CompSci 201, L20:
Binary Heaps



Logistics, Coming up
* APT9 (more tree problems) due this Wed., 11/9

* P5 Huffman due next Monday 11/14

* Wrapping up binary heaps and balanced binary
search trees this week, then on to graphs!



People in CS: Clarence “Skip”™ Ellis

* Born 1943 in Chicago. PhD in CS
from U. lllinois UCin 1969

* First African American anywhere
in US to complete a PhD in CS

* Founding member of the CS B g 2y

’ — I\
R e

department at U. Colorado, also R e
worked in industry. ETRTEY e R
* Developing original graphical
user interfaces, object-oriented £ e

programming, collaboration “People put together an image of
what | was supposed to be,” he

tools. recalled. “So I always tell my
students to push.”

Read more here
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https://cs.illinois.edu/about/awards/alumni-awards/alumni-awards-past-recipients/clarence-ellis

Huffman Compression

Representing data with bits: Preferably fewer bits

e Unicode e JPEG e MP3

™~
©

BT L LTS

unicode

Huffman compression used in all of these and more!
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Prefix property encoding as a tree

Convention: O for
char binary left and 1 for right

: Values you want to
encode are leaves:
Ensures prefix property.

Encoding is the
sequence of 0’s and
1’s on root to leaf path

Values deeper in tree
encoded with more bits than
those earlier in the tree.
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Huffman Coding

* Greedy algorithm for building an optimal variable
length encoding tree.

* High level idea:
* Start with the leaves/values you want to encode
with weights = frequency.
* |teratively choose the lowest weight nodes to

“connect up” to a new node with weight = sum of
children.



Visualizing the algorithm

Encoding the text “go go gophers”
char binary

'g' 00
'o' 01
'p' 1110
'h' 1101
'e! 101
'r' 1111
's' 1100
L 100
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WOTO
Go to duke.is/pge7f

Not graded for correctness,
just participation.

Try to answer without looking =
back at slides and notes.

But do talk to your neighbors!



https://duke.is/pge7f

P5 Qutline

1. Write Decompress first
* Takes a compressed file (we give you some)
* Reads Huffman tree from bits
e Uses tree to decode bits to text

2. Write Compress second
* Count frequencies of values/characters
* Greedy algorithm to build Huffman tree
* Save tree and file encoded as bits



Heaps Revisited



java.util.PriorityQueue Class

* Kept in sorted order, smallest out first

* Objects must be Comparable OR provide
Comparator to priority queue

PriorityQueue<String> pg = new PriorityQueue<>(

PriorityQueue<String> pg = new PriorityQueue<>();
Comparator.comparing(String::length));

pg.add("is"); )
pq.add("Compsci 201"); pq.add("ls");'
pg.add("Compsci 201");

Pg.add("wonderful"); pq.add("wonderful");
while (! pg.isEmpty()) { while (! pg.isEmpty()) {

System.out.println(pg.remove()); System.out.println(pg.remove());
} }
Compsci 201 is
is wonderful
wonderful Compsci 201
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Tradeoffs, Heaps, and Trees

. N log,(N)
Fast add and remove? o =z

* Binary Heap: Implements a igg Z;Z
priority queue with: 200 o6

e Peek: O(1) 1600 10.6

* Remove: O(log(N)) 3200 11.6

o . 6400 12.6

) Add: O(I.Og(N)) . . . 12800 13.6

* java.util PriorityQueueis 25600 14.6

implemented as a binary heap 51200 15.6



Binary Heap at a high level

* Maintain the heap property that every
node is less than or equal to its
successors, and 0

* The shape property that the tree is
complete (th)JII except perhaps last level, ° °

fill from left to right) ° e @ °

Operations:
e Peek: Return value of root node e @
* Remove: Remove root node and fix tree By Vintadot il Wiipeds Tonsfred fom
to re esta b | IS h p ro pe rt I e S . https://commons.wikimedia.org/w/index.php?curid=3504273

* Add: Insert at first open position, fix to
reestablish properties.



How are PriorityQueues
implemented?

* Normally think about binary tree used for
implementing priority queues, supports:
* insert/add
 findMin/peek
e deleteMin/remove

* Actually implement with an array
* minimizes storage (no explicit points/nodes)
* simpler to code, no explicit tree traversal

 faster too (constant factor, not asymptotically)---
children are located by index/position in array



Aside: How much less memory?

e Storing an int takes 4 bytes = 32 bits on most
machines.

* Storing one reference to an object (a memory
location) takes 8 bytes = 64 bits on most machines.

* For a heap storing N integers...
* Array of N integers takes ~ 4N bytes.
* Binary tree where each node has an int, left, and right
reference takes ~20N bytes.
* So maybe a 5x savings in memory (just an estimate). Not
an asymptotic improvement.



Using an array for a Heap

* Hard to keep track of the last node in the tree.

* Index positions in the tree level by level, left to right:

(e

* Last node in the heap is always just the largest index

e Can use indices to represent as an array!

6

10

7

17

13

9

21

19

25

(ArrayList ifyou

want it to be

0 1
11/7/22
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Properties of the Heap Array

Store “node values” in

array beginning at index 1 6 110 |7 127 k3 | 9 121 119 |25
 Could 0-index, Zybook 01 2 3 4 5 6 7 8 9 10
does this

Last node is always at the |
i Depth O !
max index . oINS

. . Depth 1 2‘ 3
Minimum node is always - AR N S

atindex 1 Depth 2 5@ @
peek is easy, return first Depth 3 @ -

value. N
* How about add?

e Remove?




Relating Nodes in Heap Array

* When 1-indexing: For node
with index k 6 |10 |7 |17 13 | 9 |21 |19 |25

e |eft child: index 2*k 01 2 5 4 5 6 7 8 910
e right child: index 2*k+1
e parent:index k/2 — T e NN

hy? I : Depth 1 |
Why? Follows from: bepin 3
* Heapiscomplete, and -1 /=
. Depth 33
* Complete binary tree - AN ——

has 29 nodes at depth
d (except last)
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Adding values to heap in pictures

« Add to first open position in /.\‘b
last level of the tree
* (really, add to end of @ msert
array) /‘\‘b

* Swap with parent if heap
property violated /.\.b bubble 8 up
 stop when parentis ﬁ
smaller
* Oryoureach the root f‘
Heap property
re-established
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Heap add implementation

24 public void add(Integer value) {
6 25 heap.add(value); // add to last position

o 26 size++;
£ 27
@ @ @ @ 28 int index = size; // note we are 1l-indexing

@ @ 29 int parent = index / Z;
30
31 while(parent >= 1 && heap.get(parent) > heap.get(index)) {
32 swap(index, parent);
33 index = parent;
34 parent /= 2;
35 }
36 1}

6 (10|7 |17(13 | 9 |21(19|25|8
01 2 3 4.5 6 7 8 910

1ndex=10

Arraylist<integer> heap
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Heap add implementation

24 public void add(Integer value) {

0 25 heap.add(value); // add to last position
o 26 size++;
@D B @ @ s e s
28 int index = size; // note we are l-indexing
@ @ 29 int parent = index / Z;

30
31 while(parent >= 1 && heap.get(parent) > heap.get(index)) {

e 32 swap(index, parent);

@ o 33 index = parent;
4 34 parent /= 2;
1 ® © @ ;5

6 10| 7 |17|8 | 9 |21|19|25|13
01 2 3 4 5_6 7 8 910

Arraylist<integer> heap
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Heap add implementation

24 public void add(Integer value) {

(6) 25 heap.add(value); // add to last position
o 26 size++;
D) ® @ @ % e s
28 int index = size; // note we are l-indexing
@ @ 29 int parent = index / Z;

30
31 while(parent >= 1 && heap.get(parent) > heap.get(index)) {

e 32 swap(index, parent);

@ o 33 index = parent;
4 34 parent /= 2;
1 ® © @ ;5
(19 2513 E

(6) 6|8 |7|17|10| 9 |21|19|25|13

01 2 3 4 5 6 7 8 9 10
B index2
19 2513

Arraylist<integer> heap
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Heap remove In pictures

* Always return root value (6)
(10)
) @ ® @
* Replace root with last (19 25 @5
node in the heap
® ® @
(19
 While heap property (D
violated, syvap with @@ @@
smaller child. @5
(10) Z (9)
) ® @ @



Heap Complexity

* Claimed that:
e Peek: O(1)
e Add: O(log(N))
 Remove: O(log(N))

* On a heap with N values. Why?
* Peek: Easy, return first value in an Array
 Complete binary tree always has height O(log(N)).

* add and remove “traverse” one root-leaf path, at most
O(log(N)).



WOTO
Go to duke.is/guzv?2

Not graded for correctness,
just participation.

=
-l'
Try to answer without looking =
back at slides and notes.

But do talk to your neighborsI



https://duke.is/guzv2

Choose your own adventure

1. Look at Generic DIYBinaryHeap:
coursework.cs.duke.edu/cs-201-fall-
22/diybinaryheap , or

2. Solve Greedy Coding Problem with
PriorityQueue: leetcode.com/problems/non-

overlapping-intervals/

Live coding %
<>}
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https://coursework.cs.duke.edu/cs-201-fall-22/diybinaryheap
https://leetcode.com/problems/non-overlapping-intervals/

