
CompSci 201, L20:
Binary Heaps

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 1

People in CS: Clarence “Skip” Ellis

• Born 1943 in Chicago. PhD in CS
from U. Illinois UC in 1969
• First African American in US to

complete a PhD in CS
• Founding member of the CS

department at U. Colorado, also
worked in industry.
• Developing original graphical

user interfaces, object-oriented
programming, collaboration
tools.

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 2

“People put together an image of
what I was supposed to be,” he
recalled. “So I always tell my
students to push.”

Read more here

https://cs.illinois.edu/about/awards/alumni-awards/alumni-awards-past-recipients/clarence-ellis

Logistics, Coming up

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 3

• Today, Wednesday 3/29
• APT 7 due

• Next Monday, 4/3
• Nothing due, start on P5 Huffman

• Next Wednesday, 4/5
• APT 8 due

Today’s agenda

• Wrap up Huffman Coding Intro

• Priority Queue revisited: Implementations,
especially binary heap

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 4

Huffman Compression

• Zip • Unicode • JPEG • MP3

Huffman compression used in all of these and more!

Representing data with bits: Preferably fewer bits

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 5

Prefix property encoding as a tree

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 6

Convention: 0 for
left and 1 for right

Encoding is the
sequence of 0’s and

1’s on root to leaf path

Values you want to
encode are leaves:

Ensures prefix property.

Values deeper in tree
encoded with more bits than

those earlier in the tree.

Decoding bits using Huffman tree
Goal: Decode 10011011 assuming it was encoded with
this tree.

• Read bit at a time, traverse left or right edge.
• When you reach a leaf, decode the character, restart at

root.

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 7

Decoding bits using Huffman tree
Decode 10011011

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 8

Initialize at root

Decoding bits using Huffman tree
Decode 10011011

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 9

Read 1, go to
right child

Decoding bits using Huffman tree
Decode 10011011

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 10

Read 0, go to
left child

Decoding bits using Huffman tree
Decode 10011011
g

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 11

Leaf, decode ‘g’,
restart at root

Decoding bits using Huffman tree
Decode 10011011
g

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 12

Read 0, go to
left child

Decoding bits using Huffman tree
Decode 10011011
g

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 13

Read 1, go to
right child

Decoding bits using Huffman tree
Decode 10011011
g

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 14

Read 1, go to
right child

Decoding bits using Huffman tree
Decode 10011011
g

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 15

Read 0, go to
left child

Decoding bits using Huffman tree
Decode 10011011
ge

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 16

Leaf, decode ‘e’,
restart at root

Decoding bits using Huffman tree
Decode 10011011
ge

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 17

Read 1, go to
right child

Decoding bits using Huffman tree
Decode 10011011
ge

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 18

Read 1, go to
right child

Decoding bits using Huffman tree
Decode 1001 1011
geo

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 19

Leaf, decode ‘o’

Huffman Coding

• Greedy algorithm for building an optimal variable
length encoding tree.
• Start with the leaf nodes containing values you want

to encode with weights = frequency.
• Iteratively choose the lowest weight nodes to

connect “up” to a new node with weight = sum of
children.

• Implementation? Priority queue!

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 20

Visualizing the greedy algorithm

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 21

Encoding the text “go go gophers”

P5 Outline

1. Write Decompress first
• Takes a compressed file (we give you some)
• Reads Huffman tree from bits
• Uses tree to decode bits to text

2. Write Compress second
• Count frequencies of values/characters
• Greedy algorithm to build Huffman tree
• Save tree and file encoded as bits

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 23

Priority Queues Revisited
Binary Heaps

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 24

java.util.PriorityQueue Class

• Kept in sorted order, smallest out first
• Objects must be Comparable OR provide

Comparator to priority queue

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 25

java.util PriorityQueue basic
methods

Method Behavior Runtime
Complexity

add(element) Add an element to the priority queue O(log(N))
comparisons

remove() Remove and return the minimal
element

O(log(N))
comparisons

peek() Return (do *not* remove) the
minimal element

O(1)

size() Return number of elements O(1)

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 26

Binary Heap at a high level

A binary heap is a binary tree satisfying
the following structural invairants:
• Maintain the heap property that

every node is less than or equal to its
successors, and
• The shape property that the tree is

complete (full except perhaps last
level, in which case it should be filled
from left to right)

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 27

By Vikingstad at English Wikipedia - Transferred from
en.wikipedia to Commons by LeaW., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3504273

How are binary heaps typically
implemented?

• Normally think about a conceptual binary tree
underlying the binary heap.

• Usually implement with an array
• minimizes storage (no explicit points/nodes)
• simpler to code, no explicit tree traversal
• faster too (constant factor, not asymptotically)---

children are located by index/position in array

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 28

By Vikingstad at English Wikipedia - Transferred from
en.wikipedia to Commons by LeaW., Public Domain,
https://commons.wikimedia.org/w/index.php?curid=3504273

Aside: How much less memory?

• Storing an int takes 4 bytes = 32 bits on most
machines.
• Storing one reference to an object (a memory

location) takes 8 bytes = 64 bits on most machines.

• For a heap storing N integers…
• Array of N integers takes ~ 4N bytes.
• Binary tree where each node has an int, left, and right

reference takes ~20N bytes.
• So maybe a 5x savings in memory (just an estimate). Not

an asymptotic improvement.

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 29

Using an array for a Heap
• Makes it easy to keep track of last “node” in “tree”
• Index positions in the tree level by level, left to right:

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

6

10 7

17 13 9 21

19 25

Depth 0
Depth 1
Depth 2

Depth 3

1

2 3

4 5 6 7

8 9

• Last node in the heap is always just the largest index
• Can use indices to represent as an array!

(ArrayList if you
want it to be

growable)
3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 30

Properties of the Heap Array
• Store “node values” in

array beginning at index 1
• Could 0-index, Zybook

does this

• Last “node” is always at
the max index

• Minimum “node” is
always at index 1

• peek is easy, return first
value.
• How about add?
• Remove?

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

6

10 7

17 13 9 21

19 25

Depth 0

Depth 1

Depth 2

Depth 3

1

2 3

4 5 6 7

8 9

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 31

Relating Nodes in Heap Array
• When 1-indexing: For node

with index k
• left child: index 2*k
• right child: index 2*k+1
• parent: index k/2

• Why? Follows from:
• Heap is complete, and
• Complete binary tree

has 2d nodes at depth
d (except last)

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

6

10 7

17 13 9 21

19 25

Depth 0

Depth 1

Depth 2

Depth 3

1

2 3

4 5 6 7

8 9

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 32

Integer division

Adding values to heap in pictures
• Add to first open position in

last level of the tree
• (really, add to end of

array)
• Swap with parent if heap

property violated
• stop when parent is

smaller
• Or you reach the root

13

6
10 7

17 9 21
19 25

13

6
10 7

17 9 21
19 25 8

6
10 7

17 9 21
19 25 13

8

insert 8

bubble 8 up

6
7

17 9 21
19 25

8

13

10

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 33

Heap property
re-established

Heap add implementation

13

6
10 7

17 9 21
19 25

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

ArrayList<Integer> heap

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 34

8

8

index=10parent=5

Heap add implementation

13

6
10 7

17 9 21
19 25

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 8 259 21 19

ArrayList<Integer> heap

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 35

8

index=5parent=2

8

6
10 7

17 9 21
19 25 13

13

Heap add implementation

13

6
10 7

17 9 21
19 25

0 1 2 3 4 5 6 7 8 9 10

6 8 7 17 10 259 21 19

ArrayList<Integer> heap

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 36

8

index=2
parent=1

8

6
10 7

17 9 21
19 25 13

13

10

6
8 7

17 9 21
19 25 13

Heap remove in pictures
• Always return root value

• Replace root with last
node in the heap

• While heap property
violated, swap with
smaller child.

13

6
10 7

17 9 21
19 25

13

25
10 7

17 9 21
19

13

7
10 25

17 9 21
19

13

7
10 9

17 25 21
19

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 37

Heap remove implementation

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 38

13

6

10 7

17 9 21

19 25

13

25

10 7

17 9 21

19

Get the
minimal value

Replace ”root”
with “last node”Delete “last node”

0 1 2 3 4 5 6 7 8 9 10

6 10 7 17 13 259 21 19

0 1 2 3 4 5 6 7 8 9 10

25 10 7 17 13 9 21 19

Heap remove implementation

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 39

0 1 2 3 4 5 6 7 8 9 10

25 10 7 17 13 9 21 19

13

25

10 7

17 9 21

19

minChild

0 1 2 3 4 5 6 7 8 9 10

7 10 25 17 13 9 21 19

13

7

10 25

17 9 21

19

Find the smaller of 2 child nodes

Violating heap
property

Swap

Heap remove implementation

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 40

minChild

0 1 2 3 4 5 6 7 8 9 10

7 10 25 17 13 9 21 19

13

7

10 25

17 9 21

19

Update minChild

13

7

10 9

17 25 21

19

0 1 2 3 4 5 6 7 8 9 10

7 10 9 17 13 25 21 19

Heap remove implementation

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 41

2*6 = 12 > size

13

7

10 9

17 25 21

19

0 1 2 3 4 5 6 7 8 9 10

7 10 9 17 13 25 21 19

Return retVal (6)

Heap Complexity

• Claimed that:
• Peek: O(1)
• Add: O(log(N))
• Remove: O(log(N))

• On a heap with N values. Why?
• Peek: Easy, return first value in an Array
• Complete binary tree always has height O(log(N)).
• add and remove “traverse” one root-leaf path, at most

O(log(N)).

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 42

decreaseKey Operation?
• Suppose we decrease the 13

to 5.
• Violates heap property
• Fix like in the add operation:

While violating heap
property:
• Swap with parent

13

6
10 7

17 9 21
19 25

5

6
10 7

17 9 21
19 25

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 44

10

6
5 7

17 9 21
19 25

10

6
6 7

17 9 21
19 25

decreaseKey NOT in java.util

• decreaseKey is important for some algorithms, but
not supported in many standard libraries (including
the java.util PriorityQueue)

• Why not?
• Note that binary heap does not support efficient search
• In order to do decreaseKey in O(log(n)) time, need to

store references/indices of all the “nodes.”
• Adds overhead, not done in java.util

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 45

Alternative Implementation:
Binary Search Tree

• If your keys happen to be unique…
• Can support O(log(n)) add & remove (smallest)

using a binary search tree!
• Smallest is leftmost child

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 46

PriorityQueue (with unique keys)
using a java.util TreeSet

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 47

import java.util.TreeSet;

public class BSTPQ<T extends Comparable<T>> {
private TreeSet<T> bst;

public BSTPQ() { bst = new TreeSet<>(); }
public void add(T element) { bst.add(element); }
public int size() { return bst.size(); }
public T peek() { return bst.first(); }

public T remove() {
T returnValue = bst.first();
bst.remove(returnValue);
return returnValue;

}

public void decreaseKey(T oldKey, T newKey) {
bst.remove(oldKey);
bst.add(newKey);

}
}

first gives smallest
element in TreeSet in

O(log(n)) time

Can decreaseKey by removing
and then re-adding, both

O(log(n)) time for a TreeSet

Disadvantages to using a Binary
Search Tree for your priority queue?

1. All elements must be unique

2. Not array-based, uses more memory and has
higher constant factors on runtime

3. Much harder to implement with guarantees that
the tree will be balanced.

3/29/23 Compsci 201, Spring 2023, L20: Binary Heaps 48

