CS101 Homework 2:
Choose Your Own
Adventure Game

Prof Tejada

Design Document due: 11:59pm Friday,
February 1th

Game and Report due: 11:59pm Friday,
February 8th

1 Introduction

When | was a kid | enjoyed reading
Choose Your Own Adventure books, such
as, this one called “Your Very Own
Robot.” | see now that it was helping me
to think like a computer scientist, in terms
of control structures -- branching and

TR
’ el
Q y
X\,\\ 'W

’ MMy,

CHOOSE YOUR OWN ADVENTURE™
“BLOOP-DE-BEEP!
I'M YOUR VERY OWN ROBOT!”

You've alWays dreamed of owning a robot that would flash red and
blue lights, talk to you and be your friend. Now you have one! You fix
him up, give him a name, and you're ready to see what he can do.

What do you do first? If you push his JUMP button, turn to page 12. If
you push his FLY button, turn to page 29. But be ready for anything!
Some of his wires could be crossed, and you might find yourself in a
tub of strawberry ice cream, or on the robot planet Silver, or made into
a robot yourself!

What ﬁappens to yodfanidiglgu'r robot all depeﬂriciis' on the choices you
make. Sometimes your robot won't do what he’s supposed-to and
sometimes he will, but your adventures together will always be fun.

loops. The story starts out on page 1, but at the end of the page the reader can make a
choice about what the main character should do next. There can be several options
given to the reader of what decisions the main character can make. The reader makes a
choice by turning to the page paired with the main character’s action, e.g. “If you push
his JUMP button, turn to page 12. If you push his FLY button, turn to page 29.” | could
read the book over and over again and have a different adventure each time.

This is a graph of all the player choices possible for the book “The Cave of Time.” Every
branch in the graph represents a user’s choice, and every bubble is the result of the

user’s actions.

THE CAVE OF IME
CHOOSE YOUR OWN ADVENTURE
NARRATIVE MAP

For this homework you will create your own Choose Your Own Adventure game, where
your story must be at least 4 levels deep — meaning the player can make 3 choices
between the start and end of the game. This graph below represents the program flow
for a game. Each bubble or node with out-going arrows represents a part of your
program that will ask the user for input, then based on that input decided which bubble
or node to transition to next. Each node without out-going arrows represents an end of
the game. When the game ends the user should be given the opportunity to play your
game again from the beginning. Your game must have at least 15 different nodes and at
least 20 different arrows or user choices. Unlike a Choose Your Own Adventure book
your game can have some randomness. Your program should allow for randomness
somewhere in your graph, so that the player may have the option of “rolling the dice,”
allowing a random choice by your program decide where the player goes next.

Level 1 User 0 User
choice 3

User

choice 2

Result B

choice 1

Level 2

dosd
‘/ S /L

This programming assignment should be performed INDIVIDUALLY. You may re-
use portions of code from previous examples and labs provided in this class, but
any other copying of sections of code is prohibited. We will use software tools that
check all students’ code and known Internet sources to find hidden similarities.

2 What you will learn
After completing this programming assignment you will:
1. Write a non-trivial C program from scratch by combining knowledge from
previous examples and modifying them appropriately
2. Select appropriate control structures including for loops, while loops,
conditionals / selection mechanisms (i.e. if statements) to solve a problem
Use the random number generation capabilities of the standard C++ library.
4. Combine and create the above skills to develop a “choose your own
adventure” game.

w

3 Adding Randomness

We can just use the random number generation capabilities of the standard C++
library (or any another programming environment) through the rand () function.
Most random number generators will produce a number that is uniformly
distributed over a certain range. A uniform distribution means that theoretically
every number over the range has equal probability of being produced. rand ()
returns an integer number in the range 0 to RAND MaX (which is a constant defined
in cstdlib which is also where rand () is declared/prototyped as well).

One issue with rand () and most computers generating random numbers is that
computers do only what they are told and so it is sometimes hard to be random.
Most computers generate pseudo-random numbers (sequences that look random
but are not necessarily). And in fact, because of this, every time you start your
program you will be the SAME random sequence. To get a DIFFERENT sequence for
each program run, we need to “seed” the random number generator with a
different starting value. You can do this with the srand (int seed) function in
cstdlib. During testing we often provide the same seed to make sure our results
are similar as we update the code. When we are satisfied our code works we can
provide a unique seed each run (the easiest way to do this is to pass srand() the
current time which should be different for each run). Thus, as you develop your
program place the following line of code as your first statement after declaring your
variables.

srand (1000) ;

Then when you think your code is working, change the line of code to read:

srand (time (NULL));

You will need to include <ctime> in addition to <cstdlib> to use this
functionality.

4 Requirements
Your program shall meet the following requirements for features and approach:
1. Prompt the user to input their choices.
Receive input from the user.
Check that the input is a valid choice.
Use the input to decide the next statements to be executed.
Add some randomness to the game by using rand ()
Player can repeat the game as many times as they wish.

ok wnN

5 Design Document
Write down the answers to the following questions BEFORE beginning. You MUST
do this BEFORE you begin to program or write code.
1. What data needs to be maintained for a single game? What type?
2. What type of user input do you need? How will your program use this input
to decide what statement to execute next?
3. What data needs to be maintained for the total player experience (i.e.
across several games)? What type?
4. Is the number of iterations for the total Choose Your Own Adventure known
before entering the loop? What kind of loop should then be used?
5. Where will you add randomness to your game?
6. Draw your own graph to represent the program flow for your game. What
are the nodes? What are the user choices?
7. Blackboard submission (Due Friday February 1, 11:59pm)
a. Zip your Design Document and submit the zipped file to Blackboard.

6 Procedure
Perform the following.
1. Using your answers to the problems above implement your choose your
own adventure game as a C++ program, in a file named game . cpp
2. Checkpoints: If you are new to programming or having trouble getting
started try to write the code in stages and be sure each stage is working:

a. Stage 1: Start by writing a program to prompt the user for the
necessary input values and the read them in from the keyboard into
appropriate variables...Check your work by displaying them back to
the user.

b. Stage 2: Wrap the code from the previous step in some kind of loop
that will continue asking the user for input if they did not enter a
valid choice.

c. Stage 3: Write code that will use the input to decide what
statements should be executed next.

d. Stage 4: Write the code that simulates a random choice.

e. Stage 5: Wrap all your code in some kind of loop to allow the user to
play your Choose Your Own Adventure story again.
3. Comment your code as you write your program documenting what abstract
operation each for, while, if or switch statement is performing as well as
other decisions you make along the way.

4. Compile and run your program:
g++ -0 game game.cpp

7 Report
Include the following items in your report. Be sure to have your name and USC ID
on the first page at the top.

1. Your answers from the design document.

2. Your graph of the program flow.

3. A printout of a run through your program.

4. Place your ‘game.cpp’ file and Report in a ZIPPED folder and submit that ZIP
file. Failure to place the file in a ZIP file will lead to point deductions. Then
submit the ZIP file via Blackboard.

5. Blackboard submission (Due Friday February 8, 11:59pm)

a. Zip your Report and your C++ program file together and submit the
zipped file to Blackboard.

Please also note that you must submit your code using the USC Blackboard
System since the Blackboard System timestamps your submission. You should also
verify what you have submitted is what you intended to submit. Please note that it is
your responsibility to ensure that you have submitted valid submissions, meaning
that your code must run on aludra, which is the machine that it will be graded on.

8 Late Policy

All homework must be turned in on time. Late submissions will receive severe
penalties. If you submit within 24 hours after the grace period, you will receive 80%
of your grade. If you submit within 48 hours after the grace period, you will receive
50% of your grade. If you are unable to complete a homework assignment due to
illness or family emergency, please see the instructor as soon as possible to get an
extension. A doctor's note is required as proof of illness or emergency. In general,
when you get sick, it's best to see a doctor and get a note just in case you may need it
later.

HW2: Choose Your Own Adventure Grading Rubric

Name: Score: /100
Req. / Wt | Score 10 8 (Good) 5 (Poor) | 2 (Deficient) | (0) Failure
Guideline . (Excellent)
Design 1 Well-written Well-written Major errors in Missing cases or Missing
Document answers that answers that casgs. orend end condition or completely
demonstrate strong demonstrate condition or no no graph
thought processes acceptable graph
and reasoning, thought processes
includes graph and reasoning,
includes graph
User Input 2 Well formatted and Acceptable Wrong type of Input does not Missing
works correctly, formatting and data input or work or no loop
uses loop for input works correctly, poor formatting
validation, with at uses loop for input or no input
least 15 nodes validation validation, less
than 15 nodes
Code for 1 Executes correctly Executes Missing
repeating based qn user input, mcorrec'tly based
using loop on user input,
game using loop
Code for 2 Executes correctly Executes based on | Executes based Executes based on Missing
branching base'd on user input, | userinput, Wlth. at or? user input, user input, with
with at least 20 least 20 branching | with less than 20 less than 20
branching decisions, decisions, 4 levels | branching branching
4 levels deep deep decisions or not decisions and not
4 levels deep 4 levels deep
Code for 2 Correctly uses the Incorrectly uses Incorrectly uses Missing
rand() function to the rand() the rand()
rand() :)
make random function to make function
decision for the user random decision
for the user
Code 1 Acceptably
i s Well- ized ized cod
Organization e-organize organizec code Poorly organized Poorly organized
code (indented (indented R R
code (indented/ code (indented/
/readable) AND /readable) AND)
. readable) OR readable Verilog)
commented such commented ina
comments were AND comments Completely
that another person reasonable R
. disorganized and | were disorganized unorganized code
could easily follow manner to allow) . . .
provided little or provided little and lacked helpful
what the code was someone else to S) o)
. insight into the insight into the comments.
attempting to reasonably follow
. code and code and
accomplish as well the code and
TR . implementation implementation
as providing insight provided some L -
. L R decisions. decisions.
into your decisions insight into your
decisions
Report 1 Well-written Well-written Major errors in Missing cases or Missing
answers that answers that cases or end end condition or completely
demonstrate strong demonstrate condition or no no graph
thought processes acceptable graph
and reasoning, thought processes
includes graph and reasoning,
includes graph
Late j o
/ . -20%(1Day Late) | -50% (2 Days Late) | > (Submission
Deductions Instructions)
TOTAL

