CompSci 201, L22:
Greedy Algorithms,
Hutfman

Logistics, Coming up
* APTS8 (tree problems) due today

* No project due next Monday, start on P5 Huffman due
the following Monday 11/14

* APT9 (more tree problems) due next Wednesday 11/9.
Will see TreeTighten and LeafCollector problems in
discussion this Friday.

* Wrapping up BSTs and binary heaps next week, then on
to graphs!

Diameter Problem

leetcode.com/problems/diameter-of-binary-tree

Calculate the diameter of a binary tree, the length of
the longest path (maybe through root, maybe not,

can’t visit any node twice).

Diameter 3

Diameter 4 Live Coding

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman 3

https://leetcode.com/problems/diameter-of-binary-tree

Greedy Algorithms for
Discrete Optimization

Optimization

maximizes or minimizes
T

some objective

* Example: Knapsack
* Find the bundle of items with

maximum value without A
. 00’ 10 10
exceeding a budget. o: >

* What should you buy if you

have $10?
o Qo

1 51

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman 5

Greedily Searching for Optima

 Start with a partial solution. In each iteration make
a step toward a complete solution.

* Greedy principle: In each iteration, make the lowest
cost or highest value step.

* Knapsack:
 Partial solution is a set of items you can afford.

* Greedy step: Add the next best value per cost item that
you can afford.

Local Optima vs Global Optima?

Greedy algorithms do not always guarantee to find the best overall
solution, called global optima.

T
Greedy picks:
T T

1. The apple, best

value/cost.
2. Then the banana, @ 1 51 1
can’t afford pizza. 10 $10 :

Total value = 3.

But just buying the cherries give value 10.

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman 7

Why Learn Greedy Algorithms?

1. Sometimes a greedy algorithm is optimal. Many of
the algorithms we study in the rest of this course are
greedy!

* Huffman Compression (Today, Project 5)
* Breadth-first search, Dijkstra’s algorithm, in graphs
* Minimum Spanning Tree, in graphs

1. Sometimes the greedy algorithm isn’t provably
optimal but works well in practice.

2. A greedy algorithm is typically easy to start with for
optimization problems.

Aside: What is Machine Learning?

Text generation

which are designed for one use-case, the API today

provides a general-purpose “text in, text out users to try it on virtually any English language task.
interface, allowing users to try it on virtually any

English language task. You can now request access in You can now request access in order to integrate the
order to integrate the API into your product, develop

an entirely new application, or help us explore the API into your pI'OdUCt, develop an entirely new
strengths and limits of this technology."""

application, or help us explore the strengths and limits
response = openai.Completion.create(model="davinci",

prompt=prompt, stop="\n", temperature=0.9, of this technology. The road to making AI safe and
lenging, but with the support of
— \ ity we expect to get there

‘ Bottle -

o
\\\\\\\\},\\J‘]& 94’I
N\ (e 7/, onday, Ju E
) My, < Ll (.

masterc

bottle

-

S
AN

Move your head slowly to
complete the circle.

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman 9

Aside continued — How do you
“learn a model” greedily?

» Often (in deep learning) represent
a model with a neural network.

e Learn model = optimize
parameters of network on data.

* How to optimize the parameters?
* Greedy algorithm called gradient

descent [o

weight '

* At each step, make a small change | N

that best improves model ﬂ
performance /‘/'/

[z

VoteRigging APT

e https://www?2.cs.duke.edu/csed/newapt/voterigging.html

e Given votes for candidates, {5,10,7,3, 8}

* You are candidate with index O
* Minimal votes to buy to win election?

* Buy from index/1: {6,9,3,8}

, AT
* Buy from index/1: {7,8,3,8} VOTE
* Buy from index/1: {8,7,3,8} —

* Buy from index/3:{9,7,3,7} Winner! 4 votes

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman

11

https://www2.cs.duke.edu/csed/newapt/voterigging.html

Greedy algorithm for buying votes

* Buy a vote from opponent with the most
* You must beat them, you must buy a vote

* In this case, the greedy decision “buy from leader”
leads to globally optimal solution that buys the
fewest votes overall.

* How to realize algorithm in code?

The big picture

public int minimumVotes(int[] votes) {
int req = 0;
int winner = getMax(votes);
while (winner != 0) {...}
return req;

}.

* Need a while loop —don’t know how many votes
we need to buy!

* Helper method to get who is currently winning.

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman 13

A greedy step toward a solution

e Inside |00p, make a greedy public int minimumVotes(int[] votes) {

step toward a solution: int req = 0;
int winner = getMax(votes);
while (winner != 0) {

votes[winner]--;
votes[0]++;

r‘eu++;
winner = getMax(votes);

* Buy a vote from the current
winning candidate

}

¢ Update to get new current
return req;

winner \

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman 14

Efficiency?

e Riterations through |00p’ public int minimumVotes(int[] votes) {

where R is the minimum int req = 0
number of votes to buy. int winner = getMax(votes);
while (winner != 0) {
» getMax(votes) loops over votes[winner]--;
votes, so O(N) with N votes[0]++;
candidates. reg++;

winner = getMax(votes);

e Overall: O(R*N) y

return req;

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman 15

Priority Queue Implementation

Nothing to do if
public int minimumVotes(int[] votes) { only one candidate

if (votes.length == 1) { return 0; }

%nt req = 0; Keep track of votes
int ourCount = votes[0]; for candidate O

PriorityQueue<Integer> pq;
pq = new PriorityQueue<Integer>(Collections.reverseOrder());
for (int i = 1; i < votes.length; i++) {

pg.add(votes[i]);
} Same while loop written

differently: While our

Max-heap priority queue

candidate isn’t winning...

int winCount = pg.remove();
while (ourCount <= winCount) {...}
return req;

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman

Zooming in on the loop

* Same algorithm but store
vote counts in pq.

* Add/remove for pq
(implemented as a heap)
are O(log(N)).

* Overall: O(R*log(N)) [plus
O(Nlog(N)) pre-processing]

pq.add(winCount - 1);
[‘_e_q++;

winCount = pg.remove();

WOTO
Go to duke.is/6pczd

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

But do talk to your neighbors!

https://duke.is/6pczd

Project 5 Huffman

Huffman Compression

Representing data with bits: Preferably fewer bits

e Unicode e JPEG e MP3

™~
©

| LIS -

unicode

Huffman compression used in all of these and more!

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman

20

Encoding

* Eventually, everything stored as bit
sequence: 011001011...

* Fixed length encoding

e Each value has a unique bit sequence of

the same length stored in a table.

* With N unique values to encode, need
[log,(N)] bits per value.

e E.g., with 8 characters, need 3 bits per

character.

ASCII coding
char ASCII binary

g

»w = O = T O

space

103 1100111
111 1101111
112 1110000
104 1101000
101 1100101
114 1110010
115 1110011
32 1000000

3-bit coding

char code binary

»w = O 5 T O 09

space

0 000
001
010
011
100
101
110
111

N N L AW =

Optimizing Encoding?

* Suppose we have three characters {a, b, c}:
* aappears 1,000,000 times
* b and c appear 50,000 times each

* Fixed length encoding uses 2,200,000 bits.

* [log,(3)] = 2
e 2 times 1,100,000 values = 2,200,000 bits

* Variable length encoding: Use fewer bits to encode more
common values, more bits to encode less common values.

e What if we encode:a=1,b=10,c=117?
* Only uses 1,200,000 bits.

Decoding Fixed Length

* Fixed Length with length k 3-bit coding
* Every k bits, look up in table = char code binary
» 001 001 010 110, E =
*001->o0 p 2 010
e 001 ->0 h 3 ol
R (00
*010->p r 5 101
*110->s s 6 110
space 7 111

Decoding Variable Length

e What if we use

*a=1
*b=10
e c=11

e How would we decode 10117
e Is it “baa” or “bc?”

* Problem: Encoding of a (1) is a prefix of the encoding
for c (11).

 Solution: Don’t allow these encodings!

Prefix property encoding as a tree

Convention: O for
char binary left and 1 for right

: Values you want to
encode are leaves:
Ensures prefix property.

Encoding is the
sequence of 0’s and
1’s on root to leaf path

Values deeper in tree
encoded with more bits than
those earlier in the tree.

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman 25

Huffman Coding

* Greedy algorithm for building an optimal variable
length encoding tree.

* High level idea:
* Start with the leaves/values you want to encode
with weights = frequency.
* |teratively choose the lowest weight nodes to

connect “up” to a new node with weight = sum of
children.

Visualizing the algorithm

Encoding the text “go go gophers”
char binary

'g' 00
'o' 01
'p' 1110
'h' 1101
'e! 101
'r' 1111
's' 1100
L 100

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman 27

WOTO
Go to duke.is/pge7f

Not graded for correctness,
just participation.

Try to answer without looking =
back at slides and notes.

But do talk to your neighbors!

https://duke.is/pge7f

P5 Qutline

1. Write Decompress first
* Takes a compressed file (we give you some)
* Reads Huffman tree from bits
e Uses tree to decode bits to text

2. Write Compress second
* Count frequencies of values/characters
* Greedy algorithm to build Huffman tree
* Save tree and file encoded as bits

People in CS: Clarence “Skip”™ Ellis

* Born 1943 in Chicago. PhD in CS
from U. lllinois UCin 1969

* First African American anywhere
in US to complete a PhD in CS

* Founding member of the CS B g 2y

’ — I\
R e

department at U. Colorado, also R e
worked in industry. ETRTEY e R
* Developing original graphical
user interfaces, object-oriented £ e

programming, collaboration “People put together an image of
what | was supposed to be,” he

tools. recalled. “So I always tell my
students to push.”

Read more here

11/2/22 Compsci 201, Fall 2022, L19: Greedy Huffman 30

https://cs.illinois.edu/about/awards/alumni-awards/alumni-awards-past-recipients/clarence-ellis

