
CompSci 201, L7: 
Runtime Efficiency
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Logistics, Coming up
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• Today
• Project 1 Nbody due today
• Runtime efficiency
• Project 2 Markov releasing later (due in 2 weeks)

• Wednesday 9/21
• APT 3 due
• Big O / Asymptotic Analysis

• Friday 9/23
• Discussion: Maps, Big O, hashCode



Runtime Efficiency, an 
Empirical Look at String 
Concatenation
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Two methods for repeated 
concatenation
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methodA: Using String object 
and basic + operator

methodB: Using 
StringBuilder object 

and append method



Empirical timing experiment
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static final used for 
constants here

Going to time 
both methods 

separately.



Empirical results
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Empirical results in more detail

Reps
MethodA

(ms)
MethodB

(ms)

1024 0.384 0.050

2048 1.136 0.061

4096 3.443 0.077

8192 12.244 0.099

16384 41.754 0.143

32768 147.719 0.207
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Multiply reps by 2 multiplies runtime by 
4. Quadratic complexity.

Multiply reps by 2 multiplies runtime by 
~2. Linear complexity.



Empirical results in more detail

Reps
MethodA

ns/rep
MethodB

ns/rep

1024 0.375 0.048

2048 0.555 0.030

4096 0.841 0.019

8192 1.495 0.012

16384 2.548 0.009

32768 4.508 0.006
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Runtime / rep increasing, greater than 
linear complexity.

Runtime / rep not increasing, at most 
linear complexity.



What’s going on? 
Documentation?

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 9

docs.oracle.com/en/java/javase/17/docs/api/j
ava.base/java/lang/String

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html


methodA revisited

How many characters will be copied per iteration if 
toConcat == “201”?
• i=0: 3
• i=1: 6
• i=2: 9
• …
• On iteration i, need to copy 3*(i+1) characters!
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String is immutable, line 22 
creates a new string and 

copies result then toConcat.



How many total characters are 
copied? Algebra!

methodA: i goes from 0 to reps-1, copy 3*(i+1) characters 
per iteration.

!
!"#

$%&'()

3(i + 1) = 3(reps) + 3 !
!"#

$%&'()

i

= 3(reps) + 3
reps
2

0 + reps − 1

≈ *
+
reps+ + reps
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Arithmetic series formula:

!
!"#

$

𝑎! =
𝑛
2 𝑎# + 𝑎$



Abstracting, Intro to Big O 
Notation (Preview for next time)
• The 3/2 in !

"
reps" doesn’t tell us much about how 

the performance scales with the size of reps.

• Often, we use asymptotic notation, especially Big O
notation to abstract away constants. 

• For example: let N = reps, then we say that the 
asymptotic runtime complexity is O(N2).
• If you ~double N, you ~quadruple the runtime
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What’s the real difference 
between methodA and methodB?
• methodA: Copies roughly !

"
reps" characters. 

• methodB: i goes from 0 to reps-1, copy 3 characters 
per iteration à copies roughly 3×reps characters.
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Reps MethodA char 
copies

MethodB char 
copies

1024 1572864 3072
2048 6291456 6144
4096 25165824 12288
8192 100663296 24576

16384 402653184 49152
32768 1610612736 98304



Memory/Runtime Tradeoff
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Final StringBuilder is using about 146k / 98k ~= 1.5 
times as much memory as necessary. Very common 
tradeoff in data structures!



How does StringBuilder work?

“Every string builder has a capacity. As long as the 
length of the character sequence contained in the 
string builder does not exceed the capacity, it is not 
necessary to allocate a new internal buffer. If the 
internal buffer overflows, it is automatically made 
larger.” - StringBuilder JDK 17 documentation.
• But how does it grow?
• Geometrically! Like ArrayList, HashMap, …
• Still linear amortized complexity, for same reasons 
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https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html


WOTO
Go to duke.is/57dsn
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Not graded for correctness, 
just participation. 

Try to answer without looking 
back at slides and notes.

But do talk to your neighbors!

https://duke.is/57dsn


Designing more efficient 
algorithms: Examples 
with HashMaps
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CounterAttack APT

• CounterAttack APT
• Count the number occurrences in str of each 

string in words.
• Idea from discussion 3? Use 
Collections.frequency()
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str = "one two one two one two vorpal blade" 
words = {"snicker", "one", "blade", "runner"} 
Returns {0,3,1,0}

`
` ` `

https://www2.cs.duke.edu/csed/newapt/counterattack.html


Efficiency of current solution

• Suppose String[] words has N strings
• Suppose str has M Strings

Current algorithm:
• For each of the N strings in words :
• count # occurrences in str: compare to M 

strings

M×N total comparisons, algorithm has O(MN) 
complexity. Can we decrease this? 
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Using a Map for M+N complexity

• Instead, use a Map to keep track, loop through 
words in str just once.
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str = "one two one two one two vorpal blade" 
words = {"snicker", "one", "blade", "runner"} 
Returns {0,3,1,0}

Key Value
one 3

two 3

vorpal 1

blade 1

`



Using a Map for M+N complexity
• HashMap<String,Integer> map stores counts
• Avoid putIfAbsent/getOrDefault?
• Guard with if statements
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`

`

if (! m.containsKey(s)){
m.put(s,0);

}

if (m.containsKey(s)){
ret[k] = 

m.get(words[k])
}
else {

ret[k] = 0;
}



NM vs .N+M Complexity

O(NM)
If we double N and 
double M?
• Runtime increases by a 

factor of 4.

What if N >> M and we 
double M?
• Doubles runtime, M 

still relevant

O(N+M)
If we double N and 
double M?
• Runtime increases by a 

factor of 2.

What if N >> M and we 
double M?
• Little difference in 

runtime, N dominates
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Leetcode Isomorphic Strings

leetcode.com/problems/isomorphic-strings

<LiveCoding>
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https://leetcode.com/problems/isomorphic-strings

