CompSci 201, L7/:
Runtime Efficiency

Logistics, Coming up

* Today
* Project 1 Nbody due today
* Runtime efficiency
* Project 2 Markov releasing later (due in 2 weeks)

 Wednesday 9/21
* APT 3 due
* Big O / Asymptotic Analysis

* Friday 9/23
e Discussion: Maps, Big O, hashCode

Runtime Efficiency, an
Empirical Look at String
Concatenation

Two methods for repeated
concatenation

19 public static String repeatConcatA(int reps, String toConcat) {
20 String result = new String(Q);
21 for (int 1=0; i<reps; i++) {

;;) result += toConcat; methodA: Using String object
-4 return result: and basic + operator

25 }

27 public static String repeatConcatB(int reps, String toConcat) {

28 StringBuilder result = new StringBuilder();

29 for (int 1=0; i<reps; i++) {

30 result.append(toConcat);

31 } methodB: Using

32 return result.toStringQ); StringBuilder object
33 } and append method

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 4

Empirical timing experiment

1 public class StringConcatTiming { static final used for
2 static final int NUM_TRIALS = 100; constants here
3 static final int REPS_PER_TRIAL = 1024;
4 static final String TO_CONCAT = "201";
5
Run | Debug
6 public static void main(String[] args) {
7 long totalTime = 0;
8 for (int trial=0; trial<NUM_TRIALS; trial++) {
9 long startTime = System.nanoTime(); _ .
10 //repeatConcatACREPS_PER_TRIAL, TO_CONCAT); Going to time
11 repeatConcatB(REPS_PER_TRIAL, TO_CONCAT); both methods
12 long endTime = System.nanoTime(); separately.
13 totalTime += (endTime - startTime);
14 }
15 double avgTime = (double)totalTime / NUM_TRIALS;
16 System.out.printf("Avg time per trial is %f ms", avgTime*1E-6);
17 }

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 5

Empirical results

160
140
120
100
80
60 ——MethodB [StringBuilder]
40 (ms)
20

——MethodA [String] (ms)

Average runtime in ms

0 ® o —e —e

1024 2048 4096 8192 16384 32768
Number of String concat reps

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 6

Empirical results in more detail

- MethodA MethodB
Reps (ms) (ms)

1024 0.384 0.050
2048 1.136 0.061
4096 3.443 0.077
8192 12.244 0.099
16384 41.754 0.143
32768 147.719 0.207

Multiply reps by 2 multiplies runtime by
~2. Linear complexity.

Multiply reps by 2 multiplies runtime by

4. Quadratic complexity.
9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 7

Empirical results in more detail

- MethodA MethodB
Reps ns/rep ns/rep

1024 0.375 0.048
2048 0.555 0.030
4096 0.841 0.019
8192 1.495 0.012
16384 2.548 0.009
32768 4.508 0.006

Runtime / rep increasing, greater than
linear complexity.

Runtime / rep not increasing, at most
linear complexity.

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 8

What’s going on?
Documentation?

docs.oracle.com/en/java/javase/17/docs/api/j
ava.base/java/lang/String

Class String

java.lang.Object
java.lang.String

All Implemented Interfaces:

Serializable, CharSequence, Comparable<String>, Constable, ConstantDesc

public final class String
extends Object
implements Serializable, Comparable<String>, CharSequence, Constable, ConstantDesc

The String class represents character strings. All string literals in Java programs, such as "abc", are implemented ¢

[Strings are constant; their values cannot be changed after they are created.] String buffers support mutable strings.

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 9

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

methodA revisited

19 public static String repeatConcatA(int reps, String toConcat) {
20 String result = new String(Q);
21 for (int 1=0; 1i<reps; i++) {

22 result += toConcat; String is immutable, line 22
23 } creates a new string and

24 return result; copies result then toConcat.
25 }

How many characters will be copied per iteration if
toConcat == “201”7?

* =0:3
e i=1:6
 [=2:9

e On iteration i, need to copy 3*(i+1) characters!

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 10

How many total characters are
copied? Algebra!

methodA: i goes from O to reps-1, copy 3*(i+1) characters
per iteration.

reps—1 reps—1
z 3(i+1)=3(reps)+3< Z i)

=0 1=0

= 3(reps) + 3 (ezp) (0 +reps — 1)

Arithmetic series formula:

3 2
~ - reps + reps

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 11

Abstracting, Intro to Big O
Notation (Preview for next time)

* The 3/2in %reps2 doesn’t tell us much about how

the performance scales with the size of reps.

e Often, we use asymptotic notation, especially Big O
notation to abstract away constants.

* For example: let N = reps, then we say that the
asymptotic runtime complexity is O(N?).
* If you ~“double N, you ~Yquadruple the runtime

What’s the real difference
between methodA and methodB?

* methodA: Copies roughly%reps2 characters.

* methodB: i goes from O to reps-1, copy 3 characters
per iteration = copies roughly 3Xreps characters.

MethodA char MethodB char
copies copies

1024 1572864 3072
2048 6291456 6144
4096 25165824 12288
8192 100663296 24576
16384 402653184 49152

32768 1610612736 98304

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 13

Memory/Runtime Tradeoff

27 public static String repeatConcatB(int reps, String toConcat) {

28 StringBuilder result = new StringBuilder();

29 for (int 1=0; 1i<reps; i++) {

30 result.append(toConcat);

31 }

32 System.out.printf("String builder capacity is %d characters¥n", result.capacity());
33 System.out.printf("Result length is %d characters¥n", result.length());

34 return result.toString(Q);

35 }

PROBLEMS (4 OUTPUT DEBUG CONSOLE TERMINAL

String builder capacity is 147454 characters
Result length is 98304 characters

Final StringBuilder is using about 146k / 98k ~= 1.5
times as much memory as necessary. Very common
tradeoff in data structures!

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 14

How does StringBuilder work?

“Every string builder has a capacity. As long as the
length of the character sequence contained in the
string builder does not exceed the capacity, it is not
necessary to allocate a new internal buffer. If the
internal buffer overflows, it is automatically made
larger.” - StringBuilder JDK 17 documentation.

* But how does it grow?

 Geometrically! Like ArrayList, HashMap, ...
* Still linear amortized complexity, for same reasons

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html

WOTO
Go to duke.is/57dsn

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

https://duke.is/57dsn

Designing more efficient
algorithms: Examples
with HashMaps

CounterAttack APT

e CounterAttack APT

 Count the number occurrences in str of each
string in words.

e |dea from discussion 3? Use
Collections.frequency()

str = '{one] two [one] two(one two vorpal blade"

words = {"snicker", "oneﬁ, "blade", "runner"}
Returns {0,3,1,0}

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 18

https://www2.cs.duke.edu/csed/newapt/counterattack.html

Efficiency of current solution

* Suppose String[] words has N strings
e Suppose str has M Strings

Current algorithm:

* For each of the N strings in words :

* count # occurrences in str: compare to M
strings

MXN total comparisons, algorithm has O(MN)
complexity. Can we decrease this?

Using a Map for M+N complexity

* Instead, use a Map to keep track, loop through
words in str just once.

str = ' two one two one two vorpal blade"
words = {"snicker", "one", '"blade", "runner"}

Returns {0,3,1,0}

one 3
two 3
vorpal 1
blade 1

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency

Using a Map for M+N complexity

* HashMap<String, Integer> map stores counts
* Avoid putIfAbsent/getOrDefault?

e Guard with if statements

L

if (! m.containsKey(s)) {
m.put(s,0) ;

}
@ public int[] analyze(String str, String[] words) {
int[] ret = new int[words.length];
HashMap<String, Integer> map = new HashMap<>();
for(String s : str.split(" "))"{
map.putIfAbsent(s,0);
map.put(s,map.get(s) + 1);])
} if (m.containsKey(s)) {
for(int k=0; k < words.length; k++) { ret[k] =
) Petlk] = map.getOr‘Default(wor‘ds[k],&:);]/m.get (words[k])
return ret;)
! else {
ret[k] = 0;
}
9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 21

NM vs .N+M Complexity

O(NM)
If we double N and
double M?

* Runtime increases by a
factor of 4.

What if N >> M and we
double M?

* Doubles runtime, M
still relevant

O(N+M)

If we double N and
double M?

* Runtime increases by a
factor of 2.

What if N >> M and we
double M?

e Little difference in
runtime, N dominates

9/19/22

Leetcode Isomorphic Strings

leetcode.com/problems/isomorphic-strings

<LiveCoding>

@

Compsci 201, Fall 2022, Runtime Efficiency

23

https://leetcode.com/problems/isomorphic-strings

