CompSci 201, L7/:
Runtime Efficiency

(Also more about String vs StringBuilder)

Logistics, Coming up

* Today 2/6
* Project 1 Nbody due today
* Project 2 Markov releasing tomorrow (due in 2 weeks)

 Wednesday 2/8
 APT 3 due

* Next Monday 2/13

e Midterm Exam 1

* Covers everything through THIS week, up to and including
asymptotic analysis / Big O

* Example/Practice exams available this evening

Midterm Exams

See details on course website assienments and
grading page

* 60 minutes, in-class exam.

* Short-answer problems. Reason about algorithms,
data structures, code.

e Can bring 1 double sided reference sheet (8.5x11
in), write/type whatever notes you like.

* No electronic devices out during exam

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency

https://sites.duke.edu/compsci201f22/assignments-and-grading/

Exam Grades and Missing Exams

 Three midterm exams scheduled (E1, E2, E3).
* Final exam has 3 corresponding parts (F1, F2, F3).

* Overall course exam grade is:
AVG(max(E1, F1), max(E2, F2), max(E3, F3))

* Meaning the final exam serves:
* As a makeup, if you need to miss a midterm, and/or

* As an opportunity to demonstrate more learning, if
you’re unhappy with your midterm score.

Problem Solving with Maps
Word Pattern Problem

Live Coding (93
{ <>}

Word Pattern Problem

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency

https://leetcode.com/problems/word-pattern/submissions/886368133/

Runtime Efficiency, an
Empirical Look at String
Concatenation

Two methods for repeated
concatenation

19 public static String repeatConcatA(int reps, String toConcat) {
20 String result = new String(Q);
21 for (int 1=0; i<reps; i++) {

;;) result += toConcat; methodA: Using String object
-4 return result: and basic + operator

25 }

27 public static String repeatConcatB(int reps, String toConcat) {

28 StringBuilder result = new StringBuilder();

29 for (int 1=0; i<reps; i++) {

30 result.append(toConcat);

31 } methodB: Using

32 return result.toStringQ); StringBuilder object
33 } and append method

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 7

Empirical timing experiment

Can see the code on gitlab here.

1 public class StringConcatTiming { static final used for
2 static final int NUM_TRIALS = 100; constants here
3 static final int REPS_PER_TRIAL = 1024;
4 static final String TO_CONCAT = "201";
5
Run | Debug
6 public static void main(String[] args) {
7 long totalTime = 0;
8 for (int trial=0; trial<NUM_TRIALS; trial++) {
9 long startTime = System.nanoTime(); _ .
10 //repeatConcatACREPS_PER_TRIAL, TO_CONCAT); Going to time
11 repeatConcatB(REPS_PER_TRIAL, TO_CONCAT); both methods
12 long endTime = System.nanoTime(); separately.
13 totalTime += (endTime - startTime);
14 }
15 double avgTime = (double)totalTime / NUM_TRIALS;
16 System.out.printf("Avg time per trial is %f ms", avgTime*1E-6);
17 }

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 8

https://coursework.cs.duke.edu/cs-201-spring-23/stringconcattiming

Empirical results

160
140
120
100
80
60 ——MethodB [StringBuilder]
40 (ms)
20

——MethodA [String] (ms)

Average runtime in ms

0 ® o —e —e

1024 2048 4096 8192 16384 32768
Number of String concat reps

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 9

Empirical results in more detail

MethodA (ms)|MethodB (ms)

1024 0.384 0.050
2048 1.136 0.061
4096 3.443 0.077
8192 12.244 0.099
16384 41.754 0.143
32768 147.719 0.207

Multiply reps by 2 multiplies runtime by
~2. Linear complexity.

Multiply reps by 2 multiplies runtime by

4. Quadratic complexity.
2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 10

Empirical results in more detail

- MethodA MethodB
Reps ns/rep ns/rep

1024 0.375 0.048
2048 0.555 0.030
4096 0.841 0.019
8192 1.495 0.012
16384 2.548 0.009
32768 4.508 0.006

Runtime / rep increasing, greater than
linear complexity.

Runtime / rep not increasing, at most
linear complexity.

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 11

What’s going on?
Documentation?

docs.oracle.com/en/java/javase/17/docs/api/j
ava.base/java/lang/String

Class String

java.lang.Object
java.lang.String

All Implemented Interfaces:

Serializable, CharSequence, Comparable<String>, Constable, ConstantDesc

public final class String
extends Object
implements Serializable, Comparable<String>, CharSequence, Constable, ConstantDesc

The String class represents character strings. All string literals in Java programs, such as "abc", are implemented ¢

[Strings are constant; their values cannot be changed after they are created.] String buffers support mutable strings.

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 12

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html

methodA revisited

19 public static String repeatConcatA(int reps, String toConcat) {
20 String result = new String(Q);
21 for (int 1=0; 1i<reps; i++) {

22 result += toConcat; String is immutable, line 22
23 } creates a new string and

24 return result; copies result then toConcat.
25 }

How many characters will be copied per iteration if
toConcat == “201”7?

* =0:3
e i=1:6
 [=2:9

e On iteration i, need to copy 3*(i+1) characters!

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 13

How many total characters are
copied? Algebra!

methodA: i goes from O to reps-1, copy 3*(i+1) characters
per iteration.

reps—1 reps—1
z 3(i+1)=3(reps)+3< Z i)

=0 1=0

= 3(reps) + 3 (ezp) (0 +reps — 1)

Arithmetic series formula:
3 2
=3 (reps© + reps)

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 14

Abstracting, Intro to Big O
Notation (Preview for next time)

* The 3/2in %reps2 doesn’t tell us much about how

the performance scales with the size of reps.

e Often, we use asymptotic notation, especially Big O
notation to abstract away constants.

* For example: let N = reps, then we say that the
asymptotic runtime complexity is O(N?).
* If you ~“double N, you ~quadruple the runtime

Two general Big O rules

1. Can drop constants
* 2N+3 - O(N)
* 0.001N + 1,000,000 - O(N)

2. Can drop lower order terms
e 2N%+3N = O(N?)
* N+log(N) = O(N)
e 2N+ N2 > O(2N)

Hiearchy of some common
complexity classes

Big0 __ [Name ____JBample

0o(2N) Exponential Calculate all subsets of a set
O(N3) Cubic Multiply NxN matrices

O(N?) Quadratic Loop over all pairs from N things
O(N log(N)) Nearly-linear Sorting algorithms

O(N) Linear Loop over N things

O(log(N)) Logarithmic Binary search a sorted list

O(1) Constant Addition, array access, etc.

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 17

How does StringBuilder work?

“Every string builder has a capacity. As long as the
length of the character sequence contained in the
string builder does not exceed the capacity, it is not
necessary to allocate a new internal buffer. If the
internal buffer overflows, it is automatically made
larger.” - StringBuilder JDK 17 documentation.

* But how does it grow?

 Geometrically! Like ArrayList, HashMap, ...
* Still linear amortized complexity, for same reasons

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/StringBuilder.html

StringBuilder is like an ArrayList of
characters

e Suppose we run the code:

StringBuilder() sb = new StringBuilder(3);
sb.append(“hi”);
sb.append(“ya”); Initial

buffer/array
capacity

Array representing StringBuilder

——y h i y a

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 19

How many total characters are
copied with a StringBuilder?

Suppose we start with capacity 3 and double when

out of capacity, appending a length 3 string reps

times...
~log,(3-reps)

3 - reps + 2 2t = 3 - reps + 6 - reps

(=0

The “good
case” copies

From doubling
and copying
the array

Geometric series formula:

= 9 - reps

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 20

Memory/Runtime Tradeoff

27 public static String repeatConcatB(int reps, String toConcat) {

28 StringBuilder result = new StringBuilder();

29 for (int 1=0; 1i<reps; i++) {

30 result.append(toConcat);

31 }

32 System.out.printf("String builder capacity is %d characters¥n", result.capacity());
33 System.out.printf("Result length is %d characters¥n", result.length());

34 return result.toString(Q);

35 }

PROBLEMS (4 OUTPUT DEBUG CONSOLE TERMINAL

String builder capacity is 147454 characters
Result length is 98304 characters

Final StringBuilder is using about 146k / 98k ~= 1.5
times as much memory as necessary. Very common
tradeoff in data structures!

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency 21

What's the real dif

* methodA: Copies roughly % (reps® — reps)

‘erence
between methodA and methodB?

* methodB: copies roughly 9 - reps characters.

~MethodA char MethodB char
copies (millions) copies (millions)

1000 1.5
2000 6
4000 24
8000 95
16000 383

32000 1535

0.
.018
.036
.072
.144
.288

O O O OO

2/6/23 Compsci 201, Spring 2023, Runtime Efficiency

009

WOTO
Go to duke.is/8qfjk

Not graded for correctness, E .|
,|!-... o
just participation.

IEI

'-
Try to answer without Iooklng - 'ﬂ'r oL
back at slides and notes. !|.-| "o
-'l 1 |_I’ I'| ._JT ke
|
But do talk to your neighbors! E .._r_lll J.‘.’.‘lﬂ_,.
- J._I

https://duke.is/8qfjk

7 String s = "hi";

How many total characters 8 s += "hey";
must be copied by the 9 e
code on lines 8 and 9? S += S,

Remember that Strings are
immutable in Java. *

Suppose method A has linear complexity and takes 10 ms to run on an
input of size N. About what would you expect the runtime to be for an input
of size 2*N? *

10 ms

20 ms

40 ms

O O O O

100 ms

Suppose method B has quadratic complexity and takes 10 ms to run on an
input of size N. About what would you expect the runtime to be for an input
of size 2*N? *

10 ms
20 ms

40 ms

O O O O

100 ms

Here is another String concatenation method. Suppose the input string s
has a small number of characters, say 3. As a function of the parameter
reps, how would you characterize the runtime complexity of the method?
Hint: As a function of reps, how many total characters will be copied across
all iterations of the loop? *

7 public static String concatAlot(int reps, String s) {
8 for (int 1i=0; i<reps; i++) {

9 S += S;

10 }

11 return s;

12 }

Constant

Linear

Quadratic

O O O O

Exponential

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form
owner.

@8 Microsoft Forms

