
CompSci 201, L8:
Asymptotic (Big-O)

Analysis

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 1

Logistics, Coming up

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 2

• Today, 2/8
• APT 3 due

• Next Monday 2/13
• Midterm exam 1

• Next Wednesday 2/15
• APT 4 due

Person in CS: Alan Turing
• 1912-1954 (died at 41)
• English, PhD at Princeton in 1938
• Mathematician, cryptographer,

pioneering thinker in AI
• “Father of modern computer science”
• Turing machine – helped formalize what is

computable
• Cryptography work in WW2

• Prosecuted in 1952 for homosexuality
• Given choice of chemical “treatment” or

prison, took former
• Died 2 years later of cyanide poisoning,

circumstances debated

9/21/22 Compsci 201, Fall 2022, Asymptotic Analysis 3

Asymptotic Analysis and
Big O Notation

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 4

Runtime and memory

• Two most fundamental resources on a computer:
• Processor cycles: Number of operations per second

machine can perform
• (2 GHz = 2 billion operations per second).

• Memory: space for storing variables, data, etc.
• (esp. working memory, a.k.a. cache and RAM)

• We will mostly focus on runtime complexity
• Often comes at expense of memory, e.g., HashMap

• Start by reasoning about empirical runtimes, but…

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 5

Problem with empirical runtimes

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 6

Same code that
takes 1 min. in
1990 takes
• ~2 s in 2000?
• ~63 ms in 2010?
• ~2 ms in 2020?

How do we measure efficiency of
the code apart from the machine?

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 7

• Let N be the size of the input
• For some int[] ar, N could be ar.length

• Count T(N) = number of constant time operations in the
code as a function of N.

• Reason about how T(N) grows when N becomes large.
• “Asymptotic” (in the limit) notation

Reminder: What is constant time?

• Running time does not depend on size of the input.
• If ~1 ms to .get() when ArrayList has 1,000

elements?
• Then ~1 ms to .get() when ArrayList has

1,000,000 values.

• Other constant time operations might be a very
different constant.
• Adding 2+2 might be faster than .get(), but both are

constant.

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 8

Constant Time Examples

• Index into an array (ar[0] or ar[201])
• Arithmetic (+, -, *, /, %, etc.)
• Primitive comparison <, ==, etc.
• Access an object attribute (e.g. .length)
• ArrayList .get(), .size(), .add() [to end,

amortized]

• Non-constant time usually has a loop or method
call, may depend on data structure implementation

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 9

Big-O (limit definition)
• Given N (for example, the size of the input)
• Function T(N) (for example, the number of constant

time operations in the code)

Definition (big O notation). 𝑇(𝑁) is 𝑂(𝑔(𝑁)) if
lim
!→#

$!
%(!)

≤ 𝑐 for some constant 𝑐 that does not depend
on 𝑁.

In other words: 𝑇(𝑁) is 𝑂(𝑔(𝑁)) if it is at most a
constant factor times slower than 𝑔(𝑁) for large input 𝑁.
2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 10

Two general rules
1. Can drop constants
• 2N+3 à O(N)
• 0.001N + 1,000,000 à O(N)

2. Can drop lower order terms
• 2N2+3N à O(N2)
• N+log(N) à O(N)
• 2N + N2 à O(2N)

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 11

Hiearchy of some common
complexity class

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 12

Big O Name Example

O(2N) Exponential Calculate all subsets of a set

O(N3) Cubic Multiply NxN matrices

O(N2) Quadratic Loop over all pairs from N things

O(N log(N)) Nearly-linear Sorting algorithms

O(N) Linear Loop over N things

O(log(N)) Logarithmic Binary search a sorted list

O(1) Constant Addition, array access, etc.

Some common complexity classes
and their growth

N O(log(N)) O(N) O(N2) O(N3) O(2N)

1 1 1 1 1 2

2 2 2 4 8 4

4 3 4 16 64 16

8 4 8 64 512 256

16 5 16 256 4k 65k

32 6 32 1k 32k 4.2E+9

64 7 64 4k 262k 1.8E+19

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 13

If you double N…
• O(log(N)) adds ~1
• O(N) roughly doubles
• O(N2) roughly

quadruples
• O(N3) roughly

multiples by 8
• O(2N) squares each

time

Note: Turning these into runtimes depends on your
machine.

Relation to Empirical Timing and
Lower Order Terms

N
n^2 + 19n

+ 200
factor

increase
10 490 NA
20 980 2.00
40 2560 2.61
80 8120 3.17

160 28840 3.55
320 108680 3.77
640 421960 3.88

1280 1662920 3.94
2560 6602440 3.97
5120 26311880 3.99

10240 105052360 3.99
20480 419819720 4.00

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 14

Asymptotic analysis
describe behavior in the
limit as n becomes large,
lower order terms may
dominate at small input
sizes.

Looks linear?

Looks
quadratic?

WOTO
Go to duke.is/6ezc8

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 15

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

But do talk to your neighbors!

https://duke.is/6ezc8

* Required

* This form will record your name, please fill your name.

L08-WOTO1-BigO

NetID *

1

Enter your answer

O(n^2)

O(nlog(n))

O((log(n))^2)

n^2 + nlog(n) + (log(n))^2 is... *

2

O(n^2)

O(2^n)

n^2 + 2^n is... *

3

O(n^2)

O(n)

O((log(n))^2)

O(log(n))

log(n^2) is... *

4

O(N^3)

O(N^2)

O(N)

O(log(N))

O(1)

Suppose you time an algorithm
for different values of N and get
the results shown in the table.
What is the best characterization
of the asymptotic runtime
complexity observed in the data?
*

5

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form
owner.

Microsoft Forms

O(N)

O(M)

O(NM)

O(N+M)

Suppose you time an
algorithm for different values
of N and M and get the
results shown in the table.
What is the best
characterization of the
asymptotic runtime
complexity observed in the
data? *

6

Big-Oh for Runtime: Algorithms &
Code

• What is the runtime complexity of stuff(n)?
• How many times does the loop iterate?
• In terms of n, the parameter

• Loop body is O(1)?
• Constant time
• Independent of n
• Add n same as add 1

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 16

Linear, O(n)

General strategy for determining
Big-O runtime complexity

Most general: Determine T(N), the number of
constant time operations as a function of the size of
the input N. Then simplify using Big-O.

Practically, covers common cases:
1. For each line of code, label:

a) Complexity of that line, and
b) Number of times the line is executed

2. Add up over all lines, multiplying the two labels

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 17

Nested loop example

What about the big-O runtime complexity of this
code as a function of n?

How many times does line 10 execute?

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 18

Line Complexity Iterations

7 O(1) 1

8 O(1) n

9 O(1) ?

10 O(1) ?

13 O(1) 1

Nested loop example

How many times does line 10 execute?

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 19

when i is Line 10 executes
this many times

1 1

2 2

… …

n-2 n-2

n-1 n-1

In total? 1 + 2 +⋯+ 𝑛 − 2 + 𝑛 − 1 ≈ !!

"
is O(n2)

iterations

Nested loop example

Putting it together:

Total runtime complexity: (1) + (n) + (n2) + (n2) + (1)
is O(n2)

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 20

Line Complexity Iterations

7 O(1) 1

8 O(1) n

9 O(1) O(n2)

10 O(1) O(n2)

13 O(1) 1

Not all nested loops are quadratic

What about the big-O runtime complexity of this
code as a function of n?

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 21

Line Complexity Iterations

17 O(1) 1

18 O(1) n

19 O(1) 100n

20 O(1) 100n

23 O(1) 1

Reminder: 200n is 200 times slower than
n, but their runtimes both scale linearly

Total runtime complexity: (1) + (n) + (200n) + (1)
is O(n)

Not all loops are nested

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 22

What about the big-O runtime complexity of this
code as a function of n?

Line Complexity Iterations

29 O(1) 1

30 O(1) n

31 O(1) n

33 O(1) n

34 O(1) n

36 O(1) 1

Total runtime complexity: (1) + (4n) + (1)
is O(n)

Not all loops increment by 1

Big-O Runtime complexity of calc(N) is…

• How many times does the loop iterate?
• Concrete to abstract: calc(16), calc(32), …

• Inside loop? O(1) operations

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 23

Generalizing: Concrete to Abstract

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 24

N # loop
iterations

1 0
2 1
4 k=,1,2…2 iters
8 k=1,2,4…3 iters

N # loop
iterations

16 5 iterations
32 k=1,2,4,8,16..5 iters
33 6 iterations
63 6 iterations

O(log(N))

Accounting for iteration and non-
constant time operations

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 25

What about the big-O runtime complexity of this
code as a function of n = words.size()?

Total: Make n calls to O(n) contains: O(n2)

O(1),
initialized
empty List

Loop n
times…

O(n) in worst
case

Amortized
O(1), add to

end

Still O(1), does not
copy list to return

Exponential time algorithm?

Problem from previous WOTO: What is the runtime
complexity of concatAlot as a function of reps?

Runtime of line 14 is O(s.length()). And this
doubles every iteration through the loop.

Examine how the length of s grows by iterations.

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 26

Loop reps
timesSame as:

s = s + s;

Exponential time algorithm?

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 27

Loop reps
timesSame as:

s = s + s;

Examine how the length of s grows by iterations.
Iteration s.length() O(1) operations (char copies)

0 (input s) 1 (suppose) 2

1 2 4

2 4 8

3 8 16

… … …

reps-1 2reps-1 (2)(2reps-1) = 2reps

So runtime has to
be at least 2reps,

exponential
complexity!

WOTO
Go to duke.is/pu24z

2/8/23 Compsci 201, Spring 2023, Asymptotic Analysis 28

Not graded for correctness,
just participation.

Try to answer without looking
back at slides and notes.

But do talk to your neighbors!

https://duke.is/pu24z

O(1)

O(log(n))

O(n)

O(n^2)

O(n^3)

O(2^n)

What is the big O runtime
complexity of the
keepHalving method as a
function of the parameter n?
*

2

O(1)

O(log(n))

O(n)

O(n^2)

O(n^3)

O(2^n)

What is the big O runtime
complexity of the
moreLooping method as a
function of the parameter n?
*

3

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form
owner.

Microsoft Forms

O(1)

O(log(n))

O(n)

O(n^2)

O(n^3)

O(2^n)

What is the big O runtime complexity of the reverse method as a function of
n where n is the size() of the List parameter input? add(0, s) adds s to the
front of the list. *

4

Runtime complexity of composed
methods

• Runtime complexity of stuff(stuff(n))?

2/7/22 Compsci 201, Spring 2022, LinkedList 29

• Value returned by
stuff(n)is n2.
• Runtime complexity of
stuff(n2)?

• stuff has linear runtime complexity, so
stuff(n2) is O(n2)

Composing methods general
• Given two methods:

• What is the runtime complexity of the following?

2/7/22 Compsci 201, Spring 2022, LinkedList 30

Running this code is equivalent to…

int innerValue = inner(n);
int result = outer(innerValue);

Composing methods general
• Given two methods:

• What is the runtime complexity of the following?

2/7/22 Compsci 201, Spring 2022, LinkedList 31

Three steps: Runtime complexity is 1+3.
1. Calculate runtime complexity of inner(n)
2. Calculate value returned by inner(n)
3. Calculate runtime complexity of outer() on

value from step 2.

Composing methods example

2/7/22 Compsci 201, Spring 2022, LinkedList 32

1. Runtime complexity of
inner(n) is O(1)

2. Value returned by
inner(n) is O(n2)

3. Runtime complexity of
outer(n2) is O(log(n2))

Total runtime complexity: O(1) + O(log(n2)) is O(log(n))
Most of the “work” done executing outer

Recall log rules:
log(n2) = 2log(n)

Another composition example

2/7/22 Compsci 201, Spring 2022, LinkedList 33

1. Runtime complexity of
inner(n) is now O(n)

2. Value returned by
inner(n) is still O(n2)

3. Runtime complexity of
outer(n2) is still
O(log(n2))

Total runtime complexity: O(n) + O(log(n2)) is O(n)
Now most of the “work” done executing inner

