# CompSci 201, L27: Minimum Spanning Tree (MST) and Disjoint Sets (Continued)

#### Logistics, coming up

- Today, Monday, 4/24
  - Project P6: Route (last project) due
- End of Semester Survey
  - Due by LDOC this Wednesday, April 26
  - Required class survey, run by the course staff
- Course Evaluations
  - Due by this Saturday, April 29
  - Run by Duke, anonymous to us

### Final Exam Logistics Reminder

- 3 final sections: F1, F2, F3 corresponding to 3 midterms M1, M2, M3.
  - Exams grade = Avg(Max(M1, F1), Max(M2, F2), Max(M3, F3))
  - If happy with grades? Don't need to take it.
  - If you missed a midterm? Make sure to take at least that part.
- Monday 5/1, 9 am noon. You will have 50 minutes to complete each part.
  - 9-9:50 am. F1 (corresponding to M1)
  - 10-10:50 am. F2 (corresponding to M2)
  - 11-11:50 am. F3 (corresponding to M3)

#### Final Grade Estimates

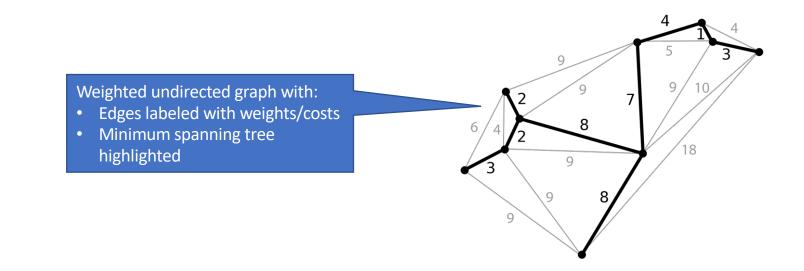
- Everything should be live and updated in the sakai gradebook *except*:
  - To add today or tomorrow:
    - P5
  - To add by this weekend
    - P6
    - APT9
    - Last couple weeks WOTOs

### Today's Agenda

- 1. Review Minimum Spanning Tree (MST) problem and Kruskal's Algorithm
- 2. Investigate efficient disjoint sets / union find data structure
- 3. (time permitting) Solve an MST problem together live

# Minimum Spanning Tree (MST) Problem

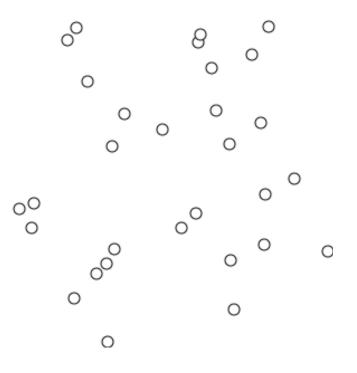
- Given N nodes and M edges, each with a weight/cost...
- Find a set of edges that connect *all* the nodes with minimum total cost. (will be a tree)



# Visualizing Kruskal's Algorithm

In the visualization:

- Edges between all pairs of vertices
- Weights are implicit by distances
- Algorithm greedily grows by cheapest edge that connects disjoint sets/trees.



By Shiyu Ji - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=54420894

# Kruskal's Algorithm in Pseudocode

Input: N node, M edges, M edge weights

- Let MST to an empty set
- Let S be a collection of N **disjoint sets**, one per node
- While S has more than 1 set:
  - Let (u, v) be the minimum cost remaining edge
  - Find which sets u and v are in. If not equal:
    - Union the sets
    - Add (u, v) to MST
- Return MST

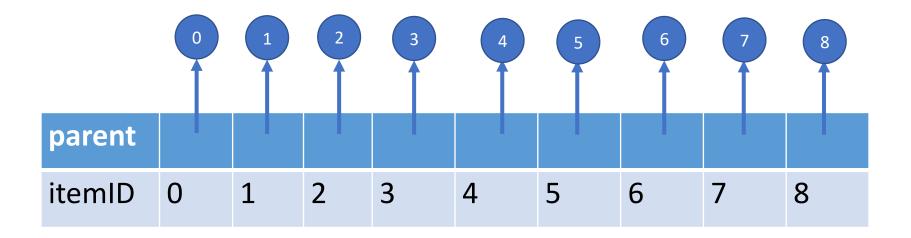
# Disjoint Sets and Union-Find

#### Union Find Data Structure

- Aka Disjoint Set Data Structure
- Start with N distinct (disjoint) sets
  - consider them labeled by integers: 0, 1, ...
- Union two sets: create set containing both
  - label with one of the numbers
- *Find* the label of the set containing a number
  - Initially self, but changes after unions

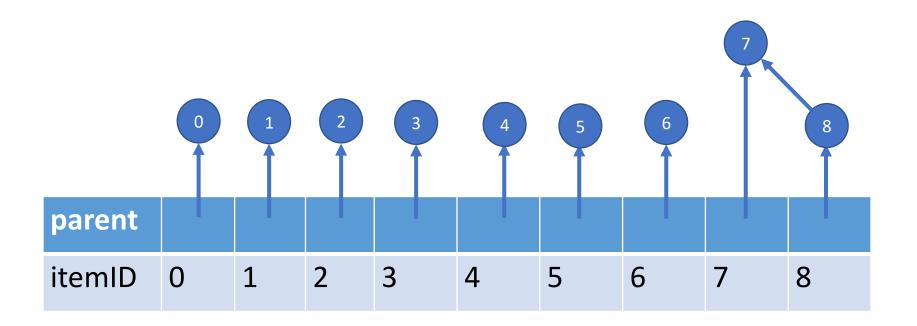
# Disjoint-Set Forest Implementation

- Each set will be represented by a parent "tree": Instead of child pointers, nodes have a parent "pointer".
- Everything starts as its own tree: a single node



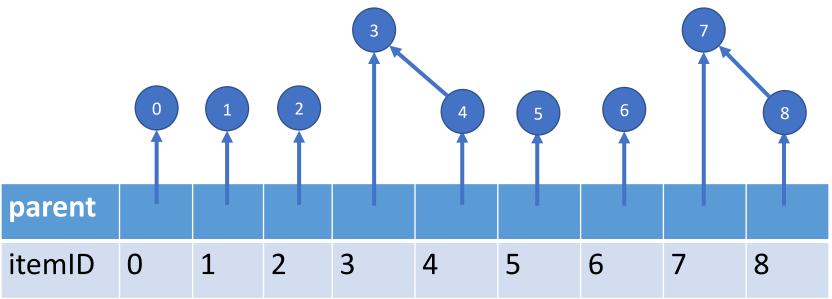
### Disjoint-Set Forest Union

- Union(7,8)
- Just make leaf/root point to parent[7]



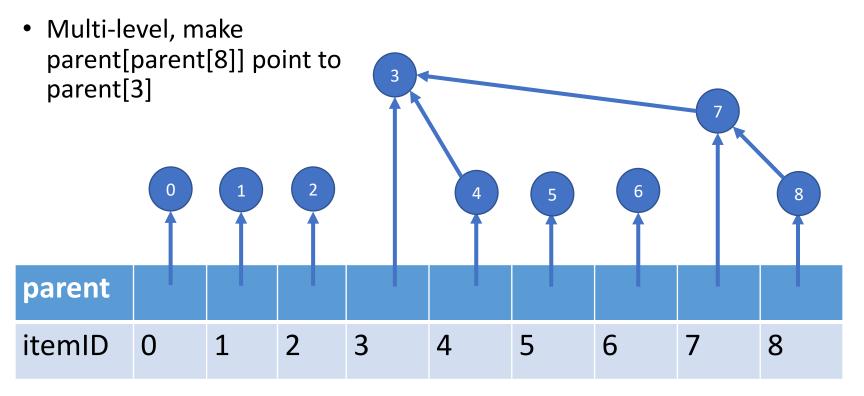
#### **Disjoint-Set Forest Union**

- Union(3,4)
- Just make parent[4] point to parent[3]



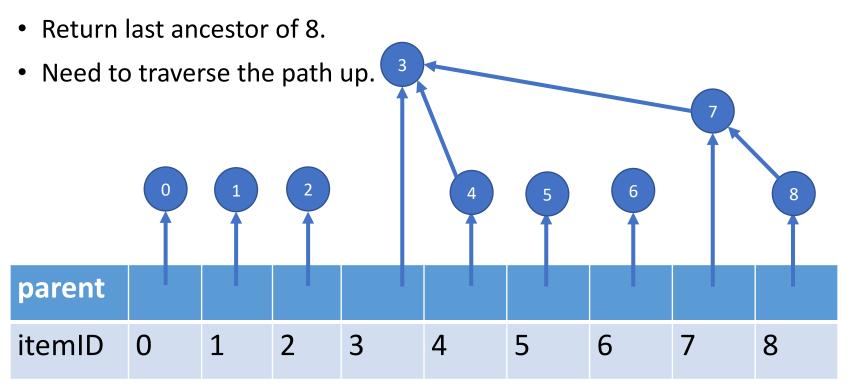
#### **Disjoint-Set Forest Union**

• Union(3,8)



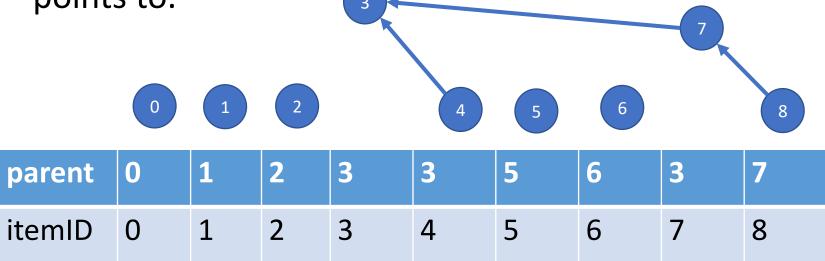
### **Disjoint-Set Forest Find**

• Find(8)

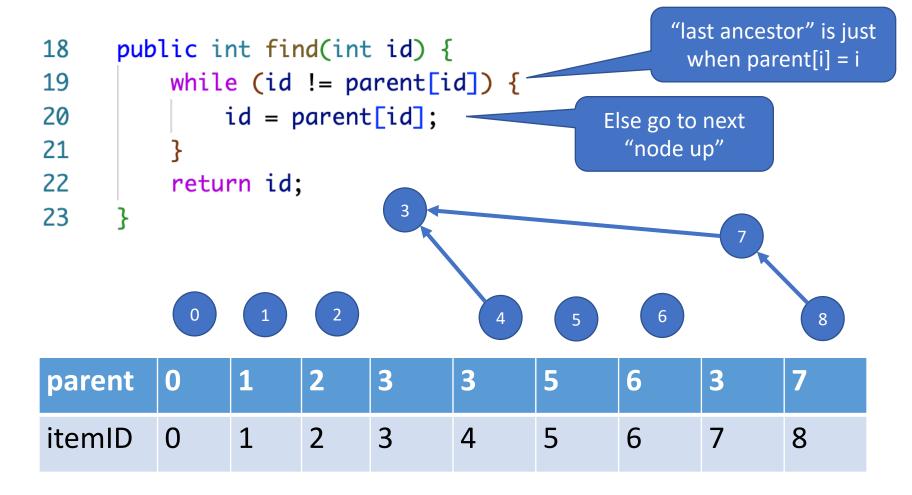


### Disjoint-Set Forest Array Representation

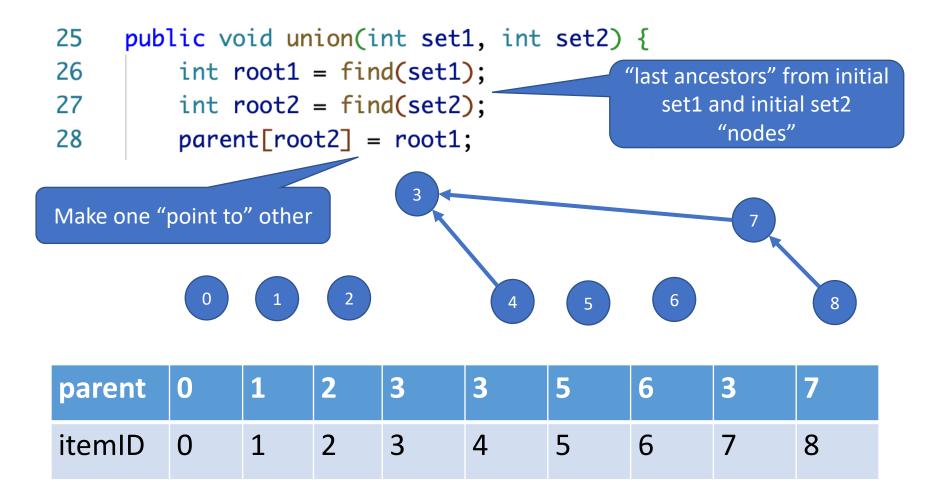
- The "nodes" and "pointers" are just conceptual can represent with a simple array, like binary heap.
- Parent array just stores what the itemID node points to.



#### **Disjoint-Set Forest Find**



#### **Disjoint-Set Forest Union Revisited**



### Worst-Case Runtime Complexity?

| 25 | <pre>public void union(int set1, int set2) {</pre> |
|----|----------------------------------------------------|
| 26 | <pre>int root1 = find(set1);</pre>                 |
| 27 | <pre>int root2 = find(set2);</pre>                 |
| 28 | <pre>parent[root2] = root1;</pre>                  |

What if we... union(7,8) union(6,7) union(5,6)

Now find(8) would have linear runtime complexity!!

union(0,1)

7

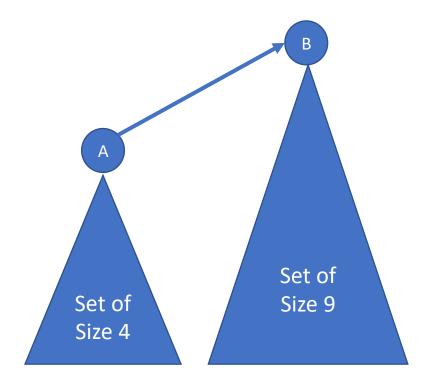
. . .

5

| parent | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|--------|---|---|---|---|---|---|---|---|---|
| itemID | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

8

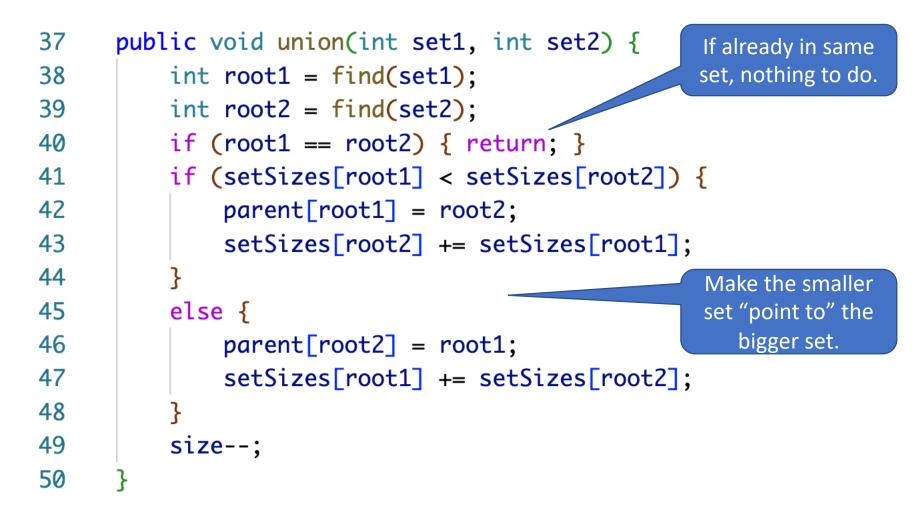
#### Optimization 1: Union by Size



Be careful in how you union. Always make the "root" for the set with *fewer* elements point to the "root" for the set with *more* elements.

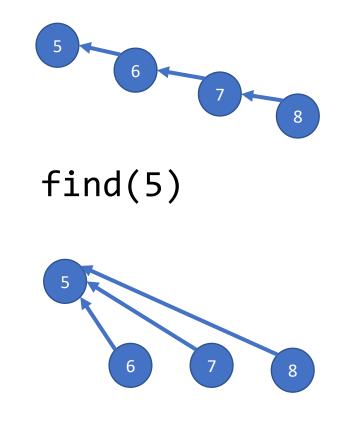
Sufficient for worst case logarithmic efficiency.

#### Optimization 1: Union by Size

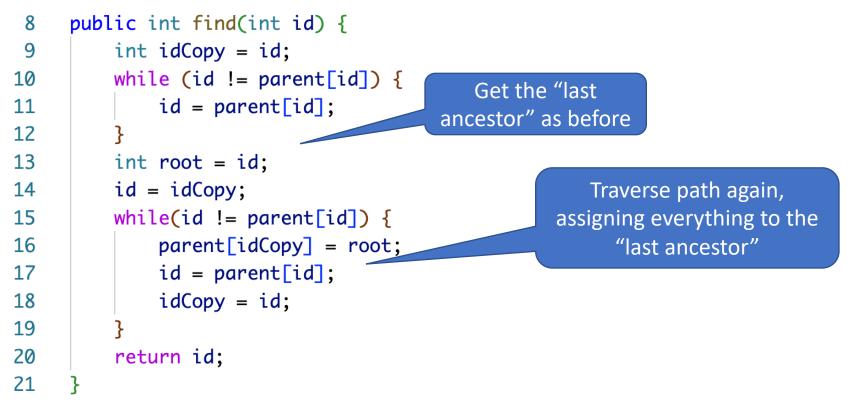


#### Lazy Path Compression

- Lazy path compression: When ever you traverse a path in find, connect all the pointers to the top.
- Sufficient for amortized logarithmic runtime complexity for union/find operations.



# Disjoint Set Forest Path Compression



# Optimized Runtime Complexity

- Optimizations considered separately:
  - Union by size: Worst case logarithmic
  - Path compression: Amortized logarithmic
- Considered together...?
  - Worst case logarithmic, and *amortized inverse* Ackermann function a(n).
  - a(n) < 5 for  $n < 2^{2^{2^{2^{16}}}} = 2^{2^{2^{65536}}}$
  - Practically constant for any n you can write down

# Remember Kruskal's Algorithm Runtime?

Input: N node, M edges, M edge weights

- Let MST to an empty set
- Let S be a collection of N disjoint sets me per node
- While S has more than 1 set: -
  - Let (u, v) be the minimum cost remaining edge
  - Find which sets u and v are in. If not equal:
    - Union the sets
    - Add (u, v) to MST
- Return MST

O(M(log(M)<del>+C</del>) because C < log(M) for our optimized union find

Looping over (worst case) all M edges

Remove from binary

heap, O(log(M))

# Solving Example MST Problem

#### <u>leetcode.com/problems/min-cost-to-connect-all-</u> points

Live Coding



