
CompSci 201, L12: 
Debugging and Testing 
(and more Linked List)

2/22/23 Compsci 201, Spring 2023, Debugging 1



Person in CS: Barbara Liskov

• Turing Award Winner in 2008 for 
contributions to practical and theoretical 
foundations of programming language and 
system design, especially related to data 
abstraction, fault tolerance, and distributed 
computing. 
• “The advice I give people in general is that 

you should figure out what you like to do, 
and what you can do well—and the two 
are not all that dissimilar, because you 
don’t typically like doing something if you 
don’t do it well. ... So you should instead 
watch—be aware of what you’re doing, 
and what the opportunities are, and step 
into what seems right, and see where it 
takes you.”

2/22/23 Compsci 201, Spring 2023, Debugging 2



Announcements, Coming up

2/22/23 Compsci 201, Spring 2023, Debugging 3

• Wednesday, 2/22 (today)
• Project 3: DNA (Linked List) available, due March 6
• APT Quiz deadline extended to tomorrow Th 2/23. 
• Quiz, no extra grace/late period!

• Monday 2/27
• Nothing due

• Next Wednesday 3/1
• APT 5 (linked list problems) due



Ed Discussion Guidelines

Going to review the README

2/22/23 Compsci 201, Spring 2023, Debugging 4

https://edstem.org/us/courses/32701/discussion/2362516


Today’s agenda

1. Wrapping up linked list problems
• Reverse in-place

2. Testing & Debugging, Concepts & Tools

3. More DIYLinkedList

2/22/23 Compsci 201, Spring 2023, Debugging 5



Canonical Linked List Problem

• How do we reverse nodes in a linked list (without 
creating a new list)?
• Go from A->B->C to C->B->A
• Typical interview style question
• https://leetcode.com/problems/reverse-linked-

list/
• https://www.hackerrank.com/challenges/revers

e-a-linked-list

2/22/23 Compsci 201, Spring 2023, Debugging 6

https://leetcode.com/problems/reverse-linked-list/
https://www.hackerrank.com/challenges/reverse-a-linked-list


Methodical Development

• Turn list = ['A', 'B', 'C'] into
• rev = ['C', 'B', 'A']

• Move one node at a time, no new nodes!
• Iterative/loop solution with invariant

2/22/23 Compsci 201, Spring 2023, Debugging 7

BA Clistrev



Invariant to help reason about 
code

• An invariant is some property that is true each loop 
guard check (top of the loop)
• May become false part way through loop
• Always re-established before guard check

• Example: After k iterations, rev points to the 
reverse of the first k nodes.
• before loop iterates at all? rev = null
• Then at the end we just return rev

2/22/23 Compsci 201, Spring 2023, Debugging 8



one node at a time, assume 
invariant!

• After 1 iteration: rev is reverse of the first 1 
elements
• list has moved to represent [B,C]
• So rev represents [A]

• How to move B to front?
• Save a temp reference:
• Don't lose C-node!

2/22/23 Compsci 201, Spring 2023, Debugging 9

B Clist

Arev

temp



rev = [A], list = [B,C], change: 
[B,A], [C]

• Pictures and code
1.temp = list.next (so we don't lose C)
2.list.next = rev  (make B point to A)
3.rev = list       (rev now points to B)
4.list = temp      (list now points to C)

2/22/23 Compsci 201, Spring 2023, Debugging 10

ClistArev

temp
1

2

3

4
B



Working code

2/22/23 Compsci 201, Spring 2023, Debugging 11

public ListNode reverse(ListNode front){
ListNode rev = null;
ListNode list = front;
while (list != null) {

ListNode temp = list.next;
list.next = rev;
rev = list;
list = temp;

}
return rev;

}
B Clist

Arev



WOTO
Go to duke.is/n9pg5

2/20/22 Compsci 201, Spring 2023, Linked List -
Pointers

12

Not graded for correctness, 
just participation. 

Try to answer without looking 
back at slides and notes.

But do talk to your neighbors!

https://duke.is/n9pg5


Encounter a NPE

Return null

Return the same node

Return a copy of the same node

Consider the reverse method. If front is a ListNode with front.next == null, 
then reverse(front) will... * 

2



Points to the first k elements of the input list

Points to the first N-k elements of the input list

Points to the last k elements of the input list

Points to the last N-k elements of the input list

Same reverse method. We claimed that the following is a loop invariant: 
"After k iterations, rev points to the reverse of the first k nodes."

For an input list with N elements, which of the following is also a loop 
invariant for this method? "After k iterations, list..." * 

3


3 --> null

3 --> 2 --> null

3 --> 2 --> 1 --> null

Nothing, null pointer exception occurs

Same reverse method. Suppose we have a linked list as follows:

list --> 1 --> 2 --> 3 --> null

What will be returned by reverse(list.next)? * 

4



This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form

null

1 --> null

1 --> 2 --> null

1 --> 2 --> 3 --> null

Nothing, null pointer exception occurs

Same reverse method. Suppose we have a linked list as follows:

list --> 1 --> 2 --> 3 --> null

In the main program. What will list (also in the main program) be after 
running reverse(list.next)? * 

5


Testing and Debugging

2/22/23 Compsci 201, Spring 2023, Debugging 13



An Algorithmic Problem-Solving 
Process: UPIC

2/22/23 Compsci 201, Spring 2023, Debugging 14

Correctness
Test and debug to verify and fix the code.

Implement
Translate the algorithm into code.

Plan
Generalize insights, develop an algorithm.

Understand
Understand the problem you're trying to solve. Read carefully, do examples.

Only doing a lot of 
actual programming  in 

this step!



Not really a linear process

Understand

Plan

Implement

Correctness

2/22/23 Compsci 201, Spring 2023, Debugging 15

So, something is not correct. 
Could be…
1. The plan (algorithm) did 

not match the 
understanding.

2. The implementation does 
not match the plan.

3. The understanding was 
not correct.



First approach to correctness

• Natural temptation 
to rely on reading 
source code to 
verify correctness.
• Like editing an essay 

for a class, read and 
check that it makes 
sense, look for 
typos.
• But… 

2/22/23 Compsci 201, Spring 2023, Debugging 16



Code is complex and interrelated

Miss something in your 
essay? The rest of the 
essay may still make 
sense?

One thing wrong in the 
code? Could prevent the 
whole program from 
functioning. And code 
gets complicated!

2/22/23 Compsci 201, Spring 2023, Debugging 17

Working C code from 
1998 contest, see 

wikipedia

https://en.wikipedia.org/wiki/International_Obfuscated_C_Code_Contest


A tale of two programmers…

Too confident
“I’m amazing at 
programming, I don’t 
need to test my code 
because I know it’s 
correct.”

Low confidence
“My code doesn’t work, 
that must be because I’m 
personally bad at this. 
There is no way I could 
figure this out myself.”

2/22/23 Compsci 201, Spring 2023, Debugging 18

The beginning of a 
security vulnerability, 

broken app, …
Mistaken expectations, 

Feeling helpless, not sure 
what to do



What is testing?

Verifying that an implementation functions as expected.
• What is functionality is expected?
• Given an input, what output is expected?

Can test at multiple levels: single method (unit), class 
(integration), whole project (integration/functionality), …

Black box testing (can run program, can’t see source 
code) and white box testing (access to source code).

2/22/23 Compsci 201, Spring 2023, Debugging 19



SandwichBar APT Example

2/22/23 Compsci 201, Spring 2023, Debugging 20

Given: 
• String[] available, a list of ingredients the 

sandwich bar can use, and 
• String[] orders, the types of sandwiches I like, 

in order of preference (most preferred first)
return the 0-based index of the sandwich I will buy. If 
the bar can make no sandwiches I like, return -1.
Example:
• available: { "ham", "cheese", "mustard" }
• orders: { "ham cheese" } 
• Should return: 0



The first test: the compiler

• Compiler performs static analysis; check for errors 
detectable in the source code before running. 
• Often type errors (e.g., trying to assign a String to an int, 

trying to treat an Array as a list, …)

2/22/23 Compsci 201, Spring 2023, Debugging 21



Manual test

• Given an input, what is the expected output?
• Run program with expected input. What do you 

get?

2/22/23 Compsci 201, Spring 2023, Debugging 22

I expect the code to return 0, 
example from before. And it 

does! My solution must work!



How many tests are enough?

2/22/23 Compsci 201, Spring 2023, Debugging 23

That’s not right, I can’t make a ham 
and cheese sandwich without ham…

• Can never have enough tests to guarantee 
correctness, but…
• More and more diverse tests can help increase 

confidence.



Automated testing?

For when you want to run many tests without doing 
it manually one at a time…automate it!

Ways you use automated testing in 201:
• Junit tests – Junit is a popular external library, no 

built-in standard library unit testing in Java.
• Gradescope autograder
• APT server

In professional software development? You also 
write the tests!

2/22/23 Compsci 201, Spring 2023, Debugging 24



Test early, test small, test often

• Unit testing: Term for tests conducted on the smallest 
units of code that take inputs and produce outputs.
• In Java, typically methods, preferably short ones 

(10-20 lines). Test as soon as you write, don’t wait! 
• Method getting too complex? Helper method!

2/22/23 Compsci 201, Spring 2023, Debugging 25

Expected output What your size() method returns

Message if condition fails



Debugging

2/22/23 Compsci 201, Spring 2023, Debugging 26

Understand

Plan

Implement

Correctness

Debugging loop

Debugging loop:
1. Detect unexpected 

behavior through 
testing.

2. Isolate cause of 
unexpected behavior.

3. Change 
implementation.

4. Test again.



How to isolate the cause of 
unexpected behavior

• Want to identify the first point of divergence from 
expected behavior.
• May have started long before your test result!

• Try to answer the question:
• What is the first line of code in which method of which 

class that first did something different than I expected?
• Never fixate on line 30 if you’re not sure lines 1-29 are 

working.

2/22/23 Compsci 201, Spring 2023, Debugging 27



Debugging Methods

• Three common methods:
• Examine code and small examples by hand
• Add print statements to code
• Use a debugger tool

• We have already seen the basic debugger tool built 
into an extension on your visual studio code. Will 
review in detail today.

2/22/23 Compsci 201, Spring 2023, Debugging 28

Good start, might 
get complicated

Allows you to see the state of the 
program while running. Tip: Can 
add print statements for APTs, 

will show up on server!To step through 
execution line by line



Debugger tool

• Instead of run? Choose debug!
• Walk through execution of program line by line.
• See current state of all variables line by line.

2/22/23 Compsci 201, Spring 2023, Debugging 29



Set a breakpoint

• Start by setting a breakpoint in your code.
• Says “run the program until the first time this line 

executes, then pause to step line by line.”
• If you want to go line by line from the beginning? 

Set to first line in main.

2/22/23 Compsci 201, Spring 2023, Debugging 30



Debug options

Will see a menu like this:
• Continue: Go to next breakpoint
• Step over: Execute line, go to next. Run whole 

methods.
• Step into: Same as over unless method call. Steps 

into methods, jumping to first line of method code.
• Step out: Break out of method back to where called
• Restart: Start over again at first breakpoint
• Stop: Stop debugging session

2/22/23 Compsci 201, Spring 2023, Debugging 31



State of program

2/22/23 Compsci 201, Spring 2023, Debugging 32

Can see all values of 
all local variables 
while executing at 
highlighted line.

Can step through to 
determine first time 
values diverge from 
expectations.



Debugging linked list?
• Appears as a nested “list” 

of object references.

• Expand one node at a 
time.

2/22/23 Compsci 201, Spring 2023, Debugging 33



Want something more visual?

pythontutor.com/java.html

Can use if you need to visualize stepping through 
some pointer code.

2/22/23 Compsci 201, Spring 2023, Debugging 34

https://pythontutor.com/java.html


Debugging reflection

2/22/23 Compsci 201, Spring 2023, Debugging 35

Goal is to become a more active and 
empowered tester and debugger.
• Build confidence as you develop.
• Take active steps to isolate the problem
• Test, use the debugger, gather data, reason 

about it
• Less time staring at the code, feeling 

frustrated



More DIYLinkedList

Live Coding

• Writing unit tests?
• Add to arbitrary index?
• Efficient iterator?

2/22/23 Compsci 201, Spring 2023, Debugging 36


