CompSci 201, L25: Minimum Spanning Tree (MST) and Disjoint Sets
Logistics, coming up

• This Wednesday, 4/19
 • Midterm exam 3
 • APT 9 (last APTs) - extended to Thursday 4/20

• Next Monday, 4/24
 • Project P6: Route (last project) due

• Monday after next, 5/1
 • Final exam, 9 am
Midterm Exam 3

• Logistics:
 • 60 minutes, in-person, short answer
 • Can bring 1 reference/notes page

• Topics could include:
 • Trees, binary search trees, binary heaps, recursion
 • Red-black trees: Properties and implications, yes, details of rebalance algorithm, no.
 • Greedy, Huffman
 • Graphs, DFS, BFS, Dijkstra’s

• Practice exams will release by the weekend
Final Exam Details – Parts & Grading

• 3 final sections: F1, F2, F3 corresponding to 3 midterms M1, M2, M3.
 • Exams grade = Avg(Max(M1, F1), Max(M2, F2), Max(M3, F3))
 • If happy with grades? Don’t need to take it.
 • If you missed a midterm? Make sure to take at least that part.

• Monday 5/1, 9 am - noon. You will have 50 minutes to complete each part.
 • 9-9:50 am. F1 (corresponding to M1)
 • 10-10:50 am. F2 (corresponding to M2)
 • 11-11:50 am. F3 (corresponding to M3)
Final Exam Details - Format

• Topics/questions same as for corresponding midterms.

• 20-25 multiple choice questions per part.
 • Questions like those on midterms, just multiple choice.

• Previous practice midterm exams and actual midterm exams will be the most closely aligned practices to review.
 • Examples in multiple choice format in discussion review this Friday.
Reviewing WOTO from last class

Again starting from A in the same graph, which path from A to E will Dijkstra's algorithm record as the shortest path? Hint: See the if statement above in problem 4.

• Explore A
• B is closer than D, so we explore B after A
• Find path A -> B -> E of length 4
• Will later find path A -> D -> E of length 4, but the code updates if finding a strictly shorter path
Runtime Complexity of Dijkstra’s Algorithm (with N nodes, M edges)

Like BFS, consider each node once and each edge twice, $\log(N)$ operations for each: $O((N+M)\log(N))$
Problem with Heap Duplicates

- In graphs with constant degree (where each node has at most a constant number of neighbors), will still just be $O(N)$ iterations, maybe not N.

- For general graphs worst-case provable $O((N+M) \log(N))$ need an efficient priority queue update.

```java
while (toExplore.size() > 0) {
    char current = toExplore.remove();
    for (char neighbor : aList.get(current)) {
        //...
    }
}
return distance;
```
Minimum Spanning Tree (MST) and Greedy Graph Algorithms
Minimum Spanning Tree (MST) Problem

• Given N nodes and M edges, each with a weight/cost...

• Find a set of edges that connect all the nodes with minimum total cost. (will be a tree)
Motivating/Applying Minimum Spanning Tree

• You want to create a connected cable/data network with the least cable/cost/energy possible.

• City planning: Connect several metro stops with least tunneling

• Image Segmentation
Example MST Problem

You are given an array \(\text{points} \) representing integer coordinates of some points on a 2D-plane, where \(\text{points}[i] = [x_i, y_i] \).

The cost of connecting two points \([x_i, y_i]\) and \([x_j, y_j]\) is the \textbf{manhattan distance} between them: \(|x_i - x_j| + |y_i - y_j|\), where \(|\text{val}|\) denotes the absolute value of \text{val}.

Return the \textbf{minimum cost to make all points connected}. All points are connected if there is exactly one simple path between any two points.
Intuitive Inductive Reasoning

• Suppose we have the MST on N-1 vertices.
• We consider the next vertex to get the MST on N vertices.
 • Must use the cost 2 or the cost 5 edge *regardless* of the rest of the MST
 • Might as well use the cheaper cost 2 edge
Greedy Optimization: Prim’s Algorithm

• Initialize?
 - Choose an arbitrary vertex

• Partial solution?
 - MST connecting \textit{subset} of the vertices.

• Greedy step?
 - Choose the cheapest / least weight edge that connects a new vertex to the partial solution.
Visualizing Prim’s Algorithm

In the visualization:
• Edges between all pairs of vertices
• Weights are implicit by distances
• Algorithm greedily grows by choosing closest unconnected vertex

By Shiyu Ji - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=54420894
More Intuitive Inductive Reasoning

• Suppose we have chosen some spanning trees so far.
• Must connect all of them, might as well choose the cheapest edge connecting two trees.

Greedy Optimization Again: Kruskal’s Algorithm

• Initialize?
 • All nodes in \textit{disjoint sets}

• Partial solution?
 • Forest of spanning trees in disjoint sets

• Greedy step?
 • Choose the cheapest / least weight edge that connects two disjoint sets / trees, connect them.
In the visualization:

• Edges between all pairs of vertices
• Weights are implicit by distances
• Algorithm greedily grows by cheapest edge that connects disjoint sets/trees.
Kruskal’s Algorithm in Pseudocode

Input: N node, M edges, M edge weights

• Let MST to an empty set
• Let S be a collection of N disjoint sets, one per node
• While S has more than 1 set:
 • Let (u, v) be the minimum cost remaining edge
 • Find which sets u and v are in. If not equal:
 • Union the sets
 • Add (u, v) to MST
• Return MST
Kruskal’s Algorithm Runtime?

Input: N node, M edges, M edge weights
• Let MST to an empty set
• Let S be a collection of N disjoint sets, one per node
• While S has more than 1 set:
 • Let (u, v) be the minimum cost remaining edge
 • Find which sets u and v are in. If not equal:
 • Union the sets
 • Add (u, v) to MST
• Return MST

Looping over (worst case) all M edges
Remove from binary heap, O(log(M))

O(M(log(M) + C)) where C is time for Union/Find
Disjoint Sets and Union-Find

DIYDisjointSets implementation viewable here: coursework.cs.duke.edu/cs-201-spring-23/diydisjointsets
Union Find Data Structure

• Aka Disjoint Set Data Structure

• Start with N distinct (disjoint) sets
 • consider them labeled by integers: 0, 1, ...

• Union two sets: create set containing both
 • label with one of the numbers

• Find the set containing a number
 • Initially self, but changes after unions
Disjoint-Set Forest Implementation

• Each set will be represented by a parent “tree”: Instead of child pointers, nodes have a parent “pointer”.
• Everything starts as its own tree: a single node
Disjoint-Set Forest Union

- Union(7,8)
- Just make leaf/root point to parent[7]
Disjoint-Set Forest Union

- Union(3,4)

<table>
<thead>
<tr>
<th>parent</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>itemID</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Disjoint-Set Forest Union

• \text{Union}(3,8)

• Multi-level, make parent[parent[8]] point to parent[3]

<table>
<thead>
<tr>
<th>parent</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>itemID</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Disjoint-Set Forest Find

- **Find(8)**
- Return last ancestor of 8.
- Need to traverse the path up.

Example Table:

<table>
<thead>
<tr>
<th>parent</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>itemID</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Disjoint-Set Forest Array Representation

- The “nodes” and “pointers” are just conceptual – can represent with a simple array, like binary heap.
- Parent array just stores what the itemID node points to.

<table>
<thead>
<tr>
<th>parent</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>itemID</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Disjoint-Set Forest Find

```java
public int find(int id) {
    while (id != parent[id]) {
        id = parent[id];
    }
    return id;
}
```

“last ancestor” is just when `parent[i] = i`

Else go to next “node up”

<table>
<thead>
<tr>
<th>parent</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>itemID</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Disjoint-Set Forest Union Revisited

25 public void union(int set1, int set2) {
26 int root1 = find(set1);
27 int root2 = find(set2);
28 parent[root2] = root1;

“last ancestors” from initial set1 and initial set2 “nodes”

Make one “point to” other

<table>
<thead>
<tr>
<th>parent</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>itemID</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Worst-Case Runtime Complexity?

```java
25 public void union(int set1, int set2) {
26     int root1 = find(set1);
27     int root2 = find(set2);
28     parent[root2] = root1;
}
```

What if we...
union(7,8)
union(6,7)
union(5,6)
...
union(0,1)

Now `find(8)` would have linear runtime complexity!!
Optimization 1: Union by Size

Be careful in how you union. Always make the “root” for the set with \textit{fewer} elements point to the “root” for the set with \textit{more} elements.

Sufficient for worst case logarithmic efficiency.
Optimization 1: Union by Size

Claim. Each element to root path has length at most $O(\log(N))$ with union by size optimization.

Proof.
• Consider an element a, initially a set of size 1.
• Each time the path length increases, the size of the set must at least double.
• Can happen at most $O(\log(N))$ times with N initial sets.
Optimization 1: Union by Size

```java
public void union(int set1, int set2) {
    int root1 = find(set1);
    int root2 = find(set2);
    if (root1 == root2) { return; }
    if (setSizes[root1] < setSizes[root2]) {
        parent[root1] = root2;
        setSizes[root2] += setSizes[root1];
    }
    else {
        parent[root2] = root1;
        setSizes[root1] += setSizes[root2];
    }
    size--;
}
```

- If already in same set, nothing to do.
- Make the smaller set “point to” the bigger set.
Lazy Path Compression

- **Lazy path compression**: When ever you traverse a path in `find`, connect all the pointers to the top.

- Sufficient for **amortized logarithmic** runtime complexity for union/find operations.
Disjoint Set Forest Path Compression

```java
public int find(int id) {
    int idCopy = id;
    while (id != parent[id]) {
        id = parent[id];
    }
    int root = id;
    id = idCopy;
    while (id != parent[id]) {
        parent[idCopy] = root;
        id = parent[id];
        idCopy = id;
    }
    return id;
}
```

Get the “last ancestor” as before

Traverse path again, assigning everything to the “last ancestor”
Optimized Runtime Complexity

• Optimizations considered separately:
 • Union by size: Worst case logarithmic
 • Path compression: Amortized logarithmic

• Considered together...?
 • Worst case logarithmic, and *amortized inverse Ackermann function* \(a(n) \).
 \[a(n) < 5 \text{ for } n < 2^{2^{2^{16}}} = 2^{2^{65536}} \]
 • Practically constant for any \(n \) you can write down
Remember Kruskal’s Algorithm Runtime?

Input: N node, M edges, M edge weights

- Let MST to an empty set
- Let S be a collection of N disjoint sets, one per node
- While S has more than 1 set:
 - Let (u, v) be the minimum cost remaining edge
 - Find which sets u and v are in. If not equal:
 - Union the sets
 - Add (u, v) to MST
- Return MST

\(O(M(\log(M) + C)) \) because \(C < \log(M) \) for our optimized union find

Looping over (worst case) all M edges

Remove from binary heap, \(O(\log(M)) \)