CompsSci 201, L18: Tree
Recursion



Person in CS: Kathleen Booth

1922 — 2022

British Mathematician, PhD in
1950

Worked to design the first
assembly language for early
computer designs in the 1950s

May have been the first woman
to write a book on programming

 Early interest in neural networks

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion 2



Logistics, Coming up
* P4 Autocomplete due today 10/31

* APT8 (Tree problems) due this Wed., 11/2

* P5: Huffman releasing this week, due Monday
11/14



Three ways to recursively traverse
a any binary tree (search or not)

* Difference is in where the non-recursive part is

void inOrder(TreeNode t) { void preOrder(TreeNode t) { void postOrder(TreeNode t) {
if (t !'= null) { if (t !'= null) { if (t !'= null) {
inOrder(t.left); System.out.println(t.info); postOrder(t.left);
System.out.println(t.info); preOrder(t.left); postOrder(t.right);
inOrder(t.right); preOrder(t.right); System.out.println(t.info);
} } }
} } }

<>



Wrapper and recursive helper
method to return List

public ArrayList<String> visit(TreeNode root) {
ArrayList<String> 1list = new ArrayList<>();
doInOrder(root,list);
return list;

}

private void doInOrder(TreeNode root, ArrayList<String> 1list) {
if (root!= null) A

@ doInOrder(root.left,list);
list.add(root.info);
@ doInOrder(root.right,list);
}
}

* In order traversal = list?
* Create list, call helper, return list

e values in returned list in order



TreeCount APT

Pl'()blem Statement public class TreeCount {

public int count(TreeNode tree) {
// replace with working code

Write a method that returns the number of nodes of a binary tree. The R O
TreeNode class will be accessible when your method is tested. }

is characterized by the pre-order string 8, 4, x, 6, x, x, 12, 10, x, x, 15, x, x

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion 6



Solving TreeCount in Picture &

Code

6=1+(2+3) public int count(TreeNode tree)
IY if (tree == null) A
return 0;

}.

o=l k(l+ 1) return 1 + count(tree.left)

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion

{

+ count(tree.right);



WOTO
Go to duke.is/8xcjw

EI

Try to answer without Iooklng q— aiely = I_- I__
back at slides and notes. I‘I

"J
But do talk to your neighbors! ® ’%— -

Not graded for correctness,
just participation.



https://duke.is/8xcjw

Complexity of tree traversal

* Intuition: visit every node once and print it
* If there are N nodes, should be O(N)
e But what about recursive calls?

* More generally/formally:
* We create a recurrence relation (an equation)
* Solving the equation yields runtime



Analyzing Recursive Runtime

Develop a recurrence relation of the form

Total runtime T(N) = a- T(g (N)) + f(N)
W h ere: Recursive call(s)

 T(N) - runtime of method with input size N
* ais the number of recursive calls
* g(N) - how much input size decreases on each recursive call

* f(N) - runtime of non-recursive code on input size N

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion 10



LinkedList Example: Runtime of
Recursive Reverse

public Node reverse(Node 1list) {
if (list == null || list.next == null) {
return list;

}
// in A->B->C->D, what does A point at?

// afterMe -> D->C->B->null

Node afterMe = reverse(list.next);
list.next = null;
return afterMe;

}

T(N)
=T(N—1) + 0(1)

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion 11



Solving Recurrence Relation

Apply recurrence

T(N) =T(N — 1) + 0(1)

= (T(N =2) + 0(1))

again to T(N-1)
1)
= (T(N=3) +3-0(1)

= T(1) +N-0(1)
= O0(N)

T(1) is base case,

just O(1)

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion 12



T (n)
T (n)
T (n)
T (n)
T (n)

T (n)

Table of Recurrences
I N

T (n/2)
T (n-1)
2T (n/2)
T(n/2)
2T (n/2)
T (n-1)

+
+
+
+
+
+

O(1)
O(1)
O(1)
O(n)
O(n)
O(n)

binary search
sequential search

tree traversal

gsort partition ,find k"
mergesort, quicksort

selection or bubble sort

O(log n)
O (n)

O (n)

O (n)

O(n log n)
O (n?)

We expect you to be able to derive a recurrence relation
from an algorithm, but not necessarily to solve. We will
provide a table of solutions like this for exams.



Recurrence relation and runtime
for traversing a balanced tree

e T(n) time inOrder (root) with n nodes
* T(n) =T(n/2) + O(1) + T(n/2) = O(n)

public void inOrder(TreeNode root) {
if (root != null) A

@ inOrder(root.left);
System.out.println(root.info);
@ inOrder(root.right);

}.

 Why T(n/2)? '

Assumes the tree is balanced: Same number of
nodes in the left subtree as the right.



Recurrence relation and runtime
for traversing an unbalanced tree

* If every node has a right child but no left...
* T(n) =T(0) + O(1) + T(n-1) = O(n)

public void inOrder(TreeNode root) f{
if (root != null) {
@ inOrder(root.left);
System.out.println(root.info);
@ inOrder(root.right);
}
}

* So Tree traversal is O(n) regardless of balance.

* What about search/contains and insert for a binary
search tree?



Ba
anc

@
@

ance and runtime for search
insert in a binary search tree

public boolean contains(TreeNode tree, String target) {

if (tree == null) return false;
int result = target.compareTo(tree.info);
if (result == 0) return true;

if (result < 0) return contains(tree.left, target);
return contains(tree.right, target);

}

If balanced?
* T(n) =T(n/2) + O(1) = O(log(n))

If unbalanced?
* T(n) =T(n-1) + O(1) = O(n)

10/31/22

Compsci 201, Fall 2022, L18: Tree Recursion

16



Why would a tree not be
balanced?

Worse case:

e What if we insert sorted data?

For(int i1=0; i<n; i++) {
myTree.insert(i);

* Average case height O(log(n)) for random-ish order

* AVL trees, red-black trees (later) can dynamically ensure
good balance.

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion 17



How much balance is enough?

Approximate balance: Say that a binary tree is
(a, b) —approximately balanced if...

* For every node rooting a subtree of size n = q,

* The left and right subtrees of the node both contain
at most b (g) nodes.

Then the recurrence relation for contains is...
*T(n) < T(b%) + 0(1) forn = a, and
cTM) <T(n—1)+0(1) forn < a.



How much balance is enough?

So for example, if a binary tree is (5, 1.5)-
approximately balanced...

Then the height of the tree is at most
5+ (logy/1sn+1)
=6+ log,/zn

0 (lOg(Tl)) Don’t need to worry about the
derivation.

Takeaway: Approximate
balance is good enough for
good asymptotic performance.

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion

19



HeightLabel APT

https://www?2.cs.duke.edu/csed/newapt/heightlabel.html

* Create a new tree from a tree parameter

* Same shape, nodes labeled with height
* Use new TreeNode. With what values ...

@ ° Note that this APT 1-indexes

height/depth. We introduced it

@ e 0-indexed and will otherwise

stick to that convention.

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion 20


https://www2.cs.duke.edu/csed/newapt/heightlabel.html

FAQ: Can | make a tree?

public class TreeNode {
int info;
TreeNode left;

TreeNode right;
TreeNode(int x){ Just call the TreeNode

info = x; constructor for each new
} node and connect them.

TreeNode(int x, TreeNode 1Node, TreeNode rNode){

info = x;
left = 1Node;
right = rNode;

TreeNode root =
root.left = new TreeNode( x: 3);
root.right = new TreeNode( x: 6);
root.left.left = new TreeNode( x: 2);
root.left.right = new TreeNode( x: 4);

new TreeNode( x: 5);

10/31/22

More terse version

TreeNode myTree = new TreeNode( x: 5,
new TreeNode( x: 3,
new TreeNode( x: 2),
new TreeNode( x: 4)),
new TreeNode( x: 6));

Compsci 201, Fall 2022, L18: Tree Recursion 21



Solving HeightlLabel in Pictures

A
7 o
SENOAOS OINORO
@@@e OJO

Base case: when null, 0

Recursive case: height of node is
1 + max(height of node.left
height of node.right)

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion 22



Solving HeightlLabel in Code

private int height (TreeNode t) { Base case: when null, 0
if

(t == null) return O; . . .
Recursive case: height of node is
return 1 + Math.max (height (t.left), 1 + helght of node e

height (t.right));

+ heigh of node.right

}
public class HeightLabel {
public TreeNode rewire(TreeNode t) { Method doesn’t just calculate
// replace with working code height, is supposed to create and
y return no L return new tree with new nodes...
}

Pubh.'; 'i'zesljodeliim.rte: (izeiNiie- £ Using height helper method, get
t == nu retu uLts height, create new node, return.
return new TreeNode (height(t),

rewire (t.left),
rewire (t.right));

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion



Tree Recursion tips / common
mistakes

Draw it out! Trace your code on small examples.

Return type of the method. Do you need a helper
method?

Base case first, otherwise infinite recursion / null
pointer exception.

If you make a recursive call, make sure to use
what it returns.



WOTO
Go to duke.is/cvp7b

Not graded for correctness,
just participation.

Try to answer without looking g [Ej
back at slides and notes.

But do talk to your neighbors!


https://duke.is/cvp7b

Rewire runtime?

 recurrence of this all-green code? T(n) =
e 2T (n/2)+0 (n)

e Balanced tree public TreeNode rewire (TreeNode t) { Tn)
if (t == null) return null;
return new TreeNode (height(t),
rewire(t.left),
e T (1’1—1) +0 (n) o) rewire (t.right));
e Unbalanced T(n/2) if balanced
. . . T(n/2) if balanced
private int height (TreeNode t) ({
if (t == null) return O;

return 1 + Math.max (height(t.left),
height (t.right)) ;



HeightLabel Complexity

* Balanced? O (N log N),
e 2T (n/2) + O(n)

* Unbalanced, O (N2),
e T(N) = T(N-1) + O(N)

* Doin O (N) time? Yes, if we don't call height
 Balanced: T (N) = 2T (N/2) + 0O(1)
 Unbalanced: T(N) = T(N-1) + O(1)



HeightLabel in O(N) time

* If recursion works, subtrees store heights!

public TreeNode rewire(TreeNode t) {
if (t == null) { return null; }
TreeNode left0fMe = rewire(t.left);
¢ Balanced? O (N) p TreeNode rightOfMe = rewire(t.right);
int lHeight = 0;
e 2T (n/2)+0 (1) int rHeight = ©;
if (Left0fMe != null) { lHeight = leftO0fMe.info; }

o Unbalanced, O (N) , if (rightO0fMe != null) { rHeight = rightOfMe.info; }

return new TreeNode(

° T (N— 1) -|-O (1) x: 1+Math.max(1lHeight, rHeight),

left0fMe,
right0fMe);

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion 28



Diameter Problem

leetcode.com/problems/diameter-of-binary-tree

Calculate the diameter of a binary tree, the length of
the longest path (maybe through root, maybe not,

can’t visit any node twice).

Diameter 3

Diameter 4 Live Coding

10/31/22 Compsci 201, Fall 2022, L18: Tree Recursion 29


https://leetcode.com/problems/diameter-of-binary-tree

