
CompSci 201, L7:
Runtime Efficiency

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 1

(Also more about String vs StringBuilder)

Logistics, Coming up

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 2

• Today 2/6
• Project 1 Nbody due today
• Project 2 Markov releasing tomorrow (due in 2 weeks)

• Wednesday 2/8
• APT 3 due

• Next Monday 2/13
• Midterm Exam 1

• Covers everything through THIS week, up to and including
asymptotic analysis / Big O

• Example/Practice exams available this evening

Midterm Exams

See details on course website assignments and
grading page
• 60 minutes, in-class exam.
• Short-answer problems. Reason about algorithms,

data structures, code.
• Can bring 1 double sided reference sheet (8.5x11

in), write/type whatever notes you like.
• No electronic devices out during exam

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 3

https://sites.duke.edu/compsci201f22/assignments-and-grading/

Exam Grades and Missing Exams

• Three midterm exams scheduled (E1, E2, E3).
• Final exam has 3 corresponding parts (F1, F2, F3).
• Overall course exam grade is:

AVG(max(E1, F1), max(E2, F2), max(E3, F3))

• Meaning the final exam serves:
• As a makeup, if you need to miss a midterm, and/or
• As an opportunity to demonstrate more learning, if

you’re unhappy with your midterm score.

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 4

Problem Solving with Maps
Word Pattern Problem

Live Coding

Word Pattern Problem

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 5

https://leetcode.com/problems/word-pattern/submissions/886368133/

Runtime Efficiency, an
Empirical Look at String
Concatenation

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 6

Two methods for repeated
concatenation

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 7

methodA: Using String object
and basic + operator

methodB: Using
StringBuilder object

and append method

Empirical timing experiment

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 8

static final used for
constants here

Going to time
both methods

separately.

Can see the code on gitlab here.

https://coursework.cs.duke.edu/cs-201-spring-23/stringconcattiming

Empirical results

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 9

0

20

40

60

80

100

120

140

160

1024 2048 4096 8192 16384 32768

Av
er

ag
e

ru
nt

im
e

in
 m

s

Number of String concat reps

MethodA [String] (ms)

MethodB [StringBuilder]
(ms)

Empirical results in more detail

Reps MethodA (ms) MethodB (ms)

1024 0.384 0.050

2048 1.136 0.061

4096 3.443 0.077

8192 12.244 0.099

16384 41.754 0.143

32768 147.719 0.207

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 10

Multiply reps by 2 multiplies runtime by
4. Quadratic complexity.

Multiply reps by 2 multiplies runtime by
~2. Linear complexity.

Empirical results in more detail

Reps
MethodA

ns/rep
MethodB

ns/rep

1024 0.375 0.048

2048 0.555 0.030

4096 0.841 0.019

8192 1.495 0.012

16384 2.548 0.009

32768 4.508 0.006

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 11

Runtime / rep increasing, greater than
linear complexity.

Runtime / rep not increasing, at most
linear complexity.

What’s going on?
Documentation?

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 12

docs.oracle.com/en/java/javase/17/docs/api/j
ava.base/java/lang/String

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

methodA revisited

How many characters will be copied per iteration if
toConcat == “201”?
• i=0: 3
• i=1: 6
• i=2: 9
• …
• On iteration i, need to copy 3*(i+1) characters!

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 13

String is immutable, line 22
creates a new string and

copies result then toConcat.

How many total characters are
copied? Algebra!

methodA: i goes from 0 to reps-1, copy 3*(i+1) characters
per iteration.

!
!"#

$%&'()

3(i + 1) = 3(reps) + 3 !
!"#

$%&'()

i

= 3(reps) + 3
reps
2

0 + reps − 1

= *
+
(reps+ + reps)

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 14

Arithmetic series formula:

!
!"#

$

𝑎! =
𝑛
2 𝑎# + 𝑎$

Abstracting, Intro to Big O
Notation (Preview for next time)
• The 3/2 in !

"
reps" doesn’t tell us much about how

the performance scales with the size of reps.

• Often, we use asymptotic notation, especially Big O
notation to abstract away constants.

• For example: let N = reps, then we say that the
asymptotic runtime complexity is O(N2).
• If you ~double N, you ~quadruple the runtime

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 15

Two general Big O rules
1. Can drop constants
• 2N+3 à O(N)
• 0.001N + 1,000,000 à O(N)

2. Can drop lower order terms
• 2N2+3N à O(N2)
• N+log(N) à O(N)
• 2N + N2 à O(2N)

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 16

Hiearchy of some common
complexity classes

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 17

Big O Name Example

O(2N) Exponential Calculate all subsets of a set

O(N3) Cubic Multiply NxN matrices

O(N2) Quadratic Loop over all pairs from N things

O(N log(N)) Nearly-linear Sorting algorithms

O(N) Linear Loop over N things

O(log(N)) Logarithmic Binary search a sorted list

O(1) Constant Addition, array access, etc.

How does StringBuilder work?

“Every string builder has a capacity. As long as the
length of the character sequence contained in the
string builder does not exceed the capacity, it is not
necessary to allocate a new internal buffer. If the
internal buffer overflows, it is automatically made
larger.” - StringBuilder JDK 17 documentation.
• But how does it grow?
• Geometrically! Like ArrayList, HashMap, …
• Still linear amortized complexity, for same reasons

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 18

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html

StringBuilder is like an ArrayList of
characters

• Suppose we run the code:
StringBuilder() sb = new StringBuilder(3);
sb.append(“hi”);
sb.append(“ya”);

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 19

Array representing StringBuilder

h i y h i y a

Initial
buffer/array

capacity

How many total characters are
copied with a StringBuilder?

Suppose we start with capacity 3 and double when
out of capacity, appending a length 3 string reps
times…

3 ⋅ reps + (
#$%

≈'()! !⋅+,-.

2# = 3 ⋅ reps + 6 ⋅ reps

= 9 ⋅ reps

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 20

Geometric series formula:

!
!"%

$

𝑎 𝑟! = 𝑎(
1 − 𝑟$&#

1 − 𝑟)

The “good
case” copies From doubling

and copying
the array

Memory/Runtime Tradeoff

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 21

Final StringBuilder is using about 146k / 98k ~= 1.5
times as much memory as necessary. Very common
tradeoff in data structures!

What’s the real difference
between methodA and methodB?
• methodA: Copies roughly !

"
reps" − reps

• methodB: copies roughly 9 ⋅ reps characters.

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 22

Reps ~MethodA char
copies (millions)

MethodB char
copies (millions)

1000 1.5 0.009
2000 6 0.018
4000 24 0.036
8000 95 0.072

16000 383 0.144
32000 1535 0.288

WOTO
Go to duke.is/8qfjk

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 23

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

But do talk to your neighbors!

https://duke.is/8qfjk

5

7

9

10

15

30

How many total characters
must be copied by the
code on lines 8 and 9?
Remember that Strings are
immutable in Java. *

2

10 ms

20 ms

40 ms

100 ms

Suppose method A has linear complexity and takes 10 ms to run on an
input of size N. About what would you expect the runtime to be for an input
of size 2*N? *

3

10 ms

20 ms

40 ms

100 ms

Suppose method B has quadratic complexity and takes 10 ms to run on an
input of size N. About what would you expect the runtime to be for an input
of size 2*N? *

4

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form
owner.

Microsoft Forms

Constant

Linear

Quadratic

Exponential

Here is another String concatenation method. Suppose the input string s
has a small number of characters, say 3. As a function of the parameter
reps, how would you characterize the runtime complexity of the method?
Hint: As a function of reps, how many total characters will be copied across
all iterations of the loop? *

5

