
T
he interface is Java’s answer to multiple inheritance. It is a Java
type that defines what should be done, but not how to do it.
Interfaces are perhaps most useful when designing the API for

your program. In this topic, we’ll find out how to define an interface,
how to implement one, and how to use it in program design.

Let’s Get One Thing Straight

Let’s get one thing straight. Right off the bat. There are really two ways that peo-
ple in Javaland use the term interface. One is conceptual and one is concrete.

People sometimes talk about a program’s interface, or even a class’ inter-
face. Remember that API is an acronym for Application Programming Interface.
When used this way, it means the thing with which we interact. It’s what is
exposed to us that we can work with. It is the visible boundary of a class or a pro-
gram or a programming language’s libraries. This is the conceptual version of
the term interface. It means the public (I really mean non-private) methods that
we can call to do something.

On the other hand, an interface is a Java programming language construct,
similar to an abstract class, that allows you to specify zero or more method sig-
natures without providing the implementation of those methods. Remember the
implementation is the code block that does the work. Let’s look at the difference.

public void printMessage(int numberOfTimes);

// a method declaration in an interface.

17

INTERFACES

EL

OBJECTIVOS:

Learn It

Live It

Love ItVV
VV

VV

INTERFACES

Hewitt_CH17.qxd 9/28/04 9:50 AM Page 154

155

The preceding code is an example of an interface method declaration. Notice
how the signature ends in a semi-colon. There is no code that does the actual
work of the printMessage() method.

An interface will consist of method signatures that look like this; there can be
no implementation at all. You do the implementation in a class. An implementa-
tion of the printMessage() method might look like this.

public void printMessage(int numberOfTimes) {

for (int i = 0; i <= numberOfTimes; i++) {

System.out.println(“Current message number “ + i);

}

}

Or the implementation could be different. Maybe a different implementation
uses a while loop, and has a different String message, or doesn’t print the cur-
rent iteration of the loop as represented by i.

Imagine an interface with some method signatures, and a class that will
implement the interface.

Interface: I have 5 method signatures.
Class: I want to implement them.
Interface. Okay. But then you have to implement all of them. You are
not allowed to say that you implement me without implementing
every single one of my methods.
Class: It’s a deal.

An interface is a contract. It is binding between the interface and the class that
implements the interface.

But why in the world would you want to do that? A class can implement
whatever methods it wants. Why not cut out the middleman, go ahead and
implement the methods you want, and then forget about the interface alto-
gether? Well, you could do that. But there are actually several reasons why inter-
faces are very cool.

If it helps, you can think of an electrical outlet.
An electrical outlet is a wonderful invention. It is really, really a cool thing,

the electrical outlet. The interface for every electrical outlet is exactly the same
(okay, they’re different in the United States than other places, and sometimes you
get three little holes to plug stuff into, and sometimes only two; work with me
here. Geez). You know that you will be able to use the electricity you need for
your laptop, PlayStation, hair drier, or electric dog polisher as long as each of
them have standard cords that will plug into an outlet. We could imagine a
hypothetical interface called Pluggable that means that it has a standard set of
prongs that will plug into a standard outlet. A bowl does not implement the
Pluggable interface. Can’t plug it in. The book “The Complete William
Shakespeare” doesn’t implement the Pluggable interface. Can’t plug it in.
However, an e-book reader does implement the Pluggable interface. You could
read “The Complete William Shakespeare” on e-book or in paper form. Same
text. Different implementation.

So back to our story.

Hewitt_CH17.qxd 9/28/04 9:50 AM Page 155

Some Reasons Why Interfaces Are
Very Cool

1. They encourage smart application design. Say that you have an applica-
tion like an e-commerce site. You have to access a database a lot for differ-
ent reasons. On one occasion, you need to retrieve products and display the
catalog; another time, you need to store customer information. Now, these
operations aren’t related much in terms of the domain. But they do the same
thing: interact with the database. You might create an interface called
DataAccessor that defines all of the operations that can be done with the
database: select, insert, update, delete, and so forth. Then, you have one
standard way that all of the programmers on your project can write to. All of
your database access contracts, even if written by people working on unre-
lated parts of the app, will look the same.

2. They promote readability. I have seen enough people come and go in dif-
ferent jobs that I am a firm believer in doing what you can to make your
code readable. Interfaces promote readability because readers of your code
know what to expect of a class that implements an interface. Also, it gives
readers a second, concise location to overview what the class does.

3. They promote maintainability. The reason that they promote maintainabil-
ity is more complicated, and we’ll get to it in a moment. In a nutshell, if a
class implements an interface, you can use the interface type as the refer-
ence type of instances of that class. That means that later you can swap out
the actual implementation without breaking any of your code. That ability is
an instance of polymorphism, one of the pillars of object-oriented program-
ming. More on this in a mo.

4. They allow flexibility in your class definitions. In Java, you are only
allowed to explicitly extend, or inherit from, one class. This is different from
languages like C++ and C# that allow you to extend multiple classes. By
allowing Java classes to extend from one class and also implement an inter-
face at the same time, we can in effect skirt the fact that we’re not allowed
multiple inheritance, because of polymorphism. In fact, Java programmers
are often encouraged to implement an interface instead of inheriting from a
class when faced with that choice. Programmers probably come to such a
crossroads when creating a new thread. You can create a thread by extend-
ing the Thread class or by implementing the Runnable interface. They both
get you a thread. But you can implement as many interfaces as you want—
you can only inherit from one class. So the idea is to prefer interfaces over
inheritance unless you really are extending the definition of what your
superclass can do. That is, nine times out of ten we aren’t actually extending
the functionality of a thread when we write extends Thread. We’re not
making a more specific, more functional kind of thread; we’re just wanting
to spawn a new instance of a regular old thread so that we can execute
some code separately from the main program thread. In this case, you
should implement Runnable and get your thread that way. That leaves you
with the ability to extend a different class if you want to, one whose function-
ality your class is closer to, or that you really need to inherit from.

156

Hewitt_CH17.qxd 9/28/04 9:50 AM Page 156

How to Write an Interface

The Java API is full of terrific interface definitions. One commonly used interface
is java.lang.Runnable, which can be implemented to create a thread. To write
an interface, you can look at the many good examples in the Java API.

When writing your own, you just use the keyword interface instead of
class, and then don’t include the method implementations. Like this:

public interface MyInterface {

public void someMethod(long someParam);

}

As you can see, you just use the interface keyword in place of class. And
then you substitute a semi-colon for the curly braces holding the method imple-
mentation. That’s all you have to do in a nutshell. In the following sections, we’ll
see the many twisting, cavernous corridors that lurk beneath the deceptively
simple interface.

After you have an interface, you implement it. That means you declare a
class that implements the interface, and then write the implementation for each
method in the interface. And the method signatures must match exactly. Like this:

public MyClass implements MyInterface {

//since I said “implements MyInterface”,

//I must include this method, or

//this class won’t compile

public void someMethod(long someParam) {

//this is my implementation.

}

}

You can add methods and other stuff to your implementing class if you want to.

Interfaces Versus Abstract Classes

There are differences between an interface and an abstract class, though com-
monly the two are confused. Why do you need an interface? When should I use
an interface and when an abstract class? Let’s let the two duke it out for them-
selves, and you decide.

Monsters fight!

Round One: An interface is a totally abstract class. In an abstract class, you can
define some methods that are abstract, and some methods that are fully imple-
mented. Any class that extends that abstract class must implement the abstract
methods, but it inherits the functionality as implemented in the abstract class.
This is very cool if you need that kind of structure in your program, but can make
your API a little snaky.

157

Hewitt_CH17.qxd 9/28/04 9:50 AM Page 157

Round Two: In an interface, there can be no implementation whatsoever. You
can say this:

List starWarsFigures = new ArrayList(500);

Then, your reference type is the interface type (List)! That means that later in
your code you can change the implementation without breaking any of the code
that does something with your starWarsFigures object. Like this:

List starWarsFigures = new Vector();

This is very cool if you need that kind of flexibility, which is often a good thing.
Round Three: An interface is less flexible in how its variables and methods are
declared. Here are the rules about writing an interface.

Rules for Writing an Interface
■ Declare an interface using the keyword interface.
■ An interface may extend zero or more interfaces if it likes, but it cannot

extend a class, because then it would inherit functionality, and interfaces
cannot have functionality. They can only talk about it.

■ Interface methods cannot be static.
■ Interface methods are implicitly abstract. For that reason, you cannot mark

them final (duh), synchronized, or native because all of these modi-
fiers tell how you’re going to implement the method, and you’re voluntarily
giving up that ability when you write the method in an interface.

■ strictfp is okay on an interface. It is okay because you can evaluate
compile-time constants using strictfp rules within an interface.

■ All interface methods are implicitly abstract and public, regardless of
what you write in the interface definition! It is true. The interface method
declaration void biteIt(int times), despite its apparent access level
of default, actually has public access. Try it. If you write a class in another
package beyond the visibility of default access, and include the seemingly
legal implementation of void biteIt(int times) { ; }, the compiler
will tell you that you cannot reduce the visibility of the method from pub-
lic to default. They’re all abstract; they’re all public.

■ An interface can define variables. But all variables defined in an interface
must be declared public, static, and final. Many Java programmers
have adopted the practice of defining only variables within an interface
and putting constants in it. This works to get at shared constants, but it is a
workaround and is no longer necessary if you’re using J2SE SDK 5.0. It fea-
tures a new static import facility that allows you to import constants just as
you would a class or package.

■ It should be obvious by now that an interface cannot implement another
interface or a class.

■ You may modify your methods using the keyword abstract if you like, but
it will have no effect on compilation. Methods in an interface are already
abstract, and the Java Language Specification says that its use in inter-
faces is obsolete.

■ Likewise, the interface itself is already abstract. So you can do this if you
want: public abstract interface Chompable {}. But there’s no
point; it’s redundant.

158

Hewitt_CH17.qxd 9/28/04 9:50 AM Page 158

■ Interfaces have default access by default (!). So this is legal: interface
Chompable { }. But if you want your interface to have public access, use
that modifier in the interface declaration.

■ You cannot declare an interface as having private access. It doesn’t make
any sense. No one could implement it. So private interface
Chompable { } gets you a compiler error for your trouble.

■ public, static, and final are implicit on all field declarations in an
interface.

There are some weird things to keep in mind.
Interfaces can be declared private or protected if they are declared

nested inside another class or interface. The following will compile, though its
usefulness is dubious at best.

public class interface test {

private interface myinterface{ }

}

Only an inner class of the class of which the interface is declared can implement
the interface.

Is and Does

Remember that the job of an interface is to designate a role that a class will play
in the society of the application. Whereas a class (especially an abstract class)
defines what something is, an interface defines what it can do.

Which of the following would you make into an interface, and which would
you make into an abstract class?

Person
Employee
Programmer
Skier
WildAnimal
DataAccessor
Swimmer
WestCoastChopper

You’ll see a 3-dimensional pattern emerge if you relax your eyes and stare at it
long enough. This sort of thing is important to keep in mind as you design your
application. You can do all of your applications without ever using an interface.
But again, they clarify your API and provide you with flexibility down the road.

Constants

Java programmers commonly define constants inside their interfaces, if it makes
design sense. You can do so using variables in an interface because the values
will be present instantly at runtime and their values shared among all classes
implementing your interface, because they are static and final.

159

Hewitt_CH17.qxd 9/28/04 9:50 AM Page 159

Here is how you do it.

public interface IDataAccessor {

String DB_NAME = “Squishy”;

}

Note that it only makes sense to define inter-
face constants if the variables are tightly
related to your interface definition. There is a
pattern that has been popular among devel-
opers where they use interfaces for the sole
purpose of defining constants, so you might
come across a lot of code to that effect. But J2SE
5.0 introduces other mechanisms that are more
appropriate for this sort of thing—namely

typesafe enums and static imports.
The reason that you don’t want to use this old pattern anymore (assuming

you’re using it) is that it confuses the API. To access the constants defined in
the interface, you must include implements InterfaceName in your class
definition—and that isn’t really true. You aren’t implementing any functionality
defined by such an interface; you just want the variables. It’s a workaround, and
now there are language features to handle that situation, so you don’t have to
resort to it.

Interface Inheritance

Yes, an interface can extend another interface. Just say that it does, like this:

public interface ISpy extends

IInternationalManOfMystery {...

}

This is rarely used in practice. It means just what you would expect: Now the
class that implements ISpy must also implement all of the methods from
IInternationalManOfMystery.

Also, an interface is allowed to extend more than one interface. Just sepa-
rate them by commas. Notice that this is different than regular classes, which are
not allowed to extend more than one class.

Implementing Interfaces

You have to do two things to implement an interface. You have to announce that
your class will implement the interface in your class declaration, like this:

public class SuperHero implements IFly {...}

160

FRIDGE

Like the public and abstract deal, inter-
face variables are implicitly public,
static, and final. That is, the following
are equivalent within an interface: public
static final String DB_NAME =

“Squishy” and String DB_NAME =

“Squishy”. Likewise, you are not allowed
to do this: private String x;

Hewitt_CH17.qxd 9/28/04 9:50 AM Page 160

Then, you have to implement each method defined in an
interface. Most IDEs, including Eclipse, will tell you the
names of the methods you need to implement as a conven-
ience. Note that whether you have implemented each
method you’re supposed to is checked at compile time, not
at runtime.

Remember that the purpose of an interface is to say
that the implementing class must have methods that match
the signatures. That doesn’t say anything about the quality
of the implementation. Say we have an interface called
IFly (which we’ll define next), and it has one method void
accelerate(int speed);. The following is legal, and
will compile:

public class SuperHero implements IFly {

public void accelerate(int i) {}

}

This can be convenient if an interface has a method or two that you don’t really
need. But if you find yourself doing this sort of thing with any frequency, you
might take a second look at whether you really ought to be implementing that
interface, and if there isn’t some other way to solve the problem. If you are the
designer of the interface, you might want to reexamine your interface design to
make sure that you are defining what users (in this context, programmers who
want to implement your interface, including you) really need. By the same token,
if you find in your code a number of methods that programmers need to define
over and over again, consider moving them into the interface and making them
part of the contract. This could have the effect of tightening and strengthening
your abs. I mean your API.

A class can implement more than one interface. Separate each interface
with a comma in the class declaration, like this:

public class RockStar implements IGuitarPicker,

ILeatherPantsWearer { }

Abstract Class Implementation of Interfaces

This is something very weird. Actually, I’ll pose it as a question and see what you
think. Previously, we had our IFly interface, and our regular old class SuperHero
implemented it.

(Deep, oily announcer voice) For 50 points, can an abstract class implement
an interface? (After slight pause, with greater significance) Can an abstract
class implement an interface?

161

FRIDGE

It is a naming convention that
you’ll often see to prefix “I”
before the name of an interface
in order to identify it easily as an
interface. If you’ve programmed
in VB, you’re probably used to
Hungarian notation, which
serves a similar purpose.

Hewitt_CH17.qxd 9/28/04 9:50 AM Page 161

Think about it (after all, it’s worth 50 points). Can an abstract class implement
anything? Actually, yes, it can. It can have both abstract and concrete methods.
So the answer must be yes. Because you can do this:

public abstract class SuperHero implements IFly {

public void accelerate(int speed) {

// some code here to do accelerating...

}

}

Any class that extends SuperHero will inherit this functionality, or alternatively, it
can decide to override the accelerate() method if it wants to, and define a dif-
ferent implementation.

That was easy enough. But here’s the killer: Is the following legal?

public abstract class SuperHero implements IFly { }

Notice that there is not only no mention of the accelerate() method, there is no
code at all. How could an abstract class say it implements an interface that it
doesn’t implement? It must be wrong!

Actually1, that code compiles without a problem. Because there is another
contract at work when you define an abstract class, and that contract is that the
interface methods must have been implemented by the first concrete subclass of
the abstract class. The first concrete class is not required to implement all of
them, just those that have not been previously implemented by some abstract
class that implements the interface up the hierarchy. The following series of
classes is legal and compiles.

IFly.java

public interface IFly {

void accelerate(int speed);

void slowDown(int speed);

}

Now an abstract class will say it implements the IFly interface.

SuperHero.java

public abstract class SuperHero implements IFly { }

JusticeLeagueSuperHero.java

public abstract class JusticeLeagueSuperHero

extends SuperHero

{

public void accelerate(int speed) {

//some real implementation code!

162

1 I hate it when people say, “actually.” It sounds soooo snotty. As if there is some other
life that you’re living over there in happy fantasyland where everybody has all wrong
ideas about stuff and you’re so dumb that it can’t be imagined how you even function.

Hewitt_CH17.qxd 9/28/04 9:50 AM Page 162

System.out.println(“Accelerating to “ + speed

+ “mph”);

}

}

Notice that JusticeLeagueSuperHero implements the accelerate () method,
but not the slowDown() method, which is also required by the interface. The
code compiles because it is also declared abstract, and it is expected that one
day someone will want to make a concrete subclass of JusticeLeagueSuperHero,
so that you can say new SuperHero() and get to work. Of course, if no one ever
makes a concrete subclass that implements the slowDown() method, the inter-
face is not really implemented, even though we said it was. But that couldn’t
matter less, because we can’t ever make any objects.

So now let’s look at the final class in our implementation of this interface, the
concrete class SomeMoreSpecificSuperHero.

SomeMoreSpecificSuperHero.java

public class SomeMoreSpecificSuperHero

extends JusticeLeagueSuperHero {

public void slowDown(int speed) {

//some real implementation code here!

System.out.println(“Slowing down

to “ + speed “ mph”);

}

}

In our little hierarchy, we have an interface, an abstract class (SuperHero) that
implements the interface but doesn’t actually implement any methods, a second
abstract class (JusticeLeagueSuperHero) that extends SuperHero and provides a
concrete implementation of one method in the interface, and then our first con-
crete class (SomeMoreSpecificSuperHero) that extends JusticeLeagueSuperHero
and implements the remaining method. By the time we get to the concrete class,
everything has an implementation. Cool.

Well, I’m going to get a beer and make a pizza. Thanks for talking about
interfaces with me. I’m feeling much better now.

163

Hewitt_CH17.qxd 9/28/04 9:50 AM Page 163

