Twenty Questions - Compsci 201

The code for this assignment is available through Snarf as well as on the course
webpage.

Ambient: https://www.cs.duke.edu/csed /ambient/

INTRODUCTION:

In this assignment you will be doing several things including:

1. Read afile storing Twenty Questions game tree. The tree represents the
questions and answers known to the system.

2. Keep track of the state of the game (where in the tree are you) and update it
as the player answers your questions.

3. Update the tree as appropriate (i.e. when the system is unable to guess the
correct answer).

4. Keep track of what you need for working communication with the view.
There is more on this later in this file.

5. Write the updated game tree to a file such that it can then be used to “restore”
the game knowledge later.

Background:

Twenty Questions is a classic guessing game. [t goes like this: one player has a secret
thing (usually a noun). The other player gets to ask yes-or-no questions in an effort
to figure it out:

Alice: I'm ready to go.

Bob: Is it an animal?

Alice: Yes.

Bob: Is it smaller than a loaf of bread?

Alice: No.

Bob: Can you play games with it?
Alice: No!

Bob: Does it come in different colors?
Alice: No.

Bob: Is it native to Africa?
Alice: No.

Bob: Is it native to Asia?
Alice: No.

Bob: Is it green?

Alice: No.

Bob: Is it small?

Alice: No.

Bob: does it stand on two legs?

Alice: Sometimes? But not really. Let's say no.
Bob: Is it a herbivore?

Alice: No.
Bob: Can it jump?
Alice: No.

Bob: Does it make noise?
Alice: Yes.
Bob: Is it gray?

Alice: No.
Bob: Can it float?
Alice: No.

Bob: Does it have legs at all?
Alice: Yes.

Bob: Does it live in a forest?
Alice: Yes.

Bob: Does it have scales?

Alice: No.
Bob: Is it flexible?
Alice: No.

Bob: Is it worth a lot of money?
Alice: Yes.

Bob: Is it a bald eagle?

Alice: Yes!

As mentioned in the bizarrely exhaustive Wikipedia article, Twenty Questions is an
example of a binary tree: each node represents a question, and each child an answer,
either “yes” or “no”. 20q.net and other variations on the game are more-than-binary

trees: they permit “maybe”, “Don’t know”, and other kinds of answers. We’ll be
sticking to the simple yes-or-no version of the game.

In this assighment, you will implement a learning version of twenty questions: one
that not only plays the game, but learns new objects when it loses. You'll be able to
save your learned tree to disk, so that you can exchange it with a friend, or start up
again where you left off.

NOTE:
For historical reasons, the code calls the game “Animal” instead of Twenty Questions.
You aren’t limited to animals! It'll do whatever you want.

How To

Step 0:

Snarf the code. Run GameMain; observe that it doesn’t do very much yet. Read
through IAnimalModel.java, which is the interface you’ll be implementing by
completing AnimalGameModel.java. Also, take a look at AnimalNode.java, which
implements a single node in our Twenty Questions game tree.

Step 1: FileI/0

As provided, the game doesn’t do very much. The first thing you’ll need to
implement is reading game trees from a file. When you run the game and select File -
> Open File or File -> Open URL, the initialize method

of AnimalGameModel is called. The Java Scanner type (what’s passed as an
argument) provides a nextLine method that will iteratively pull lines from
whatever file you've opened.

To get file reading working, you'll need to do (at least) these things:

1. Add (to AnimalGameModel) the instance variable (or variables) necessary
to store your game tree. We recommend two AnimalNodes: one called myRoot
that always points to the root of your game tree, and one called myCurrent that
points to the current question. These aren’t the only things you’ll need to store,
but they are a start.

2. Write a recursive helper method for reading in the game tree. Note that the
tree was written out using a pre-order traversal, with interior nodes marked
as discussed in class. One extra thing: lines that begin with “//” should be
ignored completely.

3. Have initialize call your recursive helper with the appropriate
parameters, and set up your instance variables.

A few things to remember:

1. Lines in the file corresponding to interior nodes start with “#Q:”. The text
read into nodes should contain only the question and not the “#Q:” at the
beginning.

2. Your helper method will return an AnimalNode. I suggest you write it by
completing this code:

private AnimalNode readHelper(Scanner s) {
String line = s.nextLine();
if (...line is a leaf...) {
// Construct a leaf AnimalNode from line, and return it.

}

// Make a recursive call to read the left subtree.
// Make a recursive call to read the right subtree.
// Construct the resulting AnimalNode and return it.

}

To write your game tree to a file, you'll need to implement the write method of
AnimalGameModel. This method is called by the view whenever you choose File ->
Save. Dealing with creating a new file is taken care of for you; all you need to do is
write your tree to the provided FileWriter object. FileWriters have

awrite method that takes a String as input. To start a new line, write the string
“\n”; this is Java’s syntax for the newline character. For example:

// Without a new line; produces

// PotatoTomato
writer.write("Potato");
writer.write("Tomato");

// With a new line; produces

// Potato

// Tomato writer.write("Potato\n");

writer.write("Tomato");

Write your tree out using a pre-order traversal (to match your read-in code).

You should test your write-out and read-in code by reading in the

provided animals.txt, writing it out to a different file, and then comparing the two
files. The files should be exactly the same.

To enable the buttons on the GUI, you should

callmyvView.setEnabled(true) rightafter you've finished loading your game
tree.

Step 2: Playing Twenty Questions
Here’s an example of a game tree:

"Does it have feathers™

i .
Does it live in a barnyard Is it a mammal
> N\
rd i -
Is it wise Does it have stripes gila monste
. % Z N
7 N N
owl Does it gobble Does it hop
Z N\
S N
N

turkey n Does it say nevermore Kangarool| [clephant
A
A
|mven |I Ieagle n
This is also the tree represented by the provided animal.txt. The following is an

example of somebody playing the game with this tree; in this case, the player is
thinking of “chicken”.

~game info ~game info
Does it have feathers Does it live in a barnyard
message ~message
l»]# nodes in tree read: 17 |,¢| [# nodes in tree read: 17 l
®.00 Compsci 100, TwentysQuestions |] 0 00 Compsci 100, Tweny-Questions
File File
I) [a=D)

~game info
Is it a chicken

~message

l# nodes in tree read: 17

&

message
’Vl# nodes in tree read: 17

Victory to the computer!

Understanding how the model (code you write) and the view (code we provide)
interact is vital to getting this right. This is documented in IAnimalGameModel.java,
and goes like this:
1. The player opens a file using the GUI. This calls initialize on the model],
and is what you dealt with in part 1.
2. The player starts a new game. They can do this using File -> New
Game. Important note: loading a file should automatically start a game! This is
done by calling the model’s newGame method, either from the view calls
(player input) or automatically (as partof initialize). The
newGame method will need to set up whatever instance variables the model
needs to keep track of the state of the current game, and set them to initial
values.
3. The model asks a question. This is done by sending a String to the
view’s update method, like this:

StringBuilder sb = new StringBuffer();
sb.append("Is it a walrus?\n");

//Note the use of "\n" for a newline!
myView.update(sb.toString());

4. The player clicks YES or NO. The view calls the
model’s processYesNo with the appropriate value. The model updates its
internal game state (myCurrentNode, plus anything else you add)
according to what the player said.

5. Steps 3 and 4 repeat until the computer guesses correctly, or until the
computer runs out of game tree without guessing correctly. If the computer
won, it should send a victory message to the view using
the showDialog method. If it lost, things are more complicated: see below.

6. Your life will be easier if you get step 2 working before you do step 3.

Step 3: Player Victory.
What if the computer loses the game? Here’s another sequence, in which I'm

thinking of a lion. We'll start on the second question, after I've already said “no” to
feathers.

File
‘ CYESK
~game info ~game info
Is it a mammal Is it a mammal
~message ~message
[# nodes in tree read: 17 [l [# nodes in tree read: 17]

OO0 Compscil00, Twenty-Questions -

File
&S] noy)

~game info ~game info
does it hop Is it an elephant
message message
[[# nodes in tree read: 17] [l# nodes in tree read: 17
4

Not an elephant!

Now something more complicated has to happen: we need to add a node to our
game tree. To add a node, we need two things: the the thing the player was thinking
of (in this case, a lion), and a question that disambiguates that thing from the
computer’s guess. Is this case, we’'ll use “Does it have tusks?” as elephants do, and
lions don'’t.

NOTE:

The Yes answer to your question should always be the existing animal. In the
example the question is ‘Does it have tusks?’ because the existing animal is
Elephant and Lion is new. Elephant (the existing animal) is the Yes answer and
Lion (the new animal) is the No answer.

You should follow this guideline, otherwise the UTAs will run into massive
difficulty grading your assignment and you *will* lose points.

For the game to do the right thing in this case requires a fairly complex model-view
interaction. First, consider how the model knows that it needs new information: it
has landed at a leaf node in the tree, and still been told no. Now it needs to do
several things:

1. Display the path down the tree to the player in the GUI. This is so that the
player doesn’t use a question that contradicts something that’s already been
seen higher up the tree. To display the path, construct a String storing it,
and then callmyView.update withthat String. For example:

StringBuilder sb = new StringBuffer();
sb.append("You said no to feathers.\n");
// "\n" again...

sb.append("You said yes to mammal.");
myView.update(sb.toString());

Displaying the tree is going to require storing some instance variables; just
knowing the root of your tree, and the current leaf, is not enough to
reconstruct the path; you'll need to store it.

2. Request new information from the player by calling the view’s
getNewInfoLeaf method. In this case, what the right question have been
(i.e. the animal you were thinking of), seen below:

000 Compsci 100, Twenty-Questions
File

Please read the main window.

3' You may need to move this dialog so you can
4

read the question in the window.

Type your answer to that question below.

[Is italion?]

(Cancel) db
W_

riease pnrase as a question, e.g.,
Are you a rhinoceros?
Are you 'The Grapes of Wrath'

Your path so far:

You answered NO to Does it have feathers
You answered YES to Is it a mammal

You answered NO to does it have stripes
You answered NO to does it hop

You answered NO to Is it an elephant

IS = Iy

[message

nodes in tree read: 17
L A

3. Now, the tricky part. The user types in their question (“Is it a lion?”), and
clicks OK. When they do this, the view (which handled the mouse click) calls
the model’s addNewQuestion method with the typed-in String as an
argument. From the model’s point of view (that is, your point of view), this
looks slightly strange: you call a view method from one place in your code
(where you call getNewInfoLeaf), and you get the answer back
somewhere else (as an argument to addNewQuestion). It looks like you've
jumped from one method to another; that’s because the view has jumped you
there! Handling this correctly means storing some extra state in your model
just before you call getNewInfoLeaf, so that you can use that state
in addNewQuestion.

4. You're halfway there. At this point, you've queried the user for the correct
answer to their question (“lion”). Now, you’ll need to add a differentiator: a
question that tells lions and elephants apart. This process has the same flavor
as the previous step. First, the model calls the view’s update to ask for a
differentiator. Then the model calls getDifferentiator, which popsup a
dialog box for the player to type into. The model then calls the view’s
addNewKnowledge with whatever the player typed. As before, the model
calls a view method one place, and gets the result back somewhere else. The
figure below shows the flow back and forth between the model and view
over the course of the game; it may help clear things up.

5. Finally, once you've added a new node, start a new game!

AnimalGameModel AnimalGameViewer
layer opens a file.

Load the tree.

l update ()

Ask the first question. »Player clicks YES or NO

Update your internal state.

|
v

Ask a question.

update ()

»Player clicks YES or NO

processYesNo ()

Main loop of game!

E '

=) i !

A Realize you dpn t kqow Everything above the dotted line

é what the player is looking for. (plus handling winning) is Step 2.
of Ty edatey
S| Show the player the game path. >

Q.

©

é getNewInfoLeaf ()

Ask the player what they wanted »Player tells you.

update ()

Ask for a differentiator >

getDifferentiator()

Let them type in a differentiator. »Player tells you.

Add your new node!
This flow chart follows exactly the path of calls your program should be making.
Submitting

Submit your code and README.txt using either the Ambient plugin, or Ambient web
submit (https://www.cs.duke.edu/csed/websubmit/app/). You should submit to
the 20Q project.

Incorrect submissions will incur a penalty.

Code Style

Fact: code is hard to read.

How you layout your code, and your program, make a big difference in how easy it is
to understand. There are (at least!) four people who need to understand your code:
you (while writing it), anybody you ask for help, your grader, and you (six months
from now, when you look at it to figure out how you did something). While the
following rules are not set in stone, they provide a good place to start:

Think about how your code is going to be organized before you've written it.
Good design matters!

Give your classes, variables, and methods descriptive names. Naming your
variables foo and bar doesn’t say much; xPosition and yPosition are much
better.

Use Java’s conventions on naming. ClassesAreNamedLikeThis: words are run
together, and each word is capitalized. Similarly,
methodsAreNamedLikeThis: words run together, and all but the first word
are capitalized. Variables are named like methods.

Indent your code properly. Roughly speaking, this means “everything inside a
curly brace gets indented one extra level.” See the code we provide for how
this should look. To make this easy, Eclipse can do it for you: select your code
with the mouse, and then do Source -> Correct Indentation. Using this is the
best last thing to do before submitting.

Don’t let your lines get too long. Although Java doesn’t care how long your
lines are, long lines are much harder to read. The closest thing there is to a
universal standard is 80 characters. Eclipse makes this easy, too:

in Preferences -> Text Editors, turn on “Print Margin” and set it to 80. That
will add a vertical line at the 80-character mark.

Remember: easy-to-understand code makes your grader happy. Happy graders are
friendly graders!

Grading

These are some of the things that could be graded on this assignment.

File I/0O - 5 points.
o Reading the file.
o Writing the file.
o Dealing with ‘#Q’.
The Game - 8 points.
o Tree Traversals.
o Correct game messages.
o Adding knowledge.
Code Style - 2 points.
o See above.

