
CompSci 201, L7: 
Runtime Efficiency

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 1



Logistics, Coming up

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 2

• Today
• Project 1 Nbody due today
• Runtime efficiency
• Project 2 Markov releasing later (due in 2 weeks)

• Wednesday 9/21
• APT 3 due
• Big O / Asymptotic Analysis

• Friday 9/23
• Discussion: Maps, Big O, hashCode



Runtime Efficiency, an 
Empirical Look at String 
Concatenation

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 3



Two methods for repeated 
concatenation

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 4

methodA: Using String object 
and basic + operator

methodB: Using 
StringBuilder object 

and append method



Empirical timing experiment

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 5

static final used for 
constants here

Going to time 
both methods 

separately.



Empirical results

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 6

0

20

40

60

80

100

120

140

160

1024 2048 4096 8192 16384 32768

Av
er

ag
e 

ru
nt

im
e 

in
 m

s

Number of String concat reps

MethodA [String] (ms)

MethodB [StringBuilder]
(ms)



Empirical results in more detail

Reps
MethodA

(ms)
MethodB

(ms)

1024 0.384 0.050

2048 1.136 0.061

4096 3.443 0.077

8192 12.244 0.099

16384 41.754 0.143

32768 147.719 0.207

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 7

Multiply reps by 2 multiplies runtime by 
4. Quadratic complexity.

Multiply reps by 2 multiplies runtime by 
~2. Linear complexity.



Empirical results in more detail

Reps
MethodA

ns/rep
MethodB

ns/rep

1024 0.375 0.048

2048 0.555 0.030

4096 0.841 0.019

8192 1.495 0.012

16384 2.548 0.009

32768 4.508 0.006

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 8

Runtime / rep increasing, greater than 
linear complexity.

Runtime / rep not increasing, at most 
linear complexity.



What’s going on? 
Documentation?

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 9

docs.oracle.com/en/java/javase/17/docs/api/j
ava.base/java/lang/String

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html


methodA revisited

How many characters will be copied per iteration if 
toConcat == “201”?
• i=0: 3
• i=1: 6
• i=2: 9
• …
• On iteration i, need to copy 3*(i+1) characters!

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 10

String is immutable, line 22 
creates a new string and 

copies result then toConcat.



How many total characters are 
copied? Algebra!

methodA: i goes from 0 to reps-1, copy 3*(i+1) characters 
per iteration.

!
!"#

$%&'()

3(i + 1) = 3(reps) + 3 !
!"#

$%&'()

i

= 3(reps) + 3
reps
2

0 + reps − 1

≈ *
+
reps+ + reps

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 11

Arithmetic series formula:

!
!"#

$

𝑎! =
𝑛
2 𝑎# + 𝑎$



Abstracting, Intro to Big O 
Notation (Preview for next time)
• The 3/2 in !

"
reps" doesn’t tell us much about how 

the performance scales with the size of reps.

• Often, we use asymptotic notation, especially Big O
notation to abstract away constants. 

• For example: let N = reps, then we say that the 
asymptotic runtime complexity is O(N2).
• If you ~double N, you ~quadruple the runtime

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 12



What’s the real difference 
between methodA and methodB?
• methodA: Copies roughly !

"
reps" characters. 

• methodB: i goes from 0 to reps-1, copy 3 characters 
per iteration à copies roughly 3×reps characters.

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 13

Reps MethodA char 
copies

MethodB char 
copies

1024 1572864 3072
2048 6291456 6144
4096 25165824 12288
8192 100663296 24576

16384 402653184 49152
32768 1610612736 98304



Memory/Runtime Tradeoff

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 14

Final StringBuilder is using about 146k / 98k ~= 1.5 
times as much memory as necessary. Very common 
tradeoff in data structures!



How does StringBuilder work?

“Every string builder has a capacity. As long as the 
length of the character sequence contained in the 
string builder does not exceed the capacity, it is not 
necessary to allocate a new internal buffer. If the 
internal buffer overflows, it is automatically made 
larger.” - StringBuilder JDK 17 documentation.
• But how does it grow?
• Geometrically! Like ArrayList, HashMap, …
• Still linear amortized complexity, for same reasons 

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 15

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html


WOTO
Go to duke.is/57dsn

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 16

Not graded for correctness, 
just participation. 

Try to answer without looking 
back at slides and notes.

But do talk to your neighbors!

https://duke.is/57dsn


Designing more efficient 
algorithms: Examples 
with HashMaps

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 17



CounterAttack APT

• CounterAttack APT
• Count the number occurrences in str of each 

string in words.
• Idea from discussion 3? Use 
Collections.frequency()

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 18

str = "one two one two one two vorpal blade" 
words = {"snicker", "one", "blade", "runner"} 
Returns {0,3,1,0}

`
` ` `

https://www2.cs.duke.edu/csed/newapt/counterattack.html


Efficiency of current solution

• Suppose String[] words has N strings
• Suppose str has M Strings

Current algorithm:
• For each of the N strings in words :
• count # occurrences in str: compare to M 

strings

M×N total comparisons, algorithm has O(MN) 
complexity. Can we decrease this? 

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 19



Using a Map for M+N complexity

• Instead, use a Map to keep track, loop through 
words in str just once.

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 20

str = "one two one two one two vorpal blade" 
words = {"snicker", "one", "blade", "runner"} 
Returns {0,3,1,0}

Key Value
one 3

two 3

vorpal 1

blade 1

`



Using a Map for M+N complexity
• HashMap<String,Integer> map stores counts
• Avoid putIfAbsent/getOrDefault?
• Guard with if statements

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 21

`

`

if (! m.containsKey(s)){
m.put(s,0);

}

if (m.containsKey(s)){
ret[k] = 

m.get(words[k])
}
else {

ret[k] = 0;
}



NM vs .N+M Complexity

O(NM)
If we double N and 
double M?
• Runtime increases by a 

factor of 4.

What if N >> M and we 
double M?
• Doubles runtime, M 

still relevant

O(N+M)
If we double N and 
double M?
• Runtime increases by a 

factor of 2.

What if N >> M and we 
double M?
• Little difference in 

runtime, N dominates
9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 22



Leetcode Isomorphic Strings

leetcode.com/problems/isomorphic-strings

<LiveCoding>

9/19/22 Compsci 201, Fall 2022, Runtime Efficiency 23

https://leetcode.com/problems/isomorphic-strings

