CompSci 201, L20: Binary Heaps
People in CS: Clarence “Skip” Ellis

• Born 1943 in Chicago. PhD in CS from U. Illinois UC in 1969
 • First African American in US to complete a PhD in CS
• Founding member of the CS department at U. Colorado, also worked in industry.
 • Developing original graphical user interfaces, object-oriented programming, collaboration tools.

“People put together an image of what I was supposed to be,” he recalled. “So I always tell my students to push.”

Read more here
Logistics, Coming up

• Today, Wednesday 3/29
 • APT 7 due

• Next Monday, 4/3
 • Nothing due, start on P5 Huffman

• Next Wednesday, 4/5
 • APT 8 due
Today’s agenda

• Wrap up Huffman Coding Intro

• Priority Queue revisited: Implementations, especially binary heap
Huffman Compression

Representing data with bits: Preferably fewer bits

- Zip
- Unicode
- JPEG
- MP3

Huffman compression used in all of these and more!
Prefix property encoding as a tree

Encoding is the sequence of 0’s and 1’s on root to leaf path

Convention: 0 for left and 1 for right

Values you want to encode are leaves: Ensures prefix property.

Values deeper in tree encoded with more bits than those earlier in the tree.

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>10</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'p'</td>
<td>0100</td>
</tr>
<tr>
<td>'h'</td>
<td>0101</td>
</tr>
<tr>
<td>'e'</td>
<td>0110</td>
</tr>
<tr>
<td>'r'</td>
<td>0111</td>
</tr>
<tr>
<td>'s'</td>
<td>000</td>
</tr>
<tr>
<td>'</td>
<td>001</td>
</tr>
</tbody>
</table>
Decoding bits using Huffman tree

Goal: Decode 10011011 assuming it was encoded with this tree.

- Read bit at a time, traverse left or right edge.
- When you reach a leaf, decode the character, restart at root.
Decoding bits using Huffman tree

Decode 10011011

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>10</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'p'</td>
<td>0100</td>
</tr>
<tr>
<td>'h'</td>
<td>0101</td>
</tr>
<tr>
<td>'e'</td>
<td>0110</td>
</tr>
<tr>
<td>'r'</td>
<td>0111</td>
</tr>
<tr>
<td>'s'</td>
<td>000</td>
</tr>
<tr>
<td>' '</td>
<td>001</td>
</tr>
</tbody>
</table>
Decoding bits using Huffman tree

Decode 10011011

Read 1, go to right child

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>10</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'p'</td>
<td>0100</td>
</tr>
<tr>
<td>'h'</td>
<td>0101</td>
</tr>
<tr>
<td>'e'</td>
<td>0110</td>
</tr>
<tr>
<td>'r'</td>
<td>0111</td>
</tr>
<tr>
<td>'s'</td>
<td>000</td>
</tr>
<tr>
<td>' '</td>
<td>001</td>
</tr>
</tbody>
</table>
Decoding bits using Huffman tree

Decode 10011011

Read 0, go to left child

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>10</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'p'</td>
<td>0100</td>
</tr>
<tr>
<td>'h'</td>
<td>0101</td>
</tr>
<tr>
<td>'e'</td>
<td>0110</td>
</tr>
<tr>
<td>'r'</td>
<td>0111</td>
</tr>
<tr>
<td>'s'</td>
<td>000</td>
</tr>
<tr>
<td>' '</td>
<td>001</td>
</tr>
</tbody>
</table>
Decoding bits using Huffman tree

Decode 10011011

Leaf, decode ‘g’, restart at root

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>10</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'p'</td>
<td>0100</td>
</tr>
<tr>
<td>'h'</td>
<td>0101</td>
</tr>
<tr>
<td>'e'</td>
<td>0110</td>
</tr>
<tr>
<td>'r'</td>
<td>0111</td>
</tr>
<tr>
<td>'s'</td>
<td>000</td>
</tr>
<tr>
<td>' '</td>
<td>001</td>
</tr>
</tbody>
</table>
Decoding bits using Huffman tree

Decode 10011011

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>10</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'p'</td>
<td>0100</td>
</tr>
<tr>
<td>'h'</td>
<td>0101</td>
</tr>
<tr>
<td>'e'</td>
<td>0110</td>
</tr>
<tr>
<td>'r'</td>
<td>0111</td>
</tr>
<tr>
<td>'s'</td>
<td>000</td>
</tr>
<tr>
<td>' '</td>
<td>001</td>
</tr>
</tbody>
</table>

Read 0, go to left child.
Decoding bits using Huffman tree

Decode 10011011

Read 1, go to right child

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>10</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'p'</td>
<td>0100</td>
</tr>
<tr>
<td>'h'</td>
<td>0101</td>
</tr>
<tr>
<td>'e'</td>
<td>0110</td>
</tr>
<tr>
<td>'r'</td>
<td>0111</td>
</tr>
<tr>
<td>'s'</td>
<td>000</td>
</tr>
<tr>
<td>' '</td>
<td>001</td>
</tr>
</tbody>
</table>
Decoding bits using Huffman tree

Decode 10011011

Read 1, go to right child

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>10</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'p'</td>
<td>0100</td>
</tr>
<tr>
<td>'h'</td>
<td>0101</td>
</tr>
<tr>
<td>'e'</td>
<td>0110</td>
</tr>
<tr>
<td>'r'</td>
<td>0111</td>
</tr>
<tr>
<td>'s'</td>
<td>000</td>
</tr>
<tr>
<td>' '</td>
<td>001</td>
</tr>
</tbody>
</table>
Decoding bits using Huffman tree

Decode 10011011

Read 0, go to left child
Decoding bits using Huffman tree

Decode 10011011

ge

Leaf, decode ‘e’, restart at root

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>10</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'p'</td>
<td>0100</td>
</tr>
<tr>
<td>'h'</td>
<td>0101</td>
</tr>
<tr>
<td>'e'</td>
<td>0110</td>
</tr>
<tr>
<td>'r'</td>
<td>0111</td>
</tr>
<tr>
<td>'s'</td>
<td>000</td>
</tr>
<tr>
<td>' '</td>
<td>001</td>
</tr>
</tbody>
</table>
Decoding bits using Huffman tree

Decode 10011011

ge

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>10</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'p'</td>
<td>0100</td>
</tr>
<tr>
<td>'h'</td>
<td>0101</td>
</tr>
<tr>
<td>'e'</td>
<td>0110</td>
</tr>
<tr>
<td>'r'</td>
<td>0111</td>
</tr>
<tr>
<td>'s'</td>
<td>000</td>
</tr>
<tr>
<td>' '</td>
<td>001</td>
</tr>
</tbody>
</table>

Read 1, go to right child
Decoding bits using Huffman tree

Decode 10011011

ge

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>10</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'p'</td>
<td>0100</td>
</tr>
<tr>
<td>'h'</td>
<td>0101</td>
</tr>
<tr>
<td>'e'</td>
<td>0110</td>
</tr>
<tr>
<td>'r'</td>
<td>0111</td>
</tr>
<tr>
<td>'s'</td>
<td>000</td>
</tr>
<tr>
<td>' '</td>
<td>001</td>
</tr>
</tbody>
</table>
Decoding bits using Huffman tree

Decode 1001 1011

geo

Leaf, decode ‘o’

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>10</td>
</tr>
<tr>
<td>'o'</td>
<td>11</td>
</tr>
<tr>
<td>'p'</td>
<td>0100</td>
</tr>
<tr>
<td>'h'</td>
<td>0101</td>
</tr>
<tr>
<td>'e'</td>
<td>0110</td>
</tr>
<tr>
<td>'r'</td>
<td>0111</td>
</tr>
<tr>
<td>'s'</td>
<td>000</td>
</tr>
<tr>
<td>' '</td>
<td>001</td>
</tr>
</tbody>
</table>

3/29/23
Comp sci 201, Spring 2023, L20: Binary Heaps 19
Huffman Coding

• Greedy algorithm for building an optimal variable length encoding tree.
 • Start with the leaf nodes containing values you want to encode with weights = frequency.
 • Iteratively choose the lowest weight nodes to connect “up” to a new node with weight = sum of children.

• Implementation? Priority queue!
Visualizing the greedy algorithm

Encoding the text “go go gophers”

<table>
<thead>
<tr>
<th>char</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>'g'</td>
<td>00</td>
</tr>
<tr>
<td>'o'</td>
<td>01</td>
</tr>
<tr>
<td>'p'</td>
<td>1110</td>
</tr>
<tr>
<td>'h'</td>
<td>1101</td>
</tr>
<tr>
<td>'e'</td>
<td>101</td>
</tr>
<tr>
<td>'r'</td>
<td>1111</td>
</tr>
<tr>
<td>'s'</td>
<td>1100</td>
</tr>
<tr>
<td>'r'</td>
<td>100</td>
</tr>
</tbody>
</table>
P5 Outline

1. Write Decompress first
 • Takes a compressed file (we give you some)
 • Reads Huffman tree from bits
 • Uses tree to decode bits to text

2. Write Compress second
 • Count frequencies of values/characters
 • Greedy algorithm to build Huffman tree
 • Save tree and file encoded as bits
Priority Queues Revisited
Binary Heaps
java.util.PriorityQueue Class

• Kept in sorted order, smallest out first
 • Objects must be Comparable OR provide Comparator to priority queue

```java
PriorityQueue<String> pq = new PriorityQueue<>();
pq.add("is");
pq.add("Compsci 201");
pq.add("wonderful");
while (! pq.isEmpty()) {
    System.out.println(pq.remove());
}
```

```java
PriorityQueue<String> pq = new PriorityQueue<>(
    Comparator.comparing(String::length));
pq.add("is");
pq.add("Compsci 201");
pq.add("wonderful");
while (! pq.isEmpty()) {
    System.out.println(pq.remove());
}
```

is
wonderful
Compsci 201
java.util PriorityQueue basic methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Behavior</th>
<th>Runtime Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>add(element)</td>
<td>Add an element to the priority queue</td>
<td>O(log(N)) comparisons</td>
</tr>
<tr>
<td>remove()</td>
<td>Remove and return the minimal element</td>
<td>O(log(N)) comparisons</td>
</tr>
<tr>
<td>peek()</td>
<td>Return (do not remove) the minimal element</td>
<td>O(1)</td>
</tr>
<tr>
<td>size()</td>
<td>Return number of elements</td>
<td>O(1)</td>
</tr>
</tbody>
</table>
A **binary heap** is a binary tree satisfying the following structural invariants:

- Maintain the **heap property** *that every node is less than or equal to its successors*, and
- The **shape property** *that the tree is complete* (full except perhaps last level, in which case it should be filled from left to right)
How are binary heaps typically implemented?

- Normally think about a conceptual binary tree underlying the binary heap.

- Usually implement with an array
 - minimizes storage (no explicit points/nodes)
 - simpler to code, no explicit tree traversal
 - faster too (constant factor, not asymptotically)---children are located by index/position in array
Aside: How much less memory?

• Storing an int takes 4 bytes = 32 bits on most machines.
• Storing one reference to an object (a memory location) takes 8 bytes = 64 bits on most machines.

• For a heap storing N integers...
 • Array of N integers takes ~ 4N bytes.
 • Binary tree where each node has an int, left, and right reference takes ~20N bytes.
 • So maybe a 5x savings in memory (just an estimate). Not an asymptotic improvement.
Using an array for a Heap

- Makes it easy to keep track of last “node” in “tree”
- Index positions in the tree level by level, left to right:

<table>
<thead>
<tr>
<th>Depth 0</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depth 1</td>
<td>10</td>
</tr>
<tr>
<td>Depth 2</td>
<td>17</td>
</tr>
<tr>
<td>Depth 3</td>
<td>19</td>
</tr>
</tbody>
</table>

• Last node in the heap is always just the largest index
• Can use indices to represent as an array!

(ArrayList if you want it to be growable)
Properties of the Heap Array

• Store “node values” in array beginning at index 1
 • Could 0-index, Zybook does this
• Last “node” is always at the max index
• Minimum “node” is always at index 1
• peek is easy, return first value.
 • How about add?
 • Remove?
Relating Nodes in Heap Array

- When 1-indexing: For node with index k
 - left child: index $2k$
 - right child: index $2k+1$
 - parent: index $k/2$

Why? Follows from:
- Heap is complete, and
- Complete binary tree has 2^d nodes at depth d (except last)
Adding values to heap in pictures

- Add to first open position in last level of the tree
 - (really, add to end of array)
- Swap with parent if heap property violated
 - stop when parent is smaller
 - Or you reach the root

Heap property re-established
Heap add implementation

```java
public void add(Integer value) {
    heap.add(value); // add to last position
    size++;

    int index = size; // note we are 1-indexing
    int parent = index / 2;

    while (parent >= 1 && heap.get(parent) > heap.get(index)) {
        swap(index, parent);
        index = parent;
        parent /= 2;
    }
}
```

`ArrayList<Integer> heap`
Heap add implementation

```java
public void add(Integer value) {
    heap.add(value); // add to last position
    size++;

    int index = size; // note we are 1-indexing
    int parent = index / 2;

    while (parent >= 1 && heap.get(parent) > heap.get(index)) {
        swap(index, parent);
        index = parent;
        parent /= 2;
    }
}
```

```
6 10 7 17 8 9 21 19 25 13
0 1 2 3 4 5 6 7 8 9 10

parent = 2
index = 5
```

ArrayList<Integer> heap
Heap add implementation

```java
public void add(Integer value) {
    heap.add(value); // add to last position
    size++;

    int index = size; // note we are 1-indexing
    int parent = index / 2;

    while (parent >= 1 && heap.get(parent) > heap.get(index)) {
        swap(index, parent);
        index = parent;
        parent /= 2;
    }
}
```

Diagram:
- An array list containing integers
- Tree representation of the heap
- Index and parent calculations

Code Explanation:
- The `add` method takes an integer value and adds it to the heap.
- It first adds the value to the last position of the heap.
- It then calculates the index of the added element and its parent.
- It performs a while loop to maintain the heap property by swapping the element with its parent if necessary.

Visual Elements:
- Array list representation: 6, 8, 7, 17, 10, 9, 21, 19, 25, 13
- Tree nodes with values: 6, 8, 7, 17, 10, 9, 21, 19, 25, 13
- Index and parent annotations:
 - Index: 2
 - Parent: 1

Additional Notes:
- Binary heap properties are maintained throughout the process.
- The heap is represented in an array list for efficient access.
Heap remove in pictures

- Always return root value
- Replace root with last node in the heap
- While heap property violated, swap with smaller child.
Heap remove implementation

```java
public Integer remove() {
    if (size < 1) { return null; }
    Integer retVal = heap.get(index:1);
    heap.set(index:1, heap.get(size));
    heap.remove(size);
    size--;
    if (size == 0) { return retVal; }
}
```

- Get the minimal value
- Replace "root" with "last node"
- Delete "last node"
Heap remove implementation

```java
int index = 1;
int minChild = 2;
if (size > 2 && heap.get(index:3) < heap.get(index:2)) { minChild = 3; }
while (minChild <= size && heap.get(index) > heap.get(minChild)) {
    swap(index, minChild);
    index = minChild;
    minChild = minChild * 2;
    if (size > minChild && heap.get(minChild + 1) < heap.get(minChild)) { minChild++; }
}
return retVal;
```

Find the smaller of 2 child nodes

Swap

Violating heap property
Heap remove implementation

```java
int index = 1;
int minChild = 2;
if (size > 2 && heap.get(index:3) < heap.get(index:2)) { minChild = 3; }
while (minChild <= size && heap.get(index) > heap.get(minChild)) {
    swap(index, minChild);
    index = minChild;
    minChild = minChild * 2;
    if (size > minChild && heap.get(minChild + 1) < heap.get(minChild)) { minChild++; }
}
return retVal;
```
Heap remove implementation

```c
int index = 1;
int minChild = 2;
if (size > 2 && heap.get(index: 3) < heap.get(index: 2)) { minChild = 3; }
while (minChild <= size && heap.get(index) > heap.get(minChild)) {
    swap(index, minChild);
    index = minChild;
    minChild = minChild * 2;
    if (size > minChild && heap.get(minChild + 1) < heap.get(minChild)) { minChild++;
}
return retVal;
```

Return retVal (6)
Heap Complexity

• Claimed that:
 • Peek: $O(1)$
 • Add: $O(\log(N))$
 • Remove: $O(\log(N))$

• On a heap with N values. Why?
 • Peek: Easy, return first value in an Array
 • Complete binary tree always has height $O(\log(N))$.
 • add and remove “traverse” one root-leaf path, at most $O(\log(N))$.
decreaseKey Operation?

- Suppose we decrease the 13 to 5.
- Violates heap property
- Fix like in the add operation:
 While violating heap property:
 - Swap with parent
decreaseKey NOT in java.util

• decreaseKey is important for some algorithms, but not supported in many standard libraries (including the java.util PriorityQueue)

• Why not?
 • Note that binary heap does not support efficient search
 • In order to do decreaseKey in \(O(\log(n))\) time, need to store references/indices of all the “nodes.”
 • Adds overhead, not done in java.util
Alternative Implementation: Binary Search Tree

• If your keys happen to be unique...
• Can support $O(\log(n))$ add & remove (smallest) using a binary search tree!
• Smallest is leftmost child
PriorityQueue (with unique keys) using a java.util TreeSet

```java
import java.util.TreeSet;

public class BSTPQ<T extends Comparable<T>> {
    private TreeSet<T> bst;

    public BSTPQ() { bst = new TreeSet<>(); }
    public void add(T element) { bst.add(element); }
    public int size() { return bst.size(); }
    public T peek() { return bst.first(); }
    public T remove() {
        T returnValue = bst.first();
        bst.remove(returnValue);
        return returnValue;
    }
    public void decreaseKey(T oldKey, T newKey) {
        bst.remove(oldKey);
        bst.add(newKey);
    }
}
```

- `first` gives smallest element in TreeSet in $O(\log(n))$ time.
- Can decreaseKey by removing and then re-adding, both $O(\log(n))$ time for a TreeSet.
Disadvantages to using a Binary Search Tree for your priority queue?

1. All elements must be unique

2. Not array-based, uses more memory and has higher constant factors on runtime

3. Much harder to implement with guarantees that the tree will be balanced.