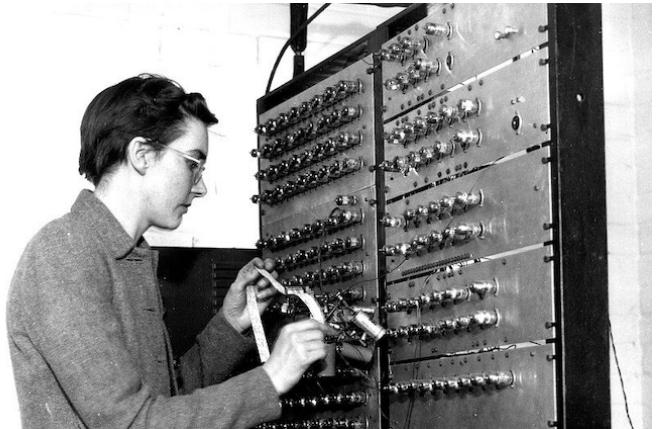


CompSci 201, L18: Tree Recursion

Person in CS: Kathleen Booth

- 1922 – 2022
- British Mathematician, PhD in 1950
- Worked to design the first *assembly language* for early computer designs in the 1950s
- May have been the first woman to write a book on programming
- Early interest in *neural networks*



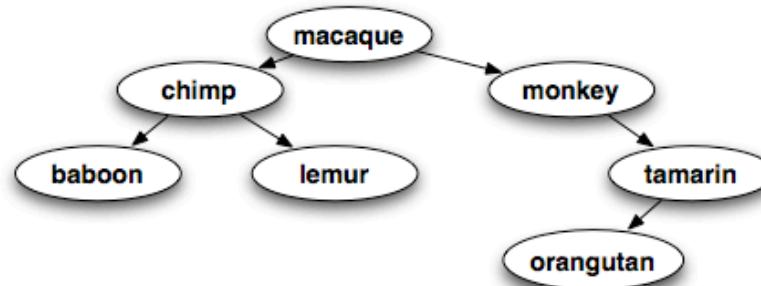
Logistics, Coming up

- P4 Autocomplete due today 10/31
- APT8 (Tree problems) due this Wed., 11/2
- P5: Huffman releasing this week, due Monday 11/14

Three ways to recursively traverse a any binary tree (search or not)

- Difference is in where the non-recursive part is

inOrder	preOrder	postOrder
<pre>void inOrder(TreeNode t) { if (t != null) { inOrder(t.left); System.out.println(t.info); inOrder(t.right); } }</pre>	<pre>void preOrder(TreeNode t) { if (t != null) { System.out.println(t.info); preOrder(t.left); preOrder(t.right); } }</pre>	<pre>void postOrder(TreeNode t) { if (t != null) { postOrder(t.left); postOrder(t.right); System.out.println(t.info); } }</pre>



Wrapper and recursive helper method to return List

```
101  public ArrayList<String> visit(TreeNode root) {  
102      ArrayList<String> list = new ArrayList<>();  
103      doInOrder(root, list);  
104      return list;  
105  }  
106  
107  private void doInOrder(TreeNode root, ArrayList<String> list) {  
108      if (root != null) {  
109          doInOrder(root.left, list);  
110          list.add(root.info);  
111          doInOrder(root.right, list);  
112      }  
113  }
```

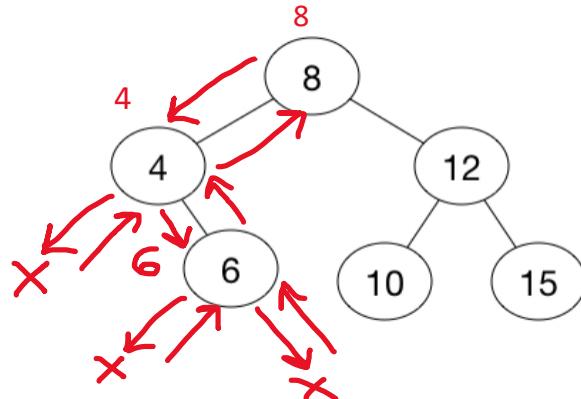
- In order traversal → list?
- Create list, call helper, return list
- values in returned list in order

TreeCount APT

Problem Statement

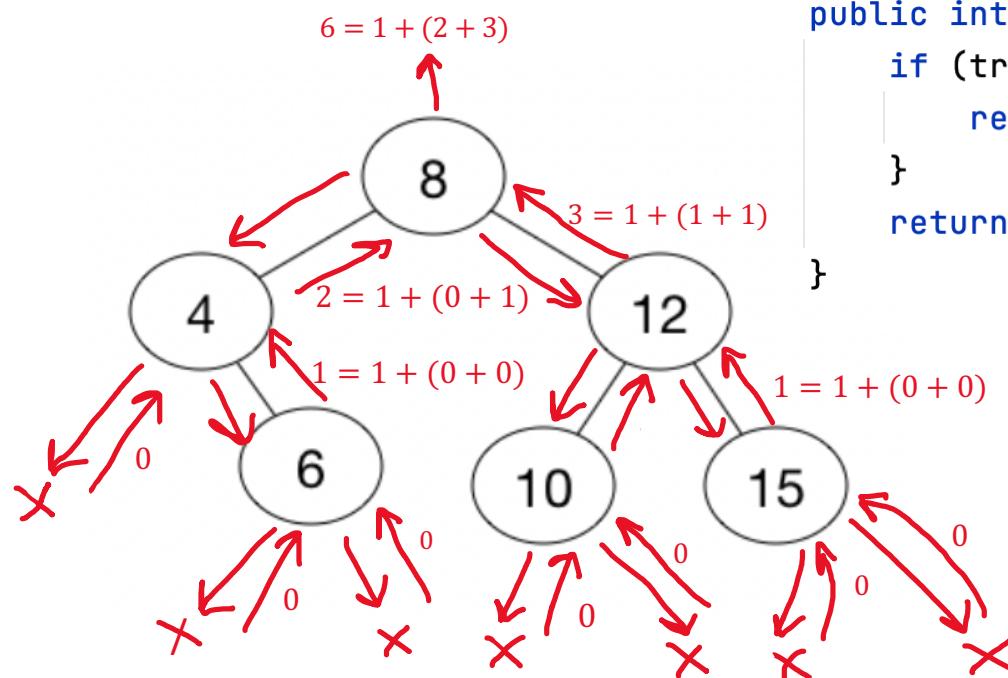
Write a method that returns the number of nodes of a binary tree. The `TreeNode` class will be accessible when your method is tested.

```
public class TreeCount {  
    public int count(TreeNode tree) {  
        // replace with working code  
        return 0;  
    }  
}
```



is characterized by the pre-order string **8, 4, x, 6, x, x, 12, 10, x, x, 15, x, x**

Solving TreeCount in Picture & Code



```
public int count(TreeNode tree) {  
    if (tree == null) {  
        return 0;  
    }  
    return 1 + count(tree.left) + count(tree.right);  
}
```

WOTO

Go to duke.is/8xcjw

Not graded for correctness,
just participation.

Try to answer *without* looking
back at slides and notes.

But do talk to your neighbors!

Complexity of tree traversal

- Intuition: visit every node once and print it
 - If there are N nodes, should be $O(N)$
 - But what about recursive calls?
- More generally/formally:
 - We create a recurrence relation (an equation)
 - Solving the equation yields runtime

Analyzing Recursive Runtime

Develop a recurrence relation of the form

$$T(N) = a \cdot T(g(N)) + f(N)$$

Where:

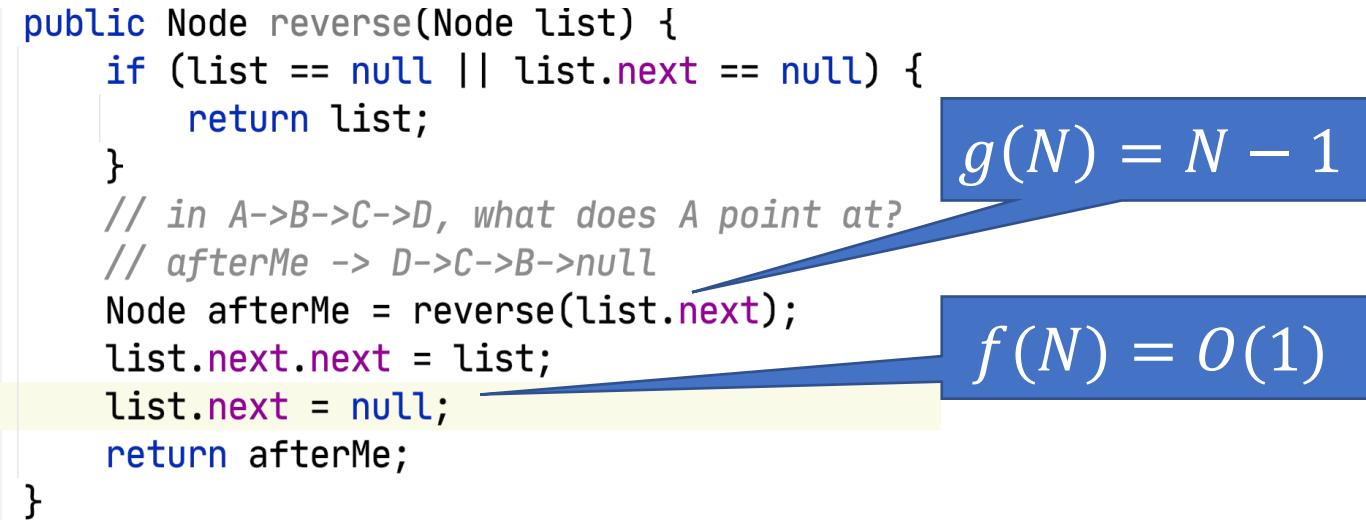
Recursive call(s)

Non-recursive runtime

- $T(N)$ - runtime of method with input size N
- a is the number of recursive calls
- $g(N)$ - how much input size decreases on each recursive call
- $f(N)$ - runtime of non-recursive code on input size N

LinkedList Example: Runtime of Recursive Reverse

```
108 public Node reverse(Node list) {  
109     if (list == null || list.next == null) {  
110         return list;  
111     }  
112     // in A->B->C->D, what does A point at?  
113     // afterMe -> D->C->B->null  
114     Node afterMe = reverse(list.next);  
115     list.next.next = list;  
116     list.next = null; list.next = null; list.next = null;  
117     return afterMe;  
118 }
```



$$\begin{aligned}T(N) \\= T(N - 1) + O(1)\end{aligned}$$

Solving Recurrence Relation

Total runtime

$$T(N) = T(N - 1) + O(1)$$

$$= (T(N - 2) + O(1)) + O(1)$$

$$= (T(N - 3) + 3 \cdot O(1))$$

⋮

$$= T(1) + N \cdot O(1)$$

$$= O(N)$$

Apply recurrence
again to $T(N-1)$

$T(1)$ is base case,
just $O(1)$

Table of Recurrences

Recurrence	Algorithm	Solution
$T(n) = T(n/2) + O(1)$	binary search	$O(\log n)$
$T(n) = T(n-1) + O(1)$	sequential search	$O(n)$
$T(n) = 2T(n/2) + O(1)$	tree traversal	$O(n)$
$T(n) = T(n/2) + O(n)$	qsort partition ,find k^{th}	$O(n)$
$T(n) = 2T(n/2) + O(n)$	mergesort, quicksort	$O(n \log n)$
$T(n) = T(n-1) + O(n)$	selection or bubble sort	$O(n^2)$

We expect you to be able to derive a recurrence relation from an algorithm, but not necessarily to solve. We will provide a table of solutions like this for exams.

Recurrence relation and runtime for traversing a balanced tree

- $T(n)$ time `inOrder(root)` with n nodes
 - $T(n) = T(n/2) + O(1) + T(n/2) = O(n)$

```
49     public void inOrder(TreeNode root) {  
50         if (root != null) {  
51             inOrder(root.left);  
52             System.out.println(root.info);  
53             inOrder(root.right);  
54         }  
55     }
```

- Why $T(n/2)$?

Assumes the tree is *balanced*: Same number of nodes in the left subtree as the right.

Recurrence relation and runtime for traversing an unbalanced tree

- If every node has a right child but no left...
 - $T(n) = T(0) + O(1) + T(n-1) = O(n)$

```
49     public void inOrder(TreeNode root) {  
50         if (root != null) {  
51             inOrder(root.left);  
52             System.out.println(root.info);  
53             inOrder(root.right);  
54         }  
55     }
```

- So Tree *traversal* is $O(n)$ regardless of balance.
- What about search/contains and insert for a binary search tree?

Balance and runtime for search and insert in a binary search tree

```
186     public boolean contains(TreeNode tree, String target) {  
187         if (tree == null) return false;  
188         int result = target.compareTo(tree.info);  
189         if (result == 0) return true;  
190         if (result < 0) return contains(tree.left, target);  
191         return contains(tree.right, target);  
192     }
```

If balanced?

- $T(n) = T(n/2) + O(1) = O(\log(n))$

If unbalanced?

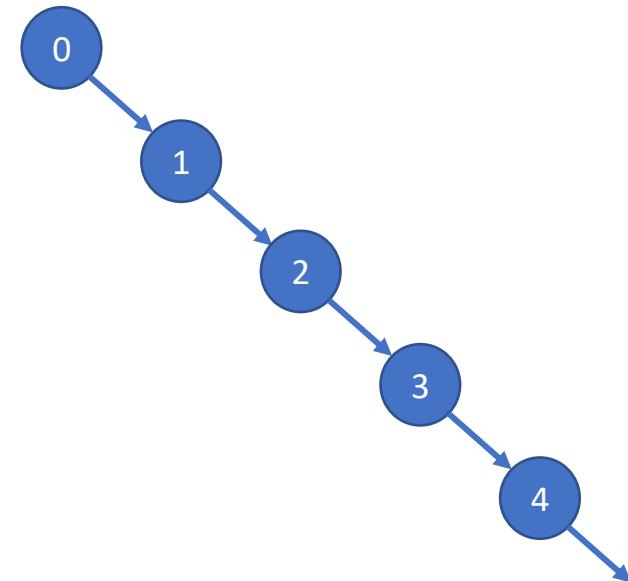
- $T(n) = T(n-1) + O(1) = O(n)$

Why would a tree not be balanced?

Worse case:

- What if we insert sorted data?

```
For(int i=0; i<n; i++) {  
    myTree.insert(i);  
}
```



- Average case height $O(\log(n))$ for random-ish order
- AVL trees, red-black trees (later) can dynamically ensure good balance.

How much balance is enough?

Approximate balance: Say that a binary tree is (a, b) –approximately balanced if...

- For every *node* rooting a subtree of size $n \geq a$,
- The left and right subtrees of the *node* both contain at most $b \left(\frac{n}{2}\right)$ nodes.

Then the recurrence relation for contains is...

- $T(n) \leq T\left(b \frac{n}{2}\right) + O(1)$ for $n \geq a$, and
- $T(n) \leq T(n - 1) + O(1)$ for $n < a$.

How much balance is enough?

So for example, if a binary tree is $(5, 1.5)$ -approximately balanced...

Then the height of the tree is at most

$$5 + (\log_{2/1.5} n + 1)$$

$$= 6 + \log_{4/3} n$$

$$O(\log(n))$$

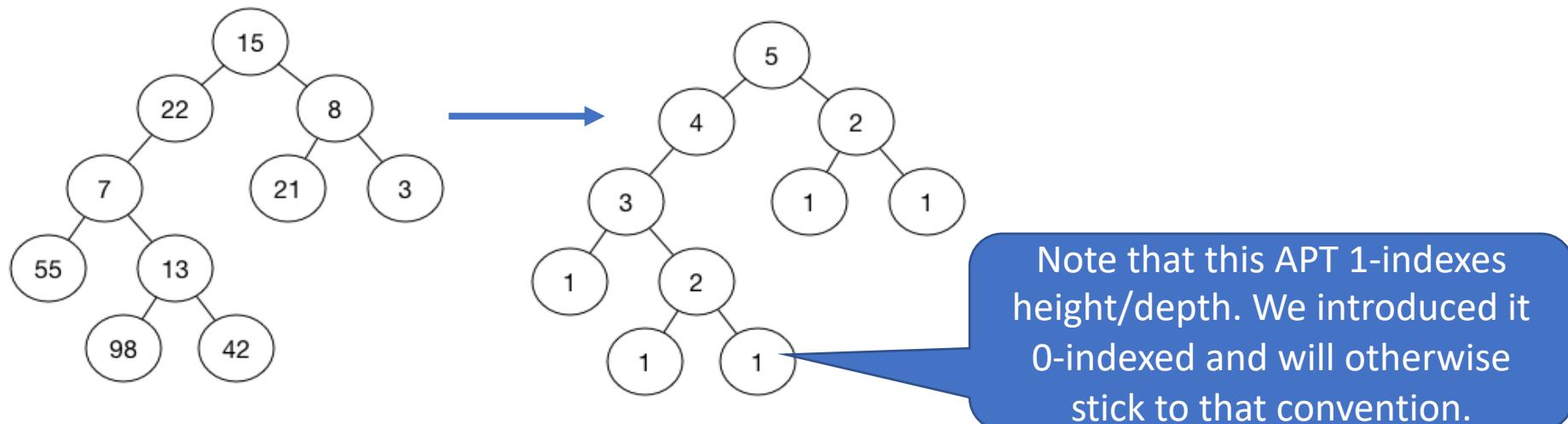
Don't need to worry about the derivation.

Takeaway: Approximate balance is good enough for good asymptotic performance.

HeightLabel APT

<https://www2.cs.duke.edu/csed/newapt/heightlabel.html>

- Create a new tree from a tree parameter
 - Same shape, nodes labeled with height
 - Use **new TreeNode**. With what values ...



FAQ: Can I make a tree?

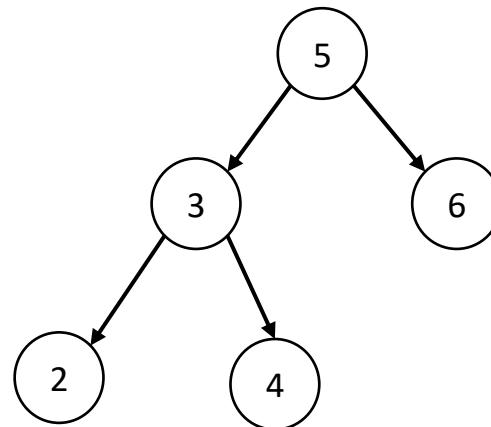
```
public class TreeNode {  
    int info;  
    TreeNode left;  
    TreeNode right;  
    TreeNode(int x){  
        info = x;  
    }  
    TreeNode(int x, TreeNode lNode, TreeNode rNode){  
        info = x;  
        left = lNode;  
        right = rNode;  
    }  
}
```

Just call the TreeNode constructor for each new node and connect them.

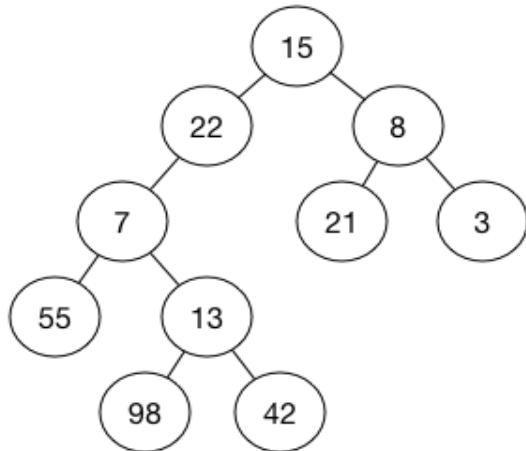
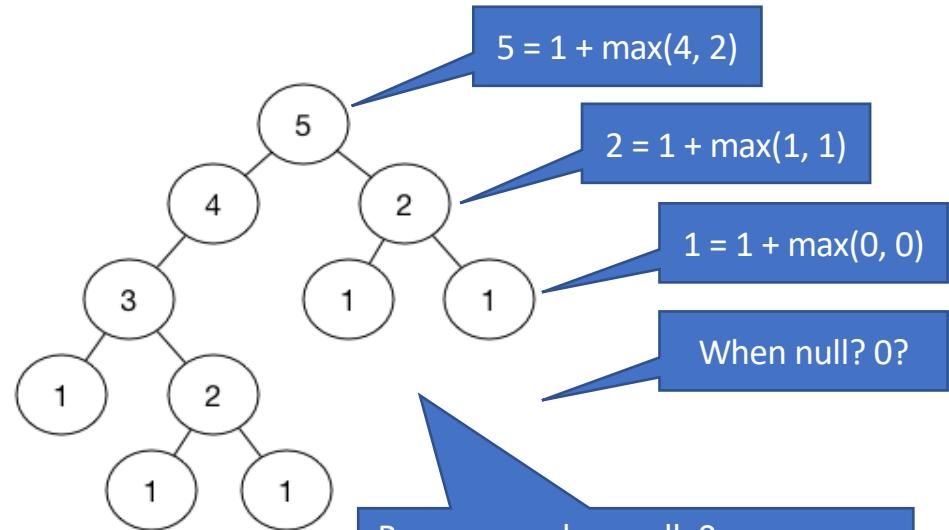
```
TreeNode root = new TreeNode(x: 5);  
root.left = new TreeNode(x: 3);  
root.right = new TreeNode(x: 6);  
root.left.left = new TreeNode(x: 2);  
root.left.right = new TreeNode(x: 4);
```

More terse version

```
TreeNode myTree = new TreeNode(x: 5,  
    new TreeNode(x: 3,  
        new TreeNode(x: 2),  
        new TreeNode(x: 4)),  
    new TreeNode(x: 6));
```



Solving HeightLabel in Pictures



Base case: when null, 0

Recursive case: height of node is
1 + max(height of node.left
height of node.right)

Solving HeightLabel in Code

```
private int height(TreeNode t) {  
    if (t == null) return 0;  
    return 1 + Math.max(height(t.left),  
                        height(t.right));  
}  
  
public class HeightLabel {  
    public TreeNode rewire(TreeNode t) {  
        // replace with working code  
        return null;  
    }  
}  
  
public TreeNode rewire(TreeNode t) {  
    if (t == null) return null;  
    return new TreeNode(height(t),  
                        rewire(t.left),  
                        rewire(t.right));  
}
```

Base case: when null, 0

Recursive case: height of node is
1 + height of node.left
+ height of node.right

Method doesn't just calculate
height, is supposed to create and
return new tree with new nodes...

Using height helper method, get
height, create new node, return.

Tree Recursion tips / common mistakes

1. Draw it out! Trace your code on small examples.
2. Return type of the method. Do you need a helper method?
3. Base case first, otherwise infinite recursion / null pointer exception.
4. If you make a recursive call, make sure to use what it returns.

WOTO

Go to duke.is/cvp7b

Not graded for correctness,
just participation.

Try to answer *without* looking
back at slides and notes.

But do talk to your neighbors!

Rewire runtime?

- recurrence of this all-green code? $T(n) =$
- $2T(n/2) + O(n)$

- Balanced tree

```
public TreeNode rewire(TreeNode t) {  
    if (t == null) return null;  
    return new TreeNode(height(t),  
                        rewire(t.left),  
                        rewire(t.right));  
}  
  
private int height(TreeNode t) {  
    if (t == null) return 0;  
    return 1 + Math.max(height(t.left),  
                        height(t.right));  
}
```

The diagram illustrates the recurrence relation for the `rewire` function. A large green box labeled $T(n)$ encloses the entire function. Inside, a green box labeled $O(n)$ encloses the `height` calculation. Two green boxes labeled $T(n/2)$ if balanced enclose the recursive calls `rewire(t.left)` and `rewire(t.right)`.

HeightLabel Complexity

- Balanced? $O(N \log N)$,
 - $2T(n/2) + O(n)$
- Unbalanced, $O(N^2)$,
 - $T(N) = T(N-1) + O(N)$
- Do in $O(N)$ time? Yes, if we don't call height
 - Balanced: $T(N) = 2T(N/2) + O(1)$
 - Unbalanced: $T(N) = T(N-1) + O(1)$

HeightLabel in $O(N)$ time

- If recursion works, subtrees store heights!

- Balanced? $O(N)$,
 - $2T(n/2) + O(1)$
- Unbalanced, $O(N)$,
 - $T(N-1) + O(1)$

```
public TreeNode rewire(TreeNode t) {  
    if (t == null) { return null; }  
    TreeNode leftOfMe = rewire(t.left);  
    TreeNode rightOfMe = rewire(t.right);  
    int lHeight = 0;  
    int rHeight = 0;  
    if (leftOfMe != null) { lHeight = leftOfMe.info; }  
    if (rightOfMe != null) { rHeight = rightOfMe.info; }  
    return new TreeNode(  
        x: 1+Math.max(lHeight, rHeight),  
        leftOfMe,  
        rightOfMe);  
}
```

Diameter Problem

leetcode.com/problems/diameter-of-binary-tree

Calculate the *diameter* of a binary tree, the length of the longest path (maybe through root, maybe not, can't visit any node twice).

