
CompSci 201, L24:
Shortest Paths in
Weighted Graphs

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 1

Person in CS: Edsger Dijkstra
• Dutch computer scientist, 1930 – 2002.
• PhD in 1952, Turing award in 1972.
• Originally planned to study law, switched to

physics, then to computer science.
• “After having programmed for some three

years…I had to make up my mind, either
to…become a…theoretical physicist, or to
…become..... what? A programmer? But was
that a respectable profession?…Full of
misgivings I knocked on Van Wijngaarden's
office door, asking him whether I could
"speak to him for a moment"; when I left his
office a number of hours later, I was another
person. For after having listened to my
problems patiently…he went on to explain
quietly that automatic computers were here
to stay, that we were just at the beginning
and could not I be one of the persons called
to make programming a respectable
discipline in the years to come?”

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 2

Logistics, coming up

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 3

• Today, Wednesday, April 12
• APT Quiz 2 due
• Covers linked list, sorting, trees
• No regular APTs this week, just the quiz

• Next Wednesday, 4/19
• Midterm exam 3
• APT 9 extended to Thursday 4/20

Midterm Exam 3

• Logistics:
• 60 minutes, in-person, short answer
• Can bring 1 reference/notes page

• Topics could include:
• Trees, binary search trees, binary heaps, recursion
• Red-black trees: Properties and implications, yes, details of

rebalance algorithm, no.
• Greedy, Huffman
• Graphs, DFS, BFS, Dijkstra’s

• Practice exams will release by the weekend

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 4

Today’s agenda

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 5

• Finish Example WordLadder Problem

• Shortest paths in weighted graphs: Dijkstra’s
algorithm

Example WordLadder Problem

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 6

leetcode.com/problems/word-ladder/description/

Live coding

https://leetcode.com/problems/word-ladder/description/

Weighted Graphs and
Dijkstra’s Algorithm

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 8

Weighted Graphs

Each edge has an associated weight representing
cost, distance, etc.

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 9

Zybook chapter 24

In mapping applications,
maybe one road is twice
as long as another.

Project 6: Route

Project 6 Google Maps Directions

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 10

Durham, NC à Seattle WA,
~2800 miles

Project 6: Route Demo

Partner project, can work (and submit) with one other
person. Make sure to read the directions on using Git
with a partner, and to submit together on gradescope.

Two parts:
1. GraphProcessor: Implement algorithms with real-

world graph data, and
2. GraphDemo: Make and record a demo. Example

minimal demo here.

No analysis for this project.

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 11

https://duke.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=d3f2cc7a-902a-499f-850b-af4e014f8a07

Shortest weighted paths?

• BFS gives shortest paths in unweighted graphs.

• Modify BFS to account for weights; called Dijkstra’s
algorithm.

• BFS = queue, Dijkstra’s = …
• Priority queue!

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 12

Exploring a node with Dijkstra’s
Algorithm, Pseudocode

Just like BFS (explore closer nodes first) except…now
we need to account for weights.
4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 13

While unexplored nodes remain
• Explore current = the closest

unexplored node
• For each neighbor:
• Update shortest path to

neighbor if shorter to go
through current

wikipedia.org/wiki/Dijkstra%27s_algorithm

“Textbook” Dijkstra Initialization

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 14

• Initialize distances to:
• 0 for the start node,
• Infinity for everything else

• Add all nodes to a priority queue, using their
distance as the priority.

“Textbook” Dijkstra Exploration

• While there are unexplored nodes:
• Get the closest unexplored node to the start
• Look at all neighbors:
• If the path through current is shorter:
• Update distance, update priority in priority

queue

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 15

Practical Dijkstra Initialization

Ordering priority by distance of the shortest path
found so far, to a given node.

Don’t need to add anything for all nodes yet

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 16

Practical Dijkstra search loop

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 17

Keep searching while there
are unexplored nodes.

Choose to explore from the next
closest (to start) unexplored
node to start at each iteration.

Search all neighbors of current. If you
find a shorter path to neighbor through
current, update to reflect that.

Details: Checking each neighbor

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 18

All neighbors of
current node

Distance to neighbor through current = distance to
current + weight on edge from current to neighbor

If neighbor newly
discovered OR found a
shorter path…
• Record new distance
• Add to priority queue

Duplicates in the PriorityQueue

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 19

• Note that we might add the same node to the
PriorityQueue multiple times L

• In textbooks, line 76 usually updates the priority of
neighbor, not add to the PriorityQueue.
• But most standard library binary heaps (including

java.util) don’t support an efficient update priority
operation. So we add again with the new priority.

Initialize search at A

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 20

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue)

A

previous (map) distance (map)

A = 0

Remove A from PriorityQueue

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 21

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue) previous (map) distance (map)

A = 0

Find B from A

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 22

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue)

B

previous (map)

B <- A

distance (map)

A = 0
B = 2 (A + 2)

Find D from A

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 23

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue)

D
B

previous (map)

B <- A
D <- A

distance (map)

A = 0
B = 2
D = 1 (A + 1)

D comes first
because lower

distance

Remove D from PriorityQueue

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 24

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue)

B

previous (map)

B <- A
D <- A

distance (map)

A = 0
B = 2
D = 1

Find E from D

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 25

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue)

B
E

previous (map)

B <- A
D <- A
E <- D

distance (map)

A = 0
B = 2
D = 1
E = 2 (D + 1)

B and E are tied in
distance, suppose

B comes first

Remove B from PriorityQueue

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 26

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue)

E

previous (map)

B <- A
D <- A
E <- D

distance (map)

A = 0
B = 2
D = 1
E = 2

Find F from B

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 27

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue)

E
F

previous (map)

B <- A
D <- A
E <- D
F <- B

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 5 (B + 3)

E has lower
distance

Remove E from PriorityQueue

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 28

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue)

F

previous (map)

B <- A
D <- A
E <- D
F <- B

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 5

Find shorter path to F from E

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 29

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue)

F [new dist of 4]
F [old dist of 5]

previous (map)

B <- A
D <- A
E <- D
F <- E

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 4 (E + 2)

Hack because
java.util.PriorityQueue
cannot decrease key

Remove F from PriorityQueue

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 30

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue)

F [old dist of 5]

previous (map)

B <- A
D <- A
E <- D
F <- E

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 4

Hack because
java.util.PriorityQueue
cannot decrease key

Find C from F

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 31

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue)

F [old dist of 5]
C

previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 4
C = 5 (F + 1)

Remove old F from PriorityQueue

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 32

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue)

C

previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 4
C = 5

Remove C from PriorityQueue

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 33

A

D

B

E

C

F

Adjacency List:
A=[B, D]
B=[A, E, F]
C=[F]
D=[A, E]
E=[B, D, F]
F=[B, C, E]

2

1
1

3

2

12

toExplore (PriorityQueue) previous (map)

B <- A
D <- A
E <- D
F <- E
C <- F

distance (map)

A = 0
B = 2
D = 1
E = 2
F = 4
C = 5

Is Dijkstra’s algorithm guaranteed
to be correct? (Informal)

• Claim. Distance is correct shortest path distance for
all nodes explored so far, and shortest path distance
through explored nodes for all others.

• Formal proof is by induction, see Compsci 230.
• Assume the property is true up to some point in the

algorithm, then…
• Consider the next node we explore:

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 35

Is Dijkstra’s algorithm guaranteed
to be correct? (Informal)

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 36

C

start

A

B

Explored nodes

d[A]

d[B]

Suppose we
explore from C
this iteration

The shortest path
distance so far goes

through explored nodes

W(A,C)

Can’t be another shorter path
through an unexplored node,
there would be a node that
should have been removed

first instead of C.

Runtime Complexity of Dijkstra’s
Algorithm (with N nodes, M edges)

Like BFS, consider each node once and each edge
twice, log(N) operations for each: O((N+M)log(N))

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 37

O(log(N)), heap

O(1) in HashMap,
O(log(N)) in TreeMap

N iterations?

Iterations over
neighbors

Problem with Heap Duplicates

• In graphs with constant degree (where each node
has at most a constant number of neighbors), will
still just be O(N) iterations, maybe not N.
• For general graphs worst-case provable O((N+M)

log(N)) need an efficient priority queue update.

4/12/23 Compsci 201, Spring 2023, L24: Shortest Paths 38

May actually loop
more than N times

