CompSci 201, L20:
Binary Heaps

Logistics, Coming up
* APT9 (more tree problems) due this Wed., 11/9

* P5 Huffman due next Monday 11/14

* Wrapping up binary heaps and balanced binary
search trees this week, then on to graphs!

People in CS: Clarence “Skip”™ Ellis

* Born 1943 in Chicago. PhD in CS
from U. lllinois UCin 1969

* First African American anywhere
in US to complete a PhD in CS

* Founding member of the CS B g 2y

’ — I\
R e

department at U. Colorado, also R e
worked in industry. ETRTEY e R
* Developing original graphical
user interfaces, object-oriented £ e

programming, collaboration “People put together an image of
what | was supposed to be,” he

tools. recalled. “So I always tell my
students to push.”

Read more here

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 3

https://cs.illinois.edu/about/awards/alumni-awards/alumni-awards-past-recipients/clarence-ellis

Huffman Compression

Representing data with bits: Preferably fewer bits

e Unicode e JPEG e MP3

™~
©

BT L LTS

unicode

Huffman compression used in all of these and more!

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps

Prefix property encoding as a tree

Convention: O for
char binary left and 1 for right

: Values you want to
encode are leaves:
Ensures prefix property.

Encoding is the
sequence of 0’s and
1’s on root to leaf path

Values deeper in tree
encoded with more bits than
those earlier in the tree.

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 5

Huffman Coding

* Greedy algorithm for building an optimal variable
length encoding tree.

* High level idea:
* Start with the leaves/values you want to encode
with weights = frequency.
* |teratively choose the lowest weight nodes to

“connect up” to a new node with weight = sum of
children.

Visualizing the algorithm

Encoding the text “go go gophers”
char binary

'g' 00
'o' 01
'p' 1110
'h' 1101
'e! 101
'r' 1111
's' 1100
L 100

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 7

WOTO
Go to duke.is/pge7f

Not graded for correctness,
just participation.

Try to answer without looking =
back at slides and notes.

But do talk to your neighbors!

https://duke.is/pge7f

P5 Qutline

1. Write Decompress first
* Takes a compressed file (we give you some)
* Reads Huffman tree from bits
e Uses tree to decode bits to text

2. Write Compress second
* Count frequencies of values/characters
* Greedy algorithm to build Huffman tree
* Save tree and file encoded as bits

Heaps Revisited

java.util.PriorityQueue Class

* Kept in sorted order, smallest out first

* Objects must be Comparable OR provide
Comparator to priority queue

PriorityQueue<String> pg = new PriorityQueue<>(

PriorityQueue<String> pg = new PriorityQueue<>();
Comparator.comparing(String::length));

pg.add("is");)
pq.add("Compsci 201"); pq.add("ls");'
pg.add("Compsci 201");

Pg.add("wonderful"); pq.add("wonderful");
while (! pg.isEmpty()) { while (! pg.isEmpty()) {

System.out.println(pg.remove()); System.out.println(pg.remove());
} }
Compsci 201 is
is wonderful
wonderful Compsci 201

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 11

Tradeoffs, Heaps, and Trees

. N log,(N)
Fast add and remove? o =z

* Binary Heap: Implements a igg Z;Z
priority queue with: 200 o6

e Peek: O(1) 1600 10.6

* Remove: O(log(N)) 3200 11.6

o . 6400 12.6

) Add: O(I.Og(N)) . . . 12800 13.6

* java.util PriorityQueueis 25600 14.6

implemented as a binary heap 51200 15.6

Binary Heap at a high level

* Maintain the heap property that every
node is less than or equal to its
successors, and 0

* The shape property that the tree is
complete (th)JII except perhaps last level, ° °

fill from left to right) ° e @ °

Operations:
e Peek: Return value of root node e @
* Remove: Remove root node and fix tree By Vintadot il Wiipeds Tonsfred fom
to re esta b | IS h p ro pe rt I e S . https://commons.wikimedia.org/w/index.php?curid=3504273

* Add: Insert at first open position, fix to
reestablish properties.

How are PriorityQueues
implemented?

* Normally think about binary tree used for
implementing priority queues, supports:
* insert/add
 findMin/peek
e deleteMin/remove

* Actually implement with an array
* minimizes storage (no explicit points/nodes)
* simpler to code, no explicit tree traversal

 faster too (constant factor, not asymptotically)---
children are located by index/position in array

Aside: How much less memory?

e Storing an int takes 4 bytes = 32 bits on most
machines.

* Storing one reference to an object (a memory
location) takes 8 bytes = 64 bits on most machines.

* For a heap storing N integers...
* Array of N integers takes ~ 4N bytes.
* Binary tree where each node has an int, left, and right
reference takes ~20N bytes.
* So maybe a 5x savings in memory (just an estimate). Not
an asymptotic improvement.

Using an array for a Heap

* Hard to keep track of the last node in the tree.

* Index positions in the tree level by level, left to right:

(e

* Last node in the heap is always just the largest index

e Can use indices to represent as an array!

6

10

7

17

13

9

21

19

25

(ArrayList ifyou

want it to be

0 1
11/7/22

2

3

4 5
Compsci 201, Fall 2022, L20: Binary Heaps

6

7 8

9 10

growable)
16

Properties of the Heap Array

Store “node values” in

array beginning at index 1 6 110 |7 127 k3 | 9 121 119 |25
 Could 0-index, Zybook 01 2 3 4 5 6 7 8 9 10
does this

Last node is always at the |
i Depth O !
max index . oINS

. . Depth 1 2‘ 3
Minimum node is always - AR N S

atindex 1 Depth 2 5@ @
peek is easy, return first Depth 3 @ -

value. N
* How about add?

e Remove?

Relating Nodes in Heap Array

* When 1-indexing: For node
with index k 6 |10 |7 |17 13 | 9 |21 |19 |25

e |eft child: index 2*k 01 2 5 4 5 6 7 8 910
e right child: index 2*k+1
e parent:index k/2 — T e NN

hy? I : Depth 1 |
Why? Follows from: bepin 3
* Heapiscomplete, and -1 /=
. Depth 33
* Complete binary tree - AN ——

has 29 nodes at depth
d (except last)

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 18

Adding values to heap in pictures

« Add to first open position in /.\‘b
last level of the tree
* (really, add to end of @ msert
array) /‘\‘b

* Swap with parent if heap
property violated /.\.b bubble 8 up
 stop when parentis ﬁ
smaller
* Oryoureach the root f‘
Heap property
re-established

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 19

Heap add implementation

24 public void add(Integer value) {
6 25 heap.add(value); // add to last position

o 26 size++;
£ 27
@ @ @ @ 28 int index = size; // note we are 1l-indexing

@ @ 29 int parent = index / Z;
30
31 while(parent >= 1 && heap.get(parent) > heap.get(index)) {
32 swap(index, parent);
33 index = parent;
34 parent /= 2;
35 }
36 1}

6 (10|7 |17(13 | 9 |21(19|25|8
01 2 3 4.5 6 7 8 910

1ndex=10

Arraylist<integer> heap

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 20

Heap add implementation

24 public void add(Integer value) {

0 25 heap.add(value); // add to last position
o 26 size++;
@D B @ @ s e s
28 int index = size; // note we are l-indexing
@ @ 29 int parent = index / Z;

30
31 while(parent >= 1 && heap.get(parent) > heap.get(index)) {

e 32 swap(index, parent);

@ o 33 index = parent;
4 34 parent /= 2;
1 ® © @ ;5

6 10| 7 |17|8 | 9 |21|19|25|13
01 2 3 4 5_6 7 8 910

Arraylist<integer> heap

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 21

Heap add implementation

24 public void add(Integer value) {

(6) 25 heap.add(value); // add to last position
o 26 size++;
D) ® @ @ % e s
28 int index = size; // note we are l-indexing
@ @ 29 int parent = index / Z;

30
31 while(parent >= 1 && heap.get(parent) > heap.get(index)) {

e 32 swap(index, parent);

@ o 33 index = parent;
4 34 parent /= 2;
1 ® © @ ;5
(19 2513 E

(6) 6|8 |7|17|10| 9 |21|19|25|13

01 2 3 4 5 6 7 8 9 10
B index2
19 2513

Arraylist<integer> heap

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps 22

Heap remove In pictures

* Always return root value (6)
(10)
) @ ® @
* Replace root with last (19 25 @5
node in the heap
® ® @
(19
 While heap property (D
violated, syvap with @@ @@
smaller child. @5
(10) Z (9)
) ® @ @

Heap Complexity

* Claimed that:
e Peek: O(1)
e Add: O(log(N))
 Remove: O(log(N))

* On a heap with N values. Why?
* Peek: Easy, return first value in an Array
 Complete binary tree always has height O(log(N)).

* add and remove “traverse” one root-leaf path, at most
O(log(N)).

WOTO
Go to duke.is/guzv?2

Not graded for correctness,
just participation.

=
-l'
Try to answer without looking =
back at slides and notes.

But do talk to your neighborsI

https://duke.is/guzv2

Choose your own adventure

1. Look at Generic DIYBinaryHeap:
coursework.cs.duke.edu/cs-201-fall-
22/diybinaryheap , or

2. Solve Greedy Coding Problem with
PriorityQueue: leetcode.com/problems/non-

overlapping-intervals/

Live coding %
<>}

11/7/22 Compsci 201, Fall 2022, L20: Binary Heaps

26

https://coursework.cs.duke.edu/cs-201-fall-22/diybinaryheap
https://leetcode.com/problems/non-overlapping-intervals/

