at a high level 
Always start by getting the hash = 
Math.abs(key.hashCode()) % list.size()

• put(key, value)
• Add (<key, value>) to list at index hash
• If key already there, update value

• get(key)
• Return value paired with key at index hash 

position of list
• containsKey(key)
• Check if key exists at index hash position of 

list

9/14/22 Compsci 201, Fall 2022, Hashing 7

0
1 <“hi”, 5>
2
3
4 <“ok”, 3>
5
6
7

Absolute value and % (remainder when 
dividing by) list size ensures valid index



HashMap put/get example

• Suppose we have the <key, value> 
pair <“cs”, 201>.
• hash is Math.abs(“cs”.hashCode()) 
% 8 which is 0.

• put(“cs”, 201) in position 0
• get(“cs”) by looking up position 0, 

returning the value

9/14/22 Compsci 201, Fall 2022, Hashing 8

0
1 <“hi”, 5>
2
3
4 <“ok”, 3>
5
6
7

<“cs”, 201>

return 201



Collisions

• Suppose now we want to put 
<“fain”, 104>.
• hash=Math.abs(“fain”.hashCode(
)) % 8 which is 0.

• put(“fain”, 104) in position 0
• But <“cs”, 201> is already stored at 

position 0! Call this a collision.

9/14/22 Compsci 201, Fall 2022, Hashing 9

0
1 <“hi”, 5>
2
3
4 <“ok”, 3>
5
6
7

<“cs”, 201>



Dealing with collisions: concepts

• Think of the hash table as an 
ArrayList of “buckets”.
• Each bucket can store multiple 

<key, value> pairs.
• put(key, value)
• Add to hash index bucket
• Update value if key already in bucket

• get(key)
• Loop over keys in hash index bucket
• Return value of one that equals() key 

9/14/22 Compsci 201, Fall 2022, Hashing 10

0

1

2

3

4

5

6

7

<“cs”, 201>
<“fain”, 104>

<“hi”, 5>

<“ok”, 3>



Dealing with collisions: details

• Bucket is really another 
list.
• Hash table is really a list 

of lists of <key, value> 
pairs.
• We call this technique 

for dealing with 
collisions chaining.

9/14/22 Compsci 201, Fall 2022, Hashing 11

Illustration credit: By Jorge Stolfi - Own work, CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.php?curid=6471915

ArrayList<ArrayList<Pair>> myTable…



WOTO
Go to duke.is/mt2ms

9/14/22 Compsci 201, Fall 2022, Hashing 12

Not graded for correctness, 
just participation. 

Try to answer without looking 
back at slides and notes.

But do talk to your neighbors!

https://duke.is/mt2ms


Where does equals() come in?

• If multiple <key, value> pairs in same bucket, need 
to know which to get() or update on a put() call.

• Always the pair where the key in the bucket 
equals() the key we put() or get().

• Need equals() to work correctly for the key type
• String keys? Integer? Already implemented for you.
• Storing objects of a class you write? Need to override 

and implement equals().

9/14/22 Compsci 201, Fall 2022, Hashing 13



What happens without equals()? 
Hashing cats

9/14/22 Compsci 201, Fall 2022, Hashing 14

Even though all cat objects have 
the same hashCode() of 0 and 

so go to the same bucket…

And these 2 Cat objects 
have the same values

Prints 2, cannot detect 
duplicates without 

equals()



hashCode Correctness

• Need hashCode() to work correctly for the key 
type.
• String keys? Already implemented for you.
• Storing objects of classes you write? Need to override 

and implement hashCode().

• What makes a hashCode() “correct” (not 
necessarily efficient)?
• Any two objects that are equals() should have the 

same hashCode().

9/14/22 Compsci 201, Fall 2022, Hashing 15



What happens without 
hashCode()? Hashing more cats

9/14/22 Compsci 201, Fall 2022, Hashing 16

Fixed equals() but removed 
hashCode(), using default

Still prints 2! equals() works, 
but they get hashed to 

different buckets.



Cat with equals() and 
hashCode() 

9/14/22 Compsci 201, Fall 2022, Hashing 17

equals() if have same 
name and age

Uses String hashCode() of name 
concat with age, if equals() will 

have same hashCode()



Aside: toString()
Don’t need for hashing, but toString() method 
allows “nice” printing.

9/14/22 Compsci 201, Fall 2022, Hashing 18

toString() method used for 
printing, including inside a Collection

Prints [kirk]
instead of 
[Cat@...]



What is the String hashCode()?

9/14/22 Compsci 201, Fall 2022, Hashing 19

Java API String 
documentation

Remember how hashCode() is 
used to get the bucket index.

Interprets each character as an 
int, does arithmetic.

https://docs.oracle.com/en/java/javase/15/docs/api/java.base/java/lang/String.html


Revisiting Hashing Efficiency

• Real runtime of get(), put(), and 
containsKey() =
• Time to get the hash
• + Time to search over the hash index “bucket”, 

calling .equals() on everything in the bucket

àHashMaps faster with more buckets

9/14/22 Compsci 201, Fall 2022, Hashing 20

Constant, does not depend on 
number of pairs in Map

Depends on 
number of pairs 

per bucket



“correct” but inefficient 
hashCode()

Correctness requirement: Any 
.equals() keys should have the 
same hashCode().

Still satisfies, but not good…
Stores everything in the first bucket! 
No more efficient than ArrayList!

9/14/22 Compsci 201, Fall 2022, Hashing 21



Correct and efficient 
hashCode()

From the Java 17 API documentation:
• Correctness: “If two objects are 

equal…hashCode…must produce the same integer 
result.”
• Efficiency: “…producing distinct integer results for 

unequal objects may improve the performance of 
hash tables.”

• String hashCode() satisfies both

9/14/22 Compsci 201, Fall 2022, Hashing 22

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html


Cat hashCode() revisited

9/14/22 Compsci 201, Fall 2022, Hashing 23

equals() if have same 
name and age

If equals() will have 
same hashCode() If unequal? Unlikely (but 

possible!) to have the 
same hashCode().



Simple uniform hashing 
assumption (SUHA)

• Suppose we hash N pairs to M buckets.

• Simple uniform hashing assumption: Probability 
two random (unequal) keys hash to same bucket is 
just 1/M.
• Spread of pairs to buckets looks random (but is not).
• Ways to design such hash functions, not today
• We will make the assumption to analyze efficiency in 

theory, can verify runtime performance in practice

9/14/22 Compsci 201, Fall 2022, Hashing 24



Implications of SUHA

• Expected number of pairs per bucket under SUHA? 
N/M [N pairs, M buckets].
• Stronger statements are true: Very high probability 

that a bucket has approximately N/M pairs.
• Runtime implication?
• Time to get the hash
• Time to search over the hash index “bucket” 
• Calling .equals() on everything in the bucket

9/14/22 Compsci 201, Fall 2022, Hashing 25

Constant, does not depend on N or M.

Roughly N/M pairs to search



Memory/Runtime Tradeoff

• N pairs, M buckets, assuming SUHA / good hashCode()

• Case 1: N >> M – too many pairs in too few buckets
• Overall runtime is ~N/M is NOT constant

• Case 2: M >> N – too many buckets, not many pairs
• Overall runtime constant, NOT memory efficient 

• Case 3: M slightly larger than N – sweet spot
• Overall runtime constant, memory usage reasonable
• Still uses more than a simple ArrayList – “No free lunch”

9/14/22 Compsci 201, Fall 2022, Hashing 26



Load Factor and HashMap Growth

• N pairs, M buckets

• Load factor = maximum N/M ratio allowed
• Java default is 0.75

• Whenever N/M exceeds the load factor?
• Create a new larger table, rehash/copy everything
• Double the size, geometric growth pattern for amortized 

efficiency just like ArrayList!
• Called resizing

9/14/22 Compsci 201, Fall 2022, Hashing 27



Hash table resizing 

9/14/22 Compsci 201, Fall 2022, Hashing 28

0

1

2

3

4

5

6

7

0

1

2

3

<“cs”, 201>

<“hi”, 5>

<“ok”, 3>

<“cs”, 201>

<“hi”, 5>

<“ok”, 3>
Resizing



WOTO
Go to duke.is/2caye

9/14/22 Compsci 201, Fall 2022, Hashing 29

Not graded for correctness, 
just participation. 

Try to answer without looking 
back at slides and notes.

But do talk to your neighbors!

https://duke.is/2caye


Grace Hopper

9/14/22 Compsci 201, Fall 2022, Hashing 30

• PhD in math from Yale in 1930s
• Joined Navy Reserve during WW2
• 1940s, began working on developing 

early computers:
• Mark 1
• UNIVAC 1

• 1950s, began work on the earliest 
“high level” programming languages
• FLOW-MATIC
• COBOL – Still in use!

• Annual Grace Hopper Celebration of 
Women in Computing, usually in the 
Fall. Consider attending!

USS Hopper


