
CompSci 201, L20: 
Binary Heaps
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People in CS: Clarence “Skip” Ellis

• Born 1943 in Chicago. PhD in CS 
from U. Illinois UC in 1969
• First African American in US to 

complete a PhD in CS
• Founding member of the CS 

department at U. Colorado, also 
worked in industry.
• Developing original graphical 

user interfaces, object-oriented 
programming, collaboration 
tools.  
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“People put together an image of 
what I was supposed to be,” he 
recalled. “So I always tell my 
students to push.”

Read more here

https://cs.illinois.edu/about/awards/alumni-awards/alumni-awards-past-recipients/clarence-ellis


Logistics, Coming up
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• Today, Wednesday 3/29
• APT 7 due

• Next Monday, 4/3
• Nothing due, start on P5 Huffman

• Next Wednesday, 4/5
• APT 8 due



Today’s agenda

• Wrap up Huffman Coding Intro

• Priority Queue revisited: Implementations, 
especially binary heap
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Huffman Compression

• Zip • Unicode • JPEG • MP3

Huffman compression used in all of these and more!

Representing data with bits: Preferably fewer bits
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Prefix property encoding as a tree
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Convention: 0 for 
left and 1 for right

Encoding is the 
sequence of 0’s and 

1’s on root to leaf path

Values you want to 
encode are leaves: 

Ensures prefix property.

Values deeper in tree 
encoded with more bits than 

those earlier in the tree.



Decoding bits using Huffman tree
Goal: Decode 10011011 assuming it was encoded with 
this tree.

• Read bit at a time, traverse left or right edge.
• When you reach a leaf, decode the character, restart at 

root.
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Decoding bits using Huffman tree
Decode 10011011
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Initialize at root



Decoding bits using Huffman tree
Decode 10011011
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Read 1, go to 
right child



Decoding bits using Huffman tree
Decode 10011011
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Read 0, go to 
left child



Decoding bits using Huffman tree
Decode 10011011
g
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Leaf, decode ‘g’, 
restart at root



Decoding bits using Huffman tree
Decode 10011011
g
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Read 0, go to 
left child



Decoding bits using Huffman tree
Decode 10011011
g
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Read 1, go to 
right child



Decoding bits using Huffman tree
Decode 10011011
g
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Read 1, go to 
right child



Decoding bits using Huffman tree
Decode 10011011
g
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Read 0, go to 
left child



Decoding bits using Huffman tree
Decode 10011011
ge
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Leaf, decode ‘e’, 
restart at root



Decoding bits using Huffman tree
Decode 10011011
ge
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Read 1, go to 
right child



Decoding bits using Huffman tree
Decode 10011011
ge
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Read 1, go to 
right child



Decoding bits using Huffman tree
Decode 1001 1011
geo
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Leaf, decode ‘o’



Huffman Coding

• Greedy algorithm for building an optimal variable 
length encoding tree.
• Start with the leaf nodes containing values you want 

to encode with weights = frequency.
• Iteratively choose the lowest weight nodes to 

connect “up” to a new node with weight = sum of 
children.

• Implementation? Priority queue!
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Visualizing the greedy algorithm
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Encoding the text “go go gophers”



P5 Outline

1. Write Decompress first
• Takes a compressed file (we give you some)
• Reads Huffman tree from bits
• Uses tree to decode bits to text

2. Write Compress second
• Count frequencies of values/characters
• Greedy algorithm to build Huffman tree
• Save tree and file encoded as bits
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Priority Queues Revisited
Binary Heaps
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java.util.PriorityQueue Class

• Kept in sorted order, smallest out first
• Objects must be Comparable OR provide 

Comparator to priority queue
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java.util PriorityQueue basic 
methods

Method Behavior Runtime 
Complexity

add(element) Add an element to the priority queue O(log(N)) 
comparisons

remove() Remove and return the minimal 
element

O(log(N)) 
comparisons

peek() Return (do *not* remove) the 
minimal element

O(1)

size() Return number of elements O(1)
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Binary Heap at a high level

A binary heap is a binary tree satisfying 
the following structural invairants:
• Maintain the heap property that 

every node is less than or equal to its 
successors, and
• The shape property that the tree is 

complete (full except perhaps last 
level, in which case it should be filled 
from left to right)
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By Vikingstad at English Wikipedia - Transferred from 
en.wikipedia to Commons by LeaW., Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=3504273



How are binary heaps typically 
implemented?

• Normally think about a conceptual binary tree 
underlying the binary heap. 

• Usually implement with an array 
• minimizes storage (no explicit points/nodes)
• simpler to code, no explicit tree traversal
• faster too (constant factor, not asymptotically)---

children are located by index/position in array
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By Vikingstad at English Wikipedia - Transferred from 
en.wikipedia to Commons by LeaW., Public Domain, 
https://commons.wikimedia.org/w/index.php?curid=3504273



Aside: How much less memory?

• Storing an int takes 4 bytes = 32 bits on most 
machines.
• Storing one reference to an object (a memory 

location) takes 8 bytes = 64 bits on most machines.

• For a heap storing N integers…
• Array of N integers takes ~ 4N bytes.
• Binary tree where each node has an int, left, and right 

reference takes ~20N bytes.
• So maybe a 5x savings in memory (just an estimate). Not 

an asymptotic improvement.
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Using an array for a Heap
• Makes it easy to keep track of last “node” in “tree”
• Index positions in the tree level by level, left to right:

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

6

10 7

17 13 9 21

19 25

Depth 0
Depth 1
Depth 2

Depth 3

1

2 3

4 5 6 7

8 9

• Last node in the heap is always just the largest index
• Can use indices to represent as an array!

(ArrayList if you 
want it to be 

growable)
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Properties of the Heap Array
• Store “node values” in 

array beginning at index 1
• Could 0-index, Zybook

does this

• Last “node” is always at 
the max index

• Minimum “node” is 
always at index 1 

• peek is easy, return first 
value. 
• How about add? 
• Remove?

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

6

10 7

17 13 9 21

19 25

Depth 0

Depth 1

Depth 2

Depth 3

1

2 3

4 5 6 7

8 9
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Relating Nodes in Heap Array
• When 1-indexing: For node 

with index k
• left child: index 2*k
• right child: index 2*k+1
• parent: index k/2

• Why? Follows from:
• Heap is complete, and
• Complete binary tree 

has 2d nodes at depth 
d (except last)

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

6

10 7

17 13 9 21

19 25

Depth 0

Depth 1

Depth 2

Depth 3

1

2 3

4 5 6 7

8 9

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 32

Integer division



Adding values to heap in pictures
• Add to first open position in 

last level of the tree
• (really, add to end of 

array)
• Swap with parent if heap 

property violated
• stop when parent is 

smaller
• Or you reach the root

13

6
10 7

17 9 21
19 25

13

6
10 7

17 9 21
19 25 8

6
10 7

17 9 21
19 25 13

8

insert 8

bubble 8 up

6
7

17 9 21
19 25

8

13

10
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Heap property 
re-established



Heap add implementation

13

6
10 7

17 9 21
19 25

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

ArrayList<Integer> heap
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8

8

index=10parent=5



Heap add implementation

13

6
10 7

17 9 21
19 25

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 8 259 21 19

ArrayList<Integer> heap
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8

index=5parent=2

8

6
10 7

17 9 21
19 25 13

13



Heap add implementation

13

6
10 7

17 9 21
19 25

0 1 2 3 4 5 6 7 8 9 10

6 8 7 17 10 259 21 19

ArrayList<Integer> heap
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8

index=2
parent=1

8

6
10 7

17 9 21
19 25 13

13

10

6
8 7

17 9 21
19 25 13



Heap remove in pictures
• Always return root value

• Replace root with last 
node in the heap

• While heap property 
violated, swap with 
smaller child.

13

6
10 7

17 9 21
19 25

13

25
10 7

17 9 21
19

13

7
10 25

17 9 21
19

13

7
10 9

17 25 21
19
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Heap remove implementation 
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13

6

10 7

17 9 21

19 25

13

25

10 7

17 9 21

19

Get the 
minimal value

Replace ”root”
with “last node”Delete “last node”

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

0 1 2 3 4 5 6 7 8 9 10

25 10 7 17 13 9 21 19



Heap remove implementation 
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0 1 2 3 4 5 6 7 8 9 10

25 10 7 17 13 9 21 19

13

25

10 7

17 9 21

19

minChild

0 1 2 3 4 5 6 7 8 9 10

7 10 25 17 13 9 21 19

13

7

10 25

17 9 21

19

Find the smaller of 2 child nodes

Violating heap 
property

Swap



Heap remove implementation 
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minChild

0 1 2 3 4 5 6 7 8 9 10

7 10 25 17 13 9 21 19

13

7

10 25

17 9 21

19

Update minChild

13

7

10 9

17 25 21

19

0 1 2 3 4 5 6 7 8 9 10

7 10 9 17 13 25 21 19



Heap remove implementation 
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2*6 = 12 > size

13

7

10 9

17 25 21

19

0 1 2 3 4 5 6 7 8 9 10

7 10 9 17 13 25 21 19

Return retVal (6)



Heap Complexity

• Claimed that:
• Peek: O(1)
• Add: O(log(N))
• Remove: O(log(N))

• On a heap with N values. Why?
• Peek: Easy, return first value in an Array
• Complete binary tree always has height O(log(N)).
• add and remove “traverse” one root-leaf path, at most 

O(log(N)).
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decreaseKey Operation?
• Suppose we decrease the 13 

to 5. 
• Violates heap property
• Fix like in the add operation: 

While violating heap 
property:
• Swap with parent

13

6
10 7

17 9 21
19 25

5

6
10 7

17 9 21
19 25
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10

6
5 7

17 9 21
19 25

10

6
6 7

17 9 21
19 25



decreaseKey NOT in java.util

• decreaseKey is important for some algorithms, but 
not supported in many standard libraries (including 
the java.util PriorityQueue)

• Why not?
• Note that binary heap does not support efficient search
• In order to do decreaseKey in O(log(n)) time, need to

store references/indices of all the “nodes.”
• Adds overhead, not done in java.util
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Alternative Implementation: 
Binary Search Tree

• If your keys happen to be unique…
• Can support O(log(n)) add & remove (smallest) 

using a binary search tree!
• Smallest is leftmost child
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PriorityQueue (with unique keys) 
using a java.util TreeSet
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import java.util.TreeSet;

public class BSTPQ<T extends Comparable<T>> {
private TreeSet<T> bst;

public BSTPQ() { bst = new TreeSet<>(); }
public void add(T element) { bst.add(element); }
public int size() { return bst.size(); }
public T peek() { return bst.first(); }

public T remove() {
T returnValue = bst.first();
bst.remove(returnValue);
return returnValue;

}

public void decreaseKey(T oldKey, T newKey) {
bst.remove(oldKey);
bst.add(newKey);

}
}

first gives smallest 
element in TreeSet in 

O(log(n)) time

Can decreaseKey by removing 
and then re-adding, both 

O(log(n)) time for a TreeSet



Disadvantages to using a Binary 
Search Tree for your priority queue?

1. All elements must be unique

2. Not array-based, uses more memory and has
higher constant factors on runtime

3. Much harder to implement with guarantees that
the tree will be balanced.
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