
CompSci 201, L20: 
Binary Heaps

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 1



Logistics, Coming up

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 2

• APT9 (more tree problems) due this Wed., 11/9

• P5 Huffman due next Monday 11/14

• Wrapping up binary heaps and balanced binary 
search trees this week, then on to graphs!



People in CS: Clarence “Skip” Ellis

• Born 1943 in Chicago. PhD in CS 
from U. Illinois UC in 1969
• First African American anywhere 

in US to complete a PhD in CS
• Founding member of the CS 

department at U. Colorado, also 
worked in industry.
• Developing original graphical 

user interfaces, object-oriented 
programming, collaboration 
tools.  

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 3

“People put together an image of 
what I was supposed to be,” he 
recalled. “So I always tell my 
students to push.”

Read more here

https://cs.illinois.edu/about/awards/alumni-awards/alumni-awards-past-recipients/clarence-ellis


Huffman Compression

• Zip • Unicode • JPEG • MP3

Huffman compression used in all of these and more!

Representing data with bits: Preferably fewer bits

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 4



Prefix property encoding as a tree

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 5

Convention: 0 for 
left and 1 for right

Encoding is the 
sequence of 0’s and 

1’s on root to leaf path

Values you want to 
encode are leaves: 

Ensures prefix property.

Values deeper in tree 
encoded with more bits than 

those earlier in the tree.



Huffman Coding

• Greedy algorithm for building an optimal variable 
length encoding tree.

• High level idea:
• Start with the leaves/values you want to encode 

with weights = frequency.
• Iteratively choose the lowest weight nodes to 

“connect up” to a new node with weight = sum of 
children.

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 6



Visualizing the algorithm

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 7

Encoding the text “go go gophers”



WOTO
Go to duke.is/pge7f

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 8

Not graded for correctness, 
just participation. 

Try to answer without looking 
back at slides and notes.

But do talk to your neighbors!

https://duke.is/pge7f


P5 Outline

1. Write Decompress first
• Takes a compressed file (we give you some)
• Reads Huffman tree from bits
• Uses tree to decode bits to text

2. Write Compress second
• Count frequencies of values/characters
• Greedy algorithm to build Huffman tree
• Save tree and file encoded as bits

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 9



Heaps Revisited

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 10



java.util.PriorityQueue Class

• Kept in sorted order, smallest out first
• Objects must be Comparable OR provide 

Comparator to priority queue

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 11



Tradeoffs, Heaps, and Trees

• Fast add and remove?
• Binary Heap: Implements a 

priority queue with:
• Peek: O(1)
• Remove: O(log(N))
• Add: O(log(N))

• java.util PriorityQueue is 
implemented as a binary heap

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 12

N log2(N)
100 6.6
200 7.6
400 8.6
800 9.6

1600 10.6
3200 11.6
6400 12.6

12800 13.6
25600 14.6
51200 15.6



Binary Heap at a high level

• Maintain the heap property that every 
node is less than or equal to its 
successors, and

• The shape property that the tree is 
complete (full except perhaps last level, 
fill from left to right)

Operations:
• Peek: Return value of root node
• Remove: Remove root node and fix tree 

to reestablish properties.
• Add: Insert at first open position, fix to 

reestablish properties.

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 13

By Vikingstad at English Wikipedia - Transferred from 
en.wikipedia to Commons by LeaW., Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=3504273



How are PriorityQueues
implemented?

• Normally think about binary tree used for 
implementing priority queues, supports:
• insert/add
• findMin/peek
• deleteMin/remove

• Actually implement with an array 
• minimizes storage (no explicit points/nodes)
• simpler to code, no explicit tree traversal
• faster too (constant factor, not asymptotically)---

children are located by index/position in array

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 14



Aside: How much less memory?

• Storing an int takes 4 bytes = 32 bits on most 
machines.
• Storing one reference to an object (a memory 

location) takes 8 bytes = 64 bits on most machines.

• For a heap storing N integers…
• Array of N integers takes ~ 4N bytes.
• Binary tree where each node has an int, left, and right 

reference takes ~20N bytes.
• So maybe a 5x savings in memory (just an estimate). Not 

an asymptotic improvement.

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 15



Using an array for a Heap
• Hard to keep track of the last node in the tree.
• Index positions in the tree level by level, left to right:

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

6

10 7

17 13 9 21

19 25

Depth 0
Depth 1
Depth 2

Depth 3

1

2 3

4 5 6 7

8 9

• Last node in the heap is always just the largest index
• Can use indices to represent as an array!

(ArrayList if you 
want it to be 

growable)
11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 16



Properties of the Heap Array
• Store “node values” in 

array beginning at index 1
• Could 0-index, Zybook

does this

• Last node is always at the 
max index

• Minimum node is always 
at index 1 

• peek is easy, return first 
value. 
• How about add? 
• Remove?

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

6

10 7

17 13 9 21

19 25

Depth 0

Depth 1

Depth 2

Depth 3

1

2 3

4 5 6 7

8 9

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 17



Relating Nodes in Heap Array
• When 1-indexing: For node 

with index k
• left child: index 2*k
• right child: index 2*k+1
• parent: index k/2

• Why? Follows from:
• Heap is complete, and
• Complete binary tree 

has 2d nodes at depth 
d (except last)

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

6

10 7

17 13 9 21

19 25

Depth 0

Depth 1

Depth 2

Depth 3

1

2 3

4 5 6 7

8 9

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 18

Integer division



Adding values to heap in pictures
• Add to first open position in 

last level of the tree
• (really, add to end of 

array)
• Swap with parent if heap 

property violated
• stop when parent is 

smaller
• Or you reach the root

13

6
10 7

17 9 21
19 25

13

6
10 7

17 9 21
19 25 8

6
10 7

17 9 21
19 25 13

8

insert 8

bubble 8 up

6
7

17 9 21
19 25

8

13

10

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 19

Heap property 
re-established



Heap add implementation

13

6
10 7

17 9 21
19 25

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

ArrayList<Integer> heap

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 20

8

8

index=10parent=5



Heap add implementation

13

6
10 7

17 9 21
19 25

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 8 259 21 19

ArrayList<Integer> heap

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 21

8

index=5parent=2

8

6
10 7

17 9 21
19 25 13

13



Heap add implementation

13

6
10 7

17 9 21
19 25

0 1 2 3 4 5 6 7 8 9 10

6 8 7 17 10 259 21 19

ArrayList<Integer> heap

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 22

8

index=2
parent=1

8

6
10 7

17 9 21
19 25 13

13

10

6
8 7

17 9 21
19 25 13



Heap remove in pictures
• Always return root value

• Replace root with last 
node in the heap

• While heap property 
violated, swap with 
smaller child.

13

6
10 7

17 9 21
19 25

13

25
10 7

17 9 21
19

13

7
10 25

17 9 21
19

13

7
10 9

17 25 21
19

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 23



Heap Complexity

• Claimed that:
• Peek: O(1)
• Add: O(log(N))
• Remove: O(log(N))

• On a heap with N values. Why?
• Peek: Easy, return first value in an Array
• Complete binary tree always has height O(log(N)).
• add and remove “traverse” one root-leaf path, at most 

O(log(N)).

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 24



WOTO
Go to duke.is/guzv2

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 25

Not graded for correctness, 
just participation. 

Try to answer without looking 
back at slides and notes.

But do talk to your neighbors!

https://duke.is/guzv2


Choose your own adventure

1. Look at Generic DIYBinaryHeap: 
coursework.cs.duke.edu/cs-201-fall-
22/diybinaryheap , or

2. Solve Greedy Coding Problem with      
PriorityQueue: leetcode.com/problems/non-
overlapping-intervals/

Live coding

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 26

https://coursework.cs.duke.edu/cs-201-fall-22/diybinaryheap
https://leetcode.com/problems/non-overlapping-intervals/

