
CompSci 201, L21: 
Balanced Binary Search 

Trees

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

1



Logistics, Coming up

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

2

• This Wednesday, April 5
• APT 8 due

• Next Monday, April 10
• Project P5: Huffman due

• Next Wednesday, April 12
• APT Quiz 2 due:
• Covers linked list, sorting, trees
• No regular APTs this week, just the quiz



Reminder: What is an APT Quiz?

• Set of 3 APT problems, 2 hours to complete.
• Will be available starting this Saturday afternoon (look 

for a Sakai/email announcement)
• Must complete by 11:59 pm Wednesday 4/12 (so start 

before 10)

• Start the quiz on Sakai assessments tool, begins 
your timer and shows you the link to the problems 
and submission page.
• Will look/work just like the regular APT page, just with 

only 3 problems.

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

3



Reminder: What is allowed?

Yes, allowed
• Zybook
• Course notes
• API documentation
• VS Code
• JShell

No, not allowed
• Collaboration or sharing 

any code.
• Communication about 

the problems at all
during the window.
• Searching internet, 

stackoverflow, etc. for 
solutions.

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

4



Reminder: Don’t do these things

1. Do not collaborate. Note that we log all code 
submissions and will investigate for academic 
integrity.

2. Do not hard code the test cases (if(input == X) 
return Y, etc.).
We show you the test cases to help you debug. But we 
search for submissions that do this and you will get a 0 on 
the APT quiz if you hard code the test cases instead of 
solving the problem.

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

5



Reminder: How is it graded?

Raw score R out 
of 30.

Adjusted score A 
out of 30.

100 point grade 
scale

27 <= R <= 30 A = R 90 – 100

24 <= R <= 26 A = 26 ~87

21 <= R <= 23 A = 25 ~83

18 <= R <= 20 A = 24 80

15 <= R <= 17 A = 23 ~77

12 <= R <= 14 A = 22 ~73

9 <= R <= 11 A = 21 70

6 <= R <= 8 A = 20 ~67

3 <= R <= 5 A = 19 ~63

1 <= R <= 2 A = 18 60
4/3/23 Compsci 201, Spring 2023, L21: Balanced 

Binary Search Trees
6

Not curved, adjusted. 3 problems, 10 points each. 

Can still get in the B 
range even if you can’t 
solve one; don’t panic!

Only going to get a 0 if 
you collaborate or hard 
code test cases. Don’t 

do it!



Binary Heap Wrapup
Reminder: You can see a simple DIY implementation of a 
binary heap-based priority queue at 
coursework.cs.duke.edu/cs-201-spring-23/diybinaryheap

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

7

https://coursework.cs.duke.edu/cs-201-spring-23/diybinaryheap


decreaseKey Operation?
• Suppose we decrease the 13 

to 5. 
• Violates heap property
• Fix like in the add operation: 

While violating heap 
property:
• Swap with parent

13

6
10 7

17 9 21
19 25

5

6
10 7

17 9 21
19 25

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

8

10

6
5 7

17 9 21
19 25

10

6
6 7

17 9 21
19 25



decreaseKey NOT in java.util

• decreaseKey is important for some algorithms, but 
not supported in many standard libraries (including 
the java.util PriorityQueue)

• Why not?
• Note that binary heap does not support efficient search
• In order to do decreaseKey in O(log(n)) time, need to 

store references/indices of all the “nodes.”
• Adds overhead, not done in java.util

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

9



Alternative Implementation: 
Binary Search Tree

• If your keys happen to be unique…
• Can support O(log(n)) add & remove (smallest) 

using a binary search tree!
• Smallest is leftmost child

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

10



PriorityQueue (with unique keys) 
using a java.util TreeSet

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

11

import java.util.TreeSet;

public class BSTPQ<T extends Comparable<T>> {
private TreeSet<T> bst;

public BSTPQ() { bst = new TreeSet<>(); }
public void add(T element) { bst.add(element); }
public int size() { return bst.size(); }
public T peek() { return bst.first(); }

public T remove() {
T returnValue = bst.first();
bst.remove(returnValue);
return returnValue;

}

public void decreaseKey(T oldKey, T newKey) {
bst.remove(oldKey);
bst.add(newKey);

}
}

first gives smallest 
element in TreeSet in 

O(log(n)) time

Can decreaseKey by removing 
and then re-adding, both 

O(log(n)) time for a TreeSet



Disadvantages to using a Binary 
Search Tree for your priority queue?

1. All elements must be unique

2. Not array-based, uses more memory and has 
higher constant factors on runtime

3. Much harder to implement with guarantees that 
the tree will be balanced.

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

12

???



Binary Search Tree 
Review and Runtime
See videos of live coding a DIYTreeSet as a binary search tree:

Part 1: Getting started, traversal, iterator
Part 2: add and contains

And here is the code: coursework.cs.duke.edu/cs-201-spring-23/diytreeset

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

13

https://duke.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=b7b6eb33-f0d8-45f4-936a-afc0012cae36
https://duke.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=e5f225e5-e029-4af9-b2ee-afcb00ce85ea
https://coursework.cs.duke.edu/cs-201-spring-23/diytreeset


Binary Search Tree Invariant

A binary tree is a binary search
tree if for every node:
• Left subtree values are all less than the 

node’s value

AND
• Right subtree values are all greater than 

the node’s value

According to some ordering 
(comparable or comparator)

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

14

“llama”

“tiger”

“monkey”“jaguar”“elephant”

“giraffe”

“pig”“hippo” “leopard”

all 
values 
< 7

all 
values 
> 7

7

Enables efficient search, similar to binary search!



Recursive search, pictures, 
pseudocode

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

15

8

4 12

6 10 15

• If t == null: Return false
• If x == t.info: Return true
• If x < t.info: search left
• Else: search right

Searching for 
10

10 > 8, so
search right



Recursive search, pictures, 
pseudocode

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

16

8

4 12

6 10 15

• If t == null: Return false
• If x == t.info: Return true
• If x < t.info: search left
• Else: search right

10 < 12 so
search left



Recursive search, pictures, 
pseudocode

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

17

8

4 12

6 10 15

• If t == null: Return false
• If x == t.info: Return true
• If x < t.info: search left
• Else: search right

10 == 10 so
return true



Recursive search code

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

18

Base case: no more tree 
to search, did not find x

Base case: found x

If x is less, search in 
left subtree

Else search in right 
subtree



Runtime complexity of BST 
add/contains on balanced tree

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

19

Completely balanced tree:
• T(N) = T(N/2) + O(1)
• Solution is O(log(N)), 

same as binary search
8

4 12

6 10 153



Runtime performance of BST on 
perfectly unbalanced tree

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

20

Perfectly unbalanced tree:
• T(N) = T(N-1) + O(1)
• Solution is O(N), search 

in linked list

8

10

3

4

6



Another perspective: Balanced 
BST has height O(log 𝑛 )

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

21

𝑛 = 2! + 2" +⋯+ 2#
= 2#$" − 1
→ ℎ = log%(𝑛 + 1) − 1

8

4 12

6 10 153

2!nodes at depth 0

2"nodes at depth 1

2#nodes at depth 2

Geometric series formula:

"
$%!

&'"

𝑎𝑟$ =
𝑎 1 − 𝑟&

1 − 𝑟
Results in 𝑂(log(𝑛)) best 
case performance.



Another perspective: Unbalanced 
BST has 𝑂(𝑛) height

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

22

8

10

12

3

4

6

15

For example, results from:
Sort(values)
For each e in values:
insert(e)

Results in 𝑂(𝑛) worst case 
performance.



Experiment: How much difference 
does it make empirically to do 

100,000 random searches?

N sorted order DIY 
binary search tree

random order DIY 
binary search tree

sorted order 
java.util TreeSet

1,000 370 4 8

2,000 715 5 11

4,000 1422 5 14

8,000 2905 8 13

16,000 5991 7 12

32,000 Runtime exception 10 13

64,000 … 8 14

… … … …

1,000,000 … 15 24
4/3/23 Compsci 201, Spring 2023, L21: Balanced 

Binary Search Trees
23

Timings in milliseconds
See example code in coursework.cs.duke.edu/cs-201-fall-22/diytreeset

https://coursework.cs.duke.edu/cs-201-fall-22/diytreeset


Average Case: Random Binary Search 
Tree has 𝑂(log(𝑛)) expected height
• Given 𝑥", … , 𝑥& unique keys
• Let 𝜎(𝑥", … , 𝑥&) be a uniform random permutation

• Theorem 12.4 CLRS (restated): 

𝔼' ℎ& ≤ log%
&!$(&"$""&$(

%)
is 𝑂(log 𝑛 ). 

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

24



Stronger statements about 
random binary search trees

• At most 
ℎ& →&→+ 4.3 log%(𝑛) with 
high probability
• Luc Devroye. 1986. A note on the 

height of binary search trees. J. 
ACM 33, 3 (July 1986), 489–498. 
https://doi.org/10.1145/5925.5930

• Empirical performance. 
Note that for 𝑛 = 1 million:
• 2log((𝑛) ≈ 40
• 3log((𝑛) ≈ 60

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

25

https://doi.org/10.1145/5925.5930


Red-Black Tree: A
Balanced Binary Search
Tree

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

26



Red-Black Tree

Red-Black Trees are binary search 
trees that satisfy the following 
properties:
1. Every node is red or black,
2. The root is black,
3. A red node cannot have red 

children, and
4. From a given node, all paths to 

null descendants must have the 
same number of black nodes.

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

27

8

4 12

6 10 15null

null null …

null is considered 
to be a black node



Red-Black Trees in java.util

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

28



More red-black trees in 
java.util

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

29



A “family” tree connection

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

30

My (doctoral) adviser’s adviser’s 
adviser (we don’t know each other)



Understanding Red-Black Tree 
Properties

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

31

Trick: Not a binary search 
tree at all! Reference: ZyBook 21



Not all binary search trees can be 
colored as red-black trees

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

32

8

12

15

8

12

15

8

12

15

8

12

15

Too many black 
nodes on right 
compared to left
paths

Too many black 
nodes on right 
compared to left
paths

Too many black 
nodes on right 
compared to left
paths

Red node with 
red child not 
allowed



red-black tree properties 
guarantee approximate balance

• Note that the runtime complexity of add/contains 
(a.k.a. insert and search) in a binary search tree is 
proportional to the height of the tree.

• Claim. Any red-black tree with N nodes has height 
that is O(log(N)).

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

33



Proof sketch (not going to sweat 
the details)

1. At least half of the nodes on 
any root to leaf path are 
black (because red nodes 
cannot have red children).

2. All root to leaf paths have 
the same number of black 
nodes (property 4)

3. 1+2 imply that all root to 
leaf paths have within a 
factor 2 of the same number 
of nodes.

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

34

8

4 12

6 10 15null

null null …



How do Red-Black Trees Work

Remember, red black trees are also binary search 
trees (BST).
• contains/search – Exact same as BST, no 

change!
• add/insert – Two steps:

1. Run regular BST add/insert
2. Color the new node red
3. Fix the tree to reestablish red-black tree properties

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

36



RBTreeNode

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

37

Just like a regular 
TreeNode except:
• Store parent reference
• Store color



Search is the same

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

38



Insert looks the same…

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

39

Except for the root, always 
add new nodes as red initially

Need to re-balance 
(reestablish red-black tree 
properties) after insertion.



Terminology: Getting to know the 
family “Tree”

• Node (N)
• Sibling (S)
• Parent (P)
• Grandparent (G)
• Uncle (U)

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

40

8

4 12

6 10 15null

null null …

N
S

P

G

U



Recoloring

• We always insert a new node 
as red, see the 5 node here.
• (This way never violates the 

black nodes on paths property)

• Violates RBT property: red 
child of red parent.

• Fix by recoloring?

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

41

5

8

4 12

6 10 152



Recoloring

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

42

5

8

4 12

6 10 152

5

8

4 12

6 10 152

Recolor

If parent and uncle of new node are both red, color 
both black and color grandparent red.

N

PU

G



Can’t fix all problems by 
recoloring

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

43

5

8

4 12

6 10 15

• Suppose we just inserted 5 
here. 

• “Looks” like we could just 
recolor…
• Set 4 red, 6 black?



Sometimes need to rotate

• Looks good, but…

• Violating path property 
now. Need to rotate:
actually change the tree 
structure.

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

44

8

4 12

6 10 15

5 3 black (inc. null)

2 black (inc. null)



Left Rotation

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

45ZyBook 21



Right Rotation

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

46ZyBook 21



Case Analysis

• Full rebalance algorithm proceeds by cases:
• Cases vary by color and position of node, parent, 

grandparent, uncle.
• Deal with cases by recoloring, left rotations, and right 

rotations.

• Remove has case analysis as well.

• Want the details? See the ZyBook (or CLRS Intro to 
Algorithms for the standard reference).

4/3/23 Compsci 201, Spring 2023, L21: Balanced 
Binary Search Trees

47

https://mitpress.mit.edu/books/introduction-algorithms-fourth-edition

