
CompSci 201, L27: 
Minimum Spanning Tree 
(MST) and Disjoint Sets 
(Continued)

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 1



Logistics, coming up

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 2

• Today, Monday, 4/24
• Project P6: Route (last project) due

• End of Semester Survey
• Due by LDOC this Wednesday, April 26
• Required class survey, run by the course staff

• Course Evaluations
• Due by this Saturday, April 29
• Run by Duke, anonymous to us



Final Exam Logistics Reminder

• 3 final sections: F1, F2, F3 corresponding to 3 midterms 
M1, M2, M3.
• Exams grade = Avg(Max(M1, F1), Max(M2, F2), Max(M3, F3))
• If happy with grades? Don’t need to take it.
• If you missed a midterm? Make sure to take at least that part.

• Monday 5/1, 9 am - noon. You will have 50 minutes to complete 
each part.
• 9-9:50 am. F1 (corresponding to M1)
• 10-10:50 am. F2 (corresponding to M2)
• 11-11:50 am. F3 (corresponding to M3)

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 4



Final Grade Estimates

• Everything should be live and updated in the sakai
gradebook except:
• To add today or tomorrow:

• P5
• To add by this weekend

• P6 
• APT9 
• Last couple weeks WOTOs

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 5



Today’s Agenda

1. Review Minimum Spanning Tree (MST) problem 
and Kruskal’s Algorithm

2. Investigate efficient disjoint sets / union find data 
structure

3. (time permitting) Solve an MST problem together 
live

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 6



Minimum Spanning Tree (MST) 
Problem 

• Given N nodes and M edges, each with a weight/cost…
• Find a set of edges that connect all the nodes with 

minimum total cost. (will be a tree)

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 7

Weighted undirected graph with:
• Edges labeled with weights/costs
• Minimum spanning tree 

highlighted



Visualizing Kruskal’s Algorithm

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 8

In the visualization:
• Edges between all pairs of 

vertices
• Weights are implicit by distances
• Algorithm greedily grows by 

cheapest edge that connects 
disjoint sets/trees.

By Shiyu Ji - Own work, CC BY-SA 4.0, 
https://commons.wikimedia.org/w/index.php?curid=54420894



Kruskal’s Algorithm in Pseudocode

Input: N node, M edges, M edge weights
• Let MST to an empty set
• Let S be a collection of N disjoint sets, one per node
• While S has more than 1 set:
• Let (u, v) be the minimum cost remaining edge
• Find which sets u and v are in. If not equal: 
• Union the sets
• Add (u, v) to MST

• Return MST

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 9



Disjoint Sets and Union-
Find

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 10



Union Find Data Structure

• Aka Disjoint Set Data Structure
• Start with N distinct (disjoint) sets
• consider them labeled by integers: 0, 1, …

• Union two sets: create set containing both
• label with one of the numbers

• Find the label of the set containing a number
• Initially self, but changes after unions

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 11



Disjoint-Set Forest 
Implementation

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 12

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

• Each set will be represented by a parent “tree”: Instead of 
child pointers, nodes have a parent “pointer”.
• Everything starts as its own tree: a single node



Disjoint-Set Forest Union

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 13

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6

7

8

• Union(7,8)
• Just make leaf/root point to parent[7]



Disjoint-Set Forest Union

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 14

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

• Union(3,4)
• Just make parent[4] point to parent[3]



Disjoint-Set Forest Union

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 15

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

• Union(3,8)
• Multi-level, make 

parent[parent[8]] point to 
parent[3]



Disjoint-Set Forest Find

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 16

parent

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

• Find(8)
• Return last ancestor of 8.
• Need to traverse the path up.



Disjoint-Set Forest Array 
Representation

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 17

parent 0 1 2 3 3 5 6 3 7

itemID 0 1 2 3 4 5 6 7 8

• The “nodes” and “pointers” are just conceptual –
can represent with a simple array, like binary heap.
• Parent array just stores what the itemID node 

points to.

0 1 2

3

4 5 6

7

8



Disjoint-Set Forest Find

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 18

parent 0 1 2 3 3 5 6 3 7

itemID 0 1 2 3 4 5 6 7 8

“last ancestor” is just 
when parent[i] = i

Else go to next 
“node up”

0 1 2

3

4 5 6

7

8



Disjoint-Set Forest Union Revisited

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 19

parent 0 1 2 3 3 5 6 3 7

itemID 0 1 2 3 4 5 6 7 8

0 1 2

3

4 5 6

7

8

“last ancestors” from initial 
set1 and initial set2 

“nodes”

Make one “point to” other



Worst-Case Runtime Complexity?

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 20

parent 0 0 1 2 3 4 5 6 7

itemID 0 1 2 3 4 5 6 7 8

5
6

7
8

…

What if we…
union(7,8)
union(6,7)
union(5,6)
…
union(0,1)Now find(8) would have 

linear runtime complexity!!



Optimization 1: Union by Size

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 21

A

B

Set of 
Size 4

Set of 
Size 9

Be careful in how you union. 
Always make the “root” for the 
set with fewer elements point 
to the “root” for the set with 
more elements.

Sufficient for worst case 
logarithmic efficiency.



Optimization 1: Union by Size

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 22

If already in same 
set, nothing to do.

Make the smaller 
set “point to” the 

bigger set.



Lazy Path Compression

• Lazy path compression: 
When ever you traverse 
a path in find, connect 
all the pointers to the 
top.

• Sufficient for amortized
logarithmic runtime 
complexity for 
union/find operations.

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 23

5
6

7
8

find(5)

5

6 7 8



Disjoint Set Forest Path 
Compression

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 24

Get the “last 
ancestor” as before

Traverse path again, 
assigning everything to the 

“last ancestor”



Optimized Runtime Complexity

• Optimizations considered separately:
• Union by size: Worst case logarithmic
• Path compression: Amortized logarithmic

• Considered together…?
• Worst case logarithmic, and amortized inverse 

Ackermann function a(n).

• 𝑎 𝑛 < 5 for 𝑛 < 2!!
!"#

= 2!!
#$$%#

• Practically constant for any n you can write down

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 25



Remember Kruskal’s Algorithm 
Runtime?

Input: N node, M edges, M edge weights
• Let MST to an empty set
• Let S be a collection of N disjoint sets, one per node
• While S has more than 1 set:
• Let (u, v) be the minimum cost remaining edge
• Find which sets u and v are in. If not equal: 
• Union the sets
• Add (u, v) to MST

• Return MST

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 27

Remove from binary 
heap, O(log(M))

Looping over (worst 
case) all M edges

O(M(log(M)+C) because C < 
log(M) for our optimized 

union find



Solving Example MST Problem

leetcode.com/problems/min-cost-to-connect-all-
points

4/24/23 Compsci 201, Spring 2023, L27: Disjoint Sets 28

Live Coding

https://leetcode.com/problems/min-cost-to-connect-all-points

