
CompSci 201, L25:
Minimum Spanning Tree
(MST) and Disjoint Sets

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

1

Logistics, coming up

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

2

• This Wednesday, 4/19
• Midterm exam 3
• APT 9 (last APTs) - extended to Thursday 4/20

• Next Monday, 4/24
• Project P6: Route (last project) due

• Monday after next, 5/1
• Final exam, 9 am

Midterm Exam 3

• Logistics:
• 60 minutes, in-person, short answer
• Can bring 1 reference/notes page

• Topics could include:
• Trees, binary search trees, binary heaps, recursion
• Red-black trees: Properties and implications, yes, details of

rebalance algorithm, no.
• Greedy, Huffman
• Graphs, DFS, BFS, Dijkstra’s

• Practice exams will release by the weekend

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

3

Final Exam Details – Parts &
Grading

• 3 final sections: F1, F2, F3 corresponding to 3 midterms
M1, M2, M3.
• Exams grade = Avg(Max(M1, F1), Max(M2, F2), Max(M3, F3))
• If happy with grades? Don’t need to take it.
• If you missed a midterm? Make sure to take at least that part.

• Monday 5/1, 9 am - noon. You will have 50 minutes to complete
each part.
• 9-9:50 am. F1 (corresponding to M1)
• 10-10:50 am. F2 (corresponding to M2)
• 11-11:50 am. F3 (corresponding to M3)

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

4

Final Exam Details - Format

• Topics/questions same as for corresponding midterms.

• 20-25 multiple choice questions per part.
• Questions like those on midterms, just multiple choice.

• Previous practice midterm exams and actual midterm exams
will be the most closely aligned practices to review.
• Examples in multiple choice format in discussion review

this Friday.

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

5

Reviewing WOTO from last class

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

6

• Explore A
• B is closer than D, so we explore B after A
• Find path A -> B -> E of length 4
• Will later find path A -> D -> E of length 4, but the code updates if finding a strictly

shorter path

Runtime Complexity of Dijkstra’s
Algorithm (with N nodes, M edges)

Like BFS, consider each node once and each edge
twice, log(N) operations for each: O((N+M)log(N))

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

7

O(log(N)), heap

O(1) in HashMap,
O(log(N)) in TreeMap

N iterations?

Iterations over
neighbors

Problem with Heap Duplicates

• In graphs with constant degree (where each node
has at most a constant number of neighbors), will
still just be O(N) iterations, maybe not N.
• For general graphs worst-case provable O((N+M)

log(N)) need an efficient priority queue update.

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

8

May actually loop
more than N times

Minimum Spanning Tree
(MST) and Greedy Graph
Algorithms

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

9

Minimum Spanning Tree (MST)
Problem

• Given N nodes and M edges, each with a weight/cost…
• Find a set of edges that connect all the nodes with

minimum total cost. (will be a tree)

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

10

Weighted undirected graph with:
• Edges labeled with weights/costs
• Minimum spanning tree

highlighted

Motivating/Applying Minimum
Spanning Tree

• You want to created a connected cable/data
network with the least cable/cost/energy
possible.

• City planning: Connect several metro stops
with least tunneling

• Image Segmentation

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

11

Example MST Problem

leetcode.com/problems/min-cost-to-connect-all-
points

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

12

You are given an array points representing integer
coordinates of some points on a 2D-plane,
where points[i] = [xi, yi].

The cost of connecting two points [xi, yi] and [xj, yj] is
the manhattan distance between them: |xi - xj| + |yi -
yj|, where |val| denotes the absolute value of val.

Return the minimum cost to make all points
connected. All points are connected if there is exactly
one simple path between any two points.

https://leetcode.com/problems/min-cost-to-connect-all-points

Intuitive Inductive Reasoning
• Suppose we have the MST on N-

1 vertices.
• We consider the next vertex to

get the MST on N vertices.
• Must use the cost 2 or the

cost 5 edge regardless of the
rest of the MST
• Might as well use the

cheaper cost 2 edge

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

13

2
5

Greedy Optimization: Prim’s
Algorithm

• Initialize?
• Choose an arbitrary vertex

• Partial solution?
• MST connecting subset of the vertices.

• Greedy step?
• Choose the cheapest / least weight edge that

connects a new vertex to the partial solution.

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

14

Visualizing Prim’s Algorithm

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

15

In the visualization:
• Edges between all pairs of vertices
• Weights are implicit by distances
• Algorithm greedily grows by

choosing closest unconnected
vertex

By Shiyu Ji - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=54420894

More Intuitive Inductive
Reasoning

• Suppose we have chosen
some spanning trees so far.
• Must connect all of them,

might as well choose the
cheapest edge connecting
two trees.

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

16

Public Domain,
https://commons.wikimedia.org/w/index.php?curid=644030

Bold green edges = chosen

Greedy Optimization Again:
Kruskal’s Algorithm

• Initialize?
• All nodes in disjoint sets

• Partial solution?
• Forest of spanning trees in disjoint sets

• Greedy step?
• Choose the cheapest / least weight edge that

connects two disjoint sets / trees, connect them.

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

17

Visualizing Kruskal’s Algorithm

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

18

In the visualization:
• Edges between all pairs of

vertices
• Weights are implicit by distances
• Algorithm greedily grows by

cheapest edge that connects
disjoint sets/trees.

By Shiyu Ji - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=54420894

Kruskal’s Algorithm in Pseudocode

Input: N node, M edges, M edge weights
• Let MST to an empty set
• Let S be a collection of N disjoint sets, one per node
• While S has more than 1 set:
• Let (u, v) be the minimum cost remaining edge
• Find which sets u and v are in. If not equal:
• Union the sets
• Add (u, v) to MST

• Return MST

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

20

Kruskal’s Algorithm Runtime?

Input: N node, M edges, M edge weights
• Let MST to an empty set
• Let S be a collection of N disjoint sets, one per node
• While S has more than 1 set:
• Let (u, v) be the minimum cost remaining edge
• Find which sets u and v are in. If not equal:
• Union the sets
• Add (u, v) to MST

• Return MST

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

21

Remove from binary
heap, O(log(M))

Looping over (worst
case) all M edges

O(M(log(M)+C)) where C
is time for Union/Find

Disjoint Sets and Union-
Find
DIYDisjointSets implementation viewable here:
coursework.cs.duke.edu/cs-201-spring-23/diydisjointsets

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

22

https://coursework.cs.duke.edu/cs-201-spring-23/diydisjointsets

Union Find Data Structure

• Aka Disjoint Set Data Structure
• Start with N distinct (disjoint) sets
• consider them labeled by integers: 0, 1, …

• Union two sets: create set containing both
• label with one of the numbers

• Find the set containing a number
• Initially self, but changes after unions

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

23

Disjoint-Set Forest
Implementation

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

24

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

• Each set will be represented by a parent “tree”: Instead of
child pointers, nodes have a parent “pointer”.
• Everything starts as its own tree: a single node

Disjoint-Set Forest Union

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

25

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6

7

8

• Union(7,8)
• Just make leaf/root point to parent[7]

Disjoint-Set Forest Union

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

26

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

• Union(3,4)
• Just make parent[4] point to parent[3]

Disjoint-Set Forest Union

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

27

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

• Union(3,8)
• Multi-level, make

parent[parent[8]] point to
parent[3]

Disjoint-Set Forest Find

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

28

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

• Find(8)
• Return last ancestor of 8.
• Need to traverse the path up.

Disjoint-Set Forest Array
Representation

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

29

parent 0 1 2 3 3 5 6 3 7

itemID 0 1 2 3 4 5 6 7 8

• The “nodes” and “pointers” are just conceptual –
can represent with a simple array, like binary heap.
• Parent array just stores what the itemID node

points to.

0 1 2

3

4 5 6

7

8

Disjoint-Set Forest Find

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

30

parent 0 1 2 3 3 5 6 3 7

itemID 0 1 2 3 4 5 6 7 8

“last ancestor” is just
when parent[i] = i

Else go to next
“node up”

0 1 2

3

4 5 6

7

8

Disjoint-Set Forest Union Revisited

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

31

parent 0 1 2 3 3 5 6 3 7

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

“last ancestors” from initial
set1 and initial set2

“nodes”

Make one “point to” other

Worst-Case Runtime Complexity?

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

32

parent 0 0 1 2 3 4 5 6 7

itemID 0 1 2 3 4 5 6 7 8

5
6

7
8

…

What if we…
union(7,8)
union(6,7)
union(5,6)
…
union(0,1)Now find(8) would have

linear runtime complexity!!

Optimization 1: Union by Size

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

33

A

B

Set of
Size 4

Set of
Size 9

Be careful in how you union.
Always make the “root” for the
set with fewer elements point
to the “root” for the set with
more elements.

Sufficient for worst case
logarithmic efficiency.

Optimization 1: Union by Size

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

34

A

B

Set of
Size 4

Set of
Size 9

Claim. Each element to root path
has length at most O(log(N)) with
union by size optimization.

Proof.
• Consider an element a, initially a

set of size 1.
• Each time the path length

increases, the size of the set
must at least double.

• Can happen at most O(log(N))
times with N initial sets.

Optimization 1: Union by Size

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

35

If already in same
set, nothing to do.

Make the smaller
set “point to” the

bigger set.

Lazy Path Compression

• Lazy path compression:
When ever you traverse
a path in find, connect
all the pointers to the
top.

• Sufficient for amortized
logarithmic runtime
complexity for
union/find operations.

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

36

5
6

7
8

find(5)

5

6 7 8

Disjoint Set Forest Path
Compression

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

37

Get the “last
ancestor” as before

Traverse path again,
assigning everything to the

“last ancestor”

Optimized Runtime Complexity

• Optimizations considered separately:
• Union by size: Worst case logarithmic
• Path compression: Amortized logarithmic

• Considered together…?
• Worst case logarithmic, and amortized inverse

Ackermann function a(n).

• 𝑎 𝑛 < 5 for 𝑛 < 2!!
!"#

= 2!!
#$$%#

• Practically constant for any n you can write down

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

38

Remember Kruskal’s Algorithm
Runtime?

Input: N node, M edges, M edge weights
• Let MST to an empty set
• Let S be a collection of N disjoint sets, one per node
• While S has more than 1 set:
• Let (u, v) be the minimum cost remaining edge
• Find which sets u and v are in. If not equal:
• Union the sets
• Add (u, v) to MST

• Return MST

4/17/23 Compsci 201, Spring 2023, L25: MST, Disjoint
Sets

39

Remove from binary
heap, O(log(M))

Looping over (worst
case) all M edges

O(M(log(M)+C) because C <
log(M) for our optimized

union find

