CompSci 201, L27: Minimum Spanning Tree (MST) and Disjoint Sets (Continued)
Logistics, coming up

• Today, Monday, 4/24
 • Project P6: Route (last project) due

• End of Semester Survey
 • Due by LDOC this Wednesday, April 26
 • Required class survey, run by the course staff

• Course Evaluations
 • Due by this Saturday, April 29
 • Run by Duke, anonymous to us
Final Exam Logistics Reminder

• 3 final sections: F1, F2, F3 corresponding to 3 midterms M1, M2, M3.
 • Exams grade = \text{Avg}(\text{Max}(M1, F1), \text{Max}(M2, F2), \text{Max}(M3, F3))
 • If happy with grades? Don’t need to take it.
 • If you missed a midterm? Make sure to take at least that part.

• Monday 5/1, 9 am - noon. You will have 50 minutes to complete each part.
 • 9-9:50 am. F1 (corresponding to M1)
 • 10-10:50 am. F2 (corresponding to M2)
 • 11-11:50 am. F3 (corresponding to M3)
Final Grade Estimates

• Everything should be live and updated in the sakai gradebook except:
 • To add today or tomorrow:
 • P5
 • To add by this weekend
 • P6
 • APT9
 • Last couple weeks WOTOs
Today’s Agenda

1. Review Minimum Spanning Tree (MST) problem and Kruskal’s Algorithm

2. Investigate efficient disjoint sets / union find data structure

3. (time permitting) Solve an MST problem together live
Minimum Spanning Tree (MST) Problem

- Given N nodes and M edges, each with a weight/cost...
- Find a set of edges that connect *all* the nodes with minimum total cost. (will be a tree)
Visualizing Kruskal’s Algorithm

In the visualization:

• Edges between all pairs of vertices
• Weights are implicit by distances
• Algorithm greedily grows by cheapest edge that connects disjoint sets/trees.

By Shiyu Ji - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=54420894
Kruskal’s Algorithm in *Pseudocode*

Input: N node, M edges, M edge weights

• Let MST to an empty set

• Let S be a collection of N **disjoint sets**, one per node

• While S has more than 1 set:
 • Let \((u, v)\) be the minimum cost remaining edge
 • **Find** which sets \(u\) and \(v\) are in. If not equal:
 • **Union** the sets
 • Add \((u, v)\) to MST

• Return MST
Disjoint Sets and Union-Find
Union Find Data Structure

• Aka Disjoint Set Data Structure
• Start with N distinct (disjoint) sets
 • consider them labeled by integers: 0, 1, ...
• Union two sets: create set containing both
 • label with one of the numbers
• Find the label of the set containing a number
 • Initially self, but changes after unions
Disjoint-Set Forest Implementation

- Each set will be represented by a parent “tree”: Instead of child pointers, nodes have a parent “pointer”.
- Everything starts as its own tree: a single node

<table>
<thead>
<tr>
<th>parent</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>itemID</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Disjoint-Set Forest Union

- **Union(7,8)**
- Just make leaf/root point to parent[7]
Disjoint-Set Forest Union

- Union(3,4)
Disjoint-Set Forest Union

- **Union(3, 8)**
- Multi-level, make `parent[parent[8]]` point to `parent[3]`
Disjoint-Set Forest Find

• Find(8)
• Return last ancestor of 8.
• Need to traverse the path up.

<table>
<thead>
<tr>
<th>parent</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>itemID</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Disjoint-Set Forest Array Representation

- The “nodes” and “pointers” are just conceptual – can represent with a simple array, like binary heap.
- Parent array just stores what the itemID node points to.

<table>
<thead>
<tr>
<th>parent</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>itemID</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Disjoint-Set Forest Find

```java
public int find(int id) {
    while (id != parent[id]) { // "last ancestor" is just when parent[i] = i
        id = parent[id];
    }
    return id;
}
```

```
<table>
<thead>
<tr>
<th>parent</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>3</th>
<th>5</th>
<th>6</th>
<th>3</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>itemID</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
```

“last ancestor” is just when `parent[i] = i`

Else go to next “node up”
Disjoint-Set Forest Union Revisited

```
25     public void union(int set1, int set2) {
26         int root1 = find(set1);
27         int root2 = find(set2);
28         parent[root2] = root1;
```

Make one “point to” other

“last ancestors” from initial set1 and initial set2 “nodes”
Worst-Case Runtime Complexity?

```java
25    public void union(int set1, int set2) {
26          int root1 = find(set1);
27          int root2 = find(set2);
28          parent[root2] = root1;
```

What if we...
union(7,8)
union(6,7)
union(5,6)
...
union(0,1)

Now `find(8)` would have linear runtime complexity!!

<table>
<thead>
<tr>
<th>parent</th>
<th>0</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>itemID</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Optimization 1: Union by Size

Be careful in how you union. Always make the “root” for the set with fewer elements point to the “root” for the set with more elements.

Sufficient for worst case logarithmic efficiency.
Optimization 1: Union by Size

```java
public void union(int set1, int set2) {
    int root1 = find(set1);
    int root2 = find(set2);
    if (root1 == root2) { return; }
    if (setSizes[root1] < setSizes[root2]) {
        parent[root1] = root2;
        setSizes[root2] += setSizes[root1];
    } else {
        parent[root2] = root1;
        setSizes[root1] += setSizes[root2];
    }
    size--;
}
```

If already in same set, nothing to do.

Make the smaller set “point to” the bigger set.
Lazy Path Compression

• **Lazy path compression:** When ever you traverse a path in `find`, connect all the pointers to the top.

• Sufficient for **amortized logarithmic** runtime complexity for union/find operations.
Disjoint Set Forest Path Compression

```java
public int find(int id) {
    int idCopy = id;
    while (id != parent[id]) {
        id = parent[id];
    }
    int root = id;
    id = idCopy;
    while (id != parent[id]) {
        parent[idCopy] = root;
        id = parent[id];
        idCopy = id;
    }
    return id;
}
```

Get the “last ancestor” as before

Traverse path again, assigning everything to the “last ancestor”
Optimized Runtime Complexity

• Optimizations considered separately:
 • Union by size: Worst case logarithmic
 • Path compression: Amortized logarithmic

• Considered together...?
 • Worst case logarithmic, and *amortized inverse Ackermann function* $a(n)$.
 • $a(n) < 5$ for $n < 2^{2^{2^{16}}} = 2^{2^{65536}}$
 • Practically constant for any n you can write down
Remember Kruskal’s Algorithm Runtime?

Input: N node, M edges, M edge weights
• Let MST to an empty set
• Let S be a collection of N disjoint sets, one per node
• While S has more than 1 set:
 • Let (u, v) be the minimum cost remaining edge
 • Find which sets u and v are in. If not equal:
 • Union the sets
 • Add (u, v) to MST
• Return MST
Solving Example MST Problem

leetcode.com/problems/min-cost-to-connect-all-points

Live Coding