Meet the Model-View-Controller

compound patterns

Imagine you’re using your favorite MP3 player, like iTunes. You can use its interface to add

new songs, manage playlists and rename tracks. The player takes care of maintaining a little

database of all your songs along with their associated names and data. It also takes care of

playing the songs and, as it does, the user interface is constantly updated with the current song

title, the running time, and so on.

Well, underneath it all sits the Model-View-Controller...

e

|
-

>

7

y i W
You see the song

A E*ﬁ
display update and

\ -4
L
hear the new song ’ \
playing

—

=N

Model tells the
view the state has

changed

class Player
play() {}

the rip() {}
the 0%/ por= burn () {} sond
in IeW Ofa ,ﬁes
State Change

/ Model

The model contains all the state,
data, and awlicabon |05'|L needed
+o maintain and yla\/ mp3s.

Download at WoweBook.Com

Controller asks
Player model to
begin playing

V/

Controller

controller
manipulates
the model

529

Now let’s zoom into the
mvc up close

A closer look...

The MP3 Player description gives us a high level view of MVC, but it really doesn’t help you
understand the nitty gritty of how the compound pattern works, how you’d build one yourself, or
why it’s such a good thing. Let’s start by stepping through the relationships among the model, view
and controller, and then we’ll take second look from the perspective of Design Patterns.

CONTROLLER

Takes user input and figures out
what it means to the model.

MODEL
o T sl sl
Gives you a presentation H"fcs levs it lives in appclilcla"noré 'ng_lc. Ihe
of the model. The view tonTrotith model is oblivious to
usually gets the state fhe mddle. the view and controller,
and data it needs to although it provides an
display directly from interface to manipulate

and retrieve its

state and it can send
@ notifications of state
changes to observers.

the model. /

Change your
The user did Controller state
something
Change your
disP'“Y class Player

play(){)

@ i

urn

l T've changed! -

: / Model
View ® /
? \I need your stafe .
information Here's the model;
This is the user it handles all
ntecfate. av\,\\(,a{jon data

and \0‘5‘5'

530 Chapter 12

Download at WoweBook.Com

You're the user — you interact with the view.

compound patterns

The view is your window to the model. When you do something to the view (like click
the Play button) then the view tells the controller what you did. It's the controller's

Jjob to handle that.

The controller asks the model to change its state.

The controller takes your actions and interprets them. If you click on a button, it's
the controller's job to figure out what that means and how the model should be
manipulated based on that action.

The controller may also ask the view to change.

When the controller receives an action from the view, it may need to tell the view
to change as a result. For example, the controller could enable or disable certain
buttons or menu items in the interface.

The model notifies the view when its state has changed.

When something changes in the model, based either on some action you took (like
clicking a button) or some other internal change (like the next song in the playlist
has started), the model notifies the view that its state has changed.

The view asks the model for state.

The view gets the state it displays directly from the model. For instance, when the
model notifies the view that a new song has started playing, the view requests the
song hame from the model and displays it. The view might also ask the model for
state as the result of the controller requesting some change in the view.

Q- Does the controller ever become
an observer of the model?

AZ Sure. In some designs the controller
registers with the model and is notified

of changes. This can be the case when
something in the model directly affects the
user interface controls. For instance, certain
states in the model may dictate that some
interface items be enabled or disabled. If
so, it is really controller’s job to ask the view
to update its display accordingly.

tbe e1qre no o
Dumb @uesﬂons

Q: All the controller does is take user
input from the view and send it to the
model, correct? Why have it at all if that
is all it does? Why not just have the code
in the view itself? In most cases isn’t the
controller just calling a method on the
model?

AZ The controller does more than

just “send it to the model”, the controller is
responsible for interpreting the input and
manipulating the model based on that input.
But your real question is probably “why can’t
| just do that in the view code?”

Download at WoweBook.Com

You could; however, you don’t want to

for two reasons: First, you'll complicate
your view code because it now has two
responsibilities: managing the user interface
and dealing with logic of how to control the
model. Second, you're tightly coupling your
view to the model. If you want to reuse

the view with another model, forget it. The
controller separates the logic of control from
the view and decouples the view from the
model. By keeping the view and controller
loosely coupled, you are building a more
flexible and extensible design, one that can
more easily accommodate change down the
road.

531

the patterns in mve

Looking at MVC through
patterns-colored glasses

We’ve already told you the best path to learning the MVC is to see it for what it
is: a set of patterns working together in the same design.

Let’s start with the model. As you might have guessed the model uses
Observer to keep the views and controllers updated on the latest state changes.
The view and the controller, on the other hand, implement the Strategy Pattern. The controller
1s the behavior of the view, and it can be easily exchanged with another controller if you

want different behavior. The view itself also uses a pattern internally to manage the windows,
buttons and other components of the display: the Composite Pattern.

Let’s take a closer look:

Strategy

The view and controller implement the classic Strategy Pattern: the
view is an object that is configured with a strategy. The controller
provides the strategy. The view is concerned only with the visual
aspects of the application, and delegates to the controller for any
decisions about the interface behavior. Using the Strategy Pattern also
keeps the view decoupled from the model because it is the controller
that is responsible for interacting with the model to carry out user
requests. The view knows nothing about how this gets done.

—

Controller

_ Obser Ver
os\te

class Player

Q,QVN\Q

zip(){}
‘ l buzn () {}

— -

Model

View

The model implements the Observer Pattern
to keep interested objects updated when state
changes occur. Using the Observer Pattern
keeps the model completely independent of
the views and controllers. It allows us to use
different views with the same model, or even
use multiple views at once.

The display consists of a nested set of win-
dows, panels, buttons, text labels and so on.
Each display component is a composite (like
a window) or a leaf (like a button). When the
controller tells the view to update, it only has
to tell the top view component, and Composite
takes care of the rest.

532

Download at WoweBook.Com

compound patterns
Observer

Observers

w All these observers will be
Observable

notified whenever state
changes in the model.

My state has

changed! \

Controller
Any o \')cd: that's
intevested in state
thanges in the model
vcgis{;crs with the

model as an obsevver-

I'd like to register
as an observer

The model has no dependenties on
viewers ov tontrollers!

Strategy

The user did [T_\?(,oy&xo“cv is dec
something ~ / skrategy for the view
/\/‘ _ s the ob)ect that
Th knows how Lo handle
dclcga{;sv 'z:’ ‘ Controller Lhe user actiors.
the tontroller
to handle Lhe < .
user atLions.

We €an swy in
View

z:"fhcr bchaViW ‘For
......... v € view by ¢hangi
........ - the con troller. 9ing
Controller
The view only worries about presentation, the controller worries
about translating user input to attions on the model.
H aint
Composite 0T N e of
, The view is 3 tomposite
000 Window 2 qul comvoncn{',s (\abels,
200 Mdye——
SBPM; —————

buttons, fext entrys

ete). The top level
% ontains other

(,omvoncn‘h (4

Lom‘?oncn{'}, whith contain
other comvoncn{;s and so
e M on until you 9et to the
: leal nodes.

you are here » 533
Download at WoweBook.Com

mvc and the dj view

Using MVC to control the beat...

It’s your time to be the DJ. When you’re a DJ it’s all about the beat. You might start
your mix with a slowed, downtempo groove at 95 beats per minute (BPM) and then
bring the crowd up to a frenzied 140 BPM of trance techno. You’ll finish off your set
with a mellow 80 BPM ambient mix.

How are you going to do that? You have to control the beat and you’re going to build
the tool to get you there.

Meet the Java N View

Let’s start with the view of the tool. The view allows you to create a
driving drum beat and tune its beats per minute...

A pulsing bav shows the beat in veal time.
O O O View : /
—

Current BPM: 120
T ——

The view has two Yav{:s;j

the part For viewin

A dis\vlay shows the turrent BPMs and is
automatically set whenever the BPM changes.

the state of {i:hc model

and the part Tor

tontrolling Hhings. ﬂ S
D) Control

Enter BPM: 120 You tan enter a specific BPM and click
; N {he Set bubton fo set 2 spetific beats

i i per minute, or you tan use the intrease

(<<) (>> > and detrease buttons for fine £unin5.
Detveases [ntveases
the BPM by the BPM by
one beat per one beat per
m'mu{',c- minute.

534 Chapter 12

Download at WoweBook.Com

compound patterns

Here's a few more ways to control the DJ View..

® © © Control
D) Control

4he beat You use the Stop
/ \\(Lou\\(ca“bs\’hi;:os\:g the button to shut | e e 6 Control
eking

g{-’ark meni tem in the down the beat
«DY Con J(;ro\" men gcmra‘{‘jon.

/ Notice Stop is Notice Start is /
u disabled wntil you disabled after the

start the beat. beat has started.

A“ user attions are
sent o the tontroller.

The controller is in the middle...

The controller sits between the view and

model. It takes your input, like selecting “Start”

from the DJ Control menu, and turns it into an m

action on the model to start the beat generation.
The eontroller takes input
from the user and Figures out
how to translate that into
vequests on the model.

Controller
Let’s not forget about the model underneath it all...

You can’t see the model, but you can hear it. The
model sits underneath everything else, managing the
beat and driving the speakers with MIDI.

The BeatModel is the heart of the
application. [t implements the logie
to start and stop the beat, set

the beats per minute (BPM), and
9enerate the sound.

The model also allows us o

obtain its current state through
the gctBPMO method.

you are here » 535

Download at WoweBook.Com

the dj model, view and controller

Putting the pieces together

The beat is set at 119 BPM and you
would like %o inevease it to 120.

® © © Control

DJ Control

Enter BPM: Cliek on the
i intrease beat

C : g button...

<< > }

View
...whith vesults in the
controller being invoked.
/ The eontroller asks
fhe model o update
- its BPM by one.
Controller
You see the beatbar
pulse every I/2 setond.
View \2 Because the BPM is 120, the view gets
a beat no‘Ei‘Fica'Eion evevy |/2.
® O O View Y setond.
, ! |\ - setBPM() off() 1

Current BPM: 120 W
"

The view is updated View is notified that the BPM
thanged. [t ealls 0etBPMO on

to 120 BPM.
the model state.

536 Chapter 12

Download at WoweBook.Com

Building the pieces

compound patterns

Okay, you know the model is responsible for maintaining all the data, state and any
application logic. So what’s the BeatModel got in it? Its main job is managing the beat,
so it has state that maintains the current beats per minute and lots of code that generates
MIDI events to create the beat that we hear. It also exposes an interface that lets the
controller manipulate the beat and lets the view and controller obtain the model’s state.
Also, don’t forget that the model uses the Observer Pattern, so we also need some methods
to let objects register as observers and send out notifications.

Let’s check out the BeatModellnterface before looking at the

implementation:

These are the methods
the tontroller will use to
divect the model based on

user intevattion.

These methods allow
Lhe view and the
tontroller £o get

state and to become

observers.

Lalled after e
public interface BeatModelInterface { |Ws ‘.’)‘*’s \ s .msuv\k\aud'
void initialize(); < Bea’cM°d°
. . «&—— These methods turn the beat
void on(); /——— 3cncra{:or on and ofL.
void off(); This method sets the beats per
/_—\ minute. After it is called, the beat
void setBPM(int bpm); frequency thanges immediately.

int getBPM() ; k\ The 5:{:BPM() method vreturns

the turvent BPMs, or O if
void registerObserver (BeatObserver 0); +4he gcncra{‘,o\r is of £.

void removeObserver (BeatObserver o);
void registerObserver (BPMObserver o) ;
—_—

void removeObserver (BPMObserver o) ;

/

This should look
Lamiliar, these
methods allow
objects to vegister
as observers for

state changes.

We've split this into two kinds of
ObSCYVCY‘S: ObSCY'VCY'S {ha{ Wahk £0 bC
notified on every beat, and observers
that ‘)us{: want to be notified with
the beats per minute thange.

you are here » 537

Download at WoweBook.Com

the beat model

Now let’s have a look at the concrete BeatModel class:

This is needed for
We implement the BeatModellnterfate. 2 the MID| eode.

public class BeatModel implements BeatModelInterface, MetaEventListener {

538

Sequencer sequencer; =) _
ArrayList beatObservers = new ArrayList(); The sequencer is the °bJe('J° that knows how to
ArrayList bpmObservers = new ArrayList(); genevate veal beats (that You &an hear)).

int bpm = 90; |
// other instance variables here \ These Arva\/Lis{:s hold the two kinds of
observers (Beat and BPM obsevvers).

public void initialize() {

setUpMidi () ; &— This method does The bpm instante vaviable holds the (:rca\ucnc\/
buildTrackAndStart () ; setup on the sequenter of beats — by default, 90 BPM.
} and sets up the beat

tratks for us.
public void on () {

sequencer.start () ; E—— The on) method starts the sequenter and
} setBPM (90) ; sets the BPMs to the default: 90 BPM.
publizt;gbiqc(ioc))ff (O < And ofFO shuts it down by setting BPMs o

0 .
sequencer.stop () ; and S£OPPIhS the sequencer.

} K_’\ The setBPMO method is the way the controller

public void setBPM(int bpm) { manipulates the beat. [t does three things:
this.bpm = bpm; & (I) Sets the bpm instance variable
sequencer.setTempoInBPM (getBPM()) ;
notifyBPMObservers () ; K (2) Asks the sequenter to thange its BPMs.
: & (3) Notifies all BPM Observers that the BPM
public int getBEM() { K"’\ has ¢hanged.
t bpm; . . .
} e The 5C£BPM() method \')"5{3 veturns the bpm instance variable, which
indicates the turrent beats per winute.
void beatE t() { . . A
notifygiztobservers ()7 S The beatEvent() method, whith is not in the BcatMochIT\{:cr(-‘acc, is
} ¢alled by the MIDI eode whenever a new beat starts. This method

nokifies all BeatObservers that a new beat has ")us{: otturred.

// Code to register and notify observers

// Lots of MIDI code to handle the beat h

Ready-bake Code

This model uses Java’'s MIDI support to generate beats.You can check out the
complete implementation of all the DJ classes in the Java source files available
on the headfirstlabs.com site, or look at the code at the end of the chapter.

Chapter 12

Download at WoweBook.Com

The View

compound patterns

Now the fun starts; we get to hook up a view and visualize the BeatModel!

The first thing to notice about the view is that we’ve implemented it so that it is displayed in two separate
windows. One window contains the current BPM and the pulse; the other contains the interface
controls. Why? We wanted to emphasize the difference between the interface that contains the view of
the model and the rest of the interface that contains the set of user controls. Let’s take a closer look at

the two parts of the view:

L/\

O O O View
The DJ v ‘ Current BPM: 120 |
e DJ view | —
displays two
aspetts of the
BeatModel...

..and a pulsing “beat
.the turrent beats bar” pulses in synch

with the beat, driven
by the BeatObserver
ho{i‘Cica{ions.

per winute, Lrom
the BPMObserver
notifications...

We've separated
the view of the

model from the
view with the

controls. ® © © Control
‘ D) Control ‘

Enter BPM:

€ Set I

/7 C<< HC>> >

This is 4he
that You uscPat:{: o the view

This viey, thange the beat.
do o . fPaSseS cvcry'(;hina You
er.

he cohfrol |

—@wtuv«
vaweE®w

Our BeatModel makes no assumptions about the view. The model is implemented using the
Observer Pattern, so it just notifies any view registered as an observer when its state changes. The
view uses the model’s API to get access to the state. We've implemented one type of view, can you
think of other views that could make use of the notifications and state in the BeatModel?

A lightshow that is based on the veal—time beat.

A textual view that displays a music genve based on the BPM (ambient, downbeat, techno, ete.).

you are here » 539

Download at WoweBook.Com

the dj view

Implementing the View

The two parts of the view — the view of the model, and — The code on these t\!\lo
the view with the user interface controls — are displayed Wat CII It’ pages is just an outline!

in two windows, but live together in one Java class. We'll
first show you just the code that creates the view of the
model, which displays the current BPM and the beat bar.
Then we’ll come back on the next page and show you just

What we've done here is split ONE

class into TWO, showing you one part
of the view on this page, anq the oth_er
part on the next page. All this code is

the code that creates the user interface controls, which roally in ONE class - DJViewjava. It's
displays the BPM text entry field, and the buttons. all listed at the back of the chapter.

DView is an observer for both veal—time beats and BPM changes.

public class DJView implements ActionListener, BeatObserver, BPMObserver {

540

BeatModelInterface model; @
ControllerInterface controller; \ The view holds a veferente to both the model and
JFrame viewFrame; {th Lon'bro“cv. The Con{:ro“cr is onl\/ used b\/ {‘)\C

JPanel viewPanel; B tontrol in{cv(:ac:, which we'll 90 over in a set...
BeatBar beatBar; eve, we treate g Loy
JLabel bpmOutputLabel; tomponents {or the disrlay.

public DJView (ControllerInterface controller, BeatModelInterface model) {
this.controller = controller;

this.model = model; Q The eonstructor gets a veerence

model.registerObserver ((BeatObserver) this) ; %o the tontroller and the model, -
model . registerObserver ((BPMObserver) this); and we stove veferentes to those in
} the instante variables.
public void createView() { We also rcgis{:er as a Bca‘EObscrvc\r and a
// Create all Swing components here BPMObsevver of the rodel.
}
. , L— The updateBPMO method is called when a state change
publ}c void updateBPM() { oteurs in the model. When that happens v update Lhe
%Iflt (lgpm - mo;ie% -getBEM(); & display with the cwrvent BPM. We can get this value
i pm == X h the e
bpmOutputLabel.setText (Yoffline”) ; Y rcﬂ"“{'f'"a it dlrcd:ly £rom the model.
} else {

bpmOutputLabel.setText (“Current BPM: “ + model.getBPM()) ;
}

}

(-\ Likewise, the updateBeat() method is ealled
when the model starts a new beat. When that
happens, we need to pulse owr “beat bar.” We
do this by setting it to its maximum value (100)
and IC‘H‘,ing it handle the animation of the pulse.

public void updateBeat () {
beatBar.setValue (100);
}

Chapter 12

Download at WoweBook.Com

compound patterns

Implementing the View, continved...

Now, we'll look at the code for the user interface controls part of the view. This view lets you control the
model by telling the controller what to do, which in turn, tells the model what to do. Remember, this code
is in the same class file as the other view code.

BPMObserver ({

BeatObserver,

public class DJView implements ActionListener,
BeatModelInterface model;
ControllerInterface controller;
JLabel bpmLabel;

® © O Control
DJ Control

JTextField bpmTextField;
JButton setBPMButton;
JButton increaseBPMButton;
JButton decreaseBPMButton;
JMenuBar menuBar;

JMenu menu;

JMenulItem startMenultem;
JMenultem stopMenultem;

\/\ This method eveates all
interface. [t also
or start items ave thosen,
ealled on the controller.

public void createControls() {
// Create all Swing components here

}
public void enableStopMenultem() {
stopMenultem.setEnabled(true);

}

All these methods allow the start and

s{oP items in the menu to be enabled and
disabled. We'll see that the tontroller uses
these to thange the interface.

public void disableStopMenultem() {
stopMenultem.setEnabled (false);
}

public void enableStartMenultem() {
startMenultem.setEnabled (true);

}

public void disableStartMenultem() {
startMenultem.setEnabled(false) ;
}

the ﬂo'\{'] O'S ahd PlaCCS 'iC"\ n 'IC
'E {:
‘(‘.&kcs tare O“ {'lc menu. thn

the torresponding meth

This method is ¢alled when a button is ¢licked.

public void actionPerformed(ActionEvent event)

if (event.getSource()
int bpm Integer.

[£ the Set button is
tlicked then it is passed
on to the controller along
with the new bpm.

{
== setBPMButton) {
parselnt (bpmTextField.getText ()) ;

controller.setBPM (bpm) ;

} else if

} else if

(event.getSource
controller.increaseBPM
(event.getSource
controller.decreaseBPM

== increaseBPMButton) {

== decreaseBPMButton) {

Likewise, if the intrease

or detrease buttons are
Z tlicked, this information is
passed on to the controller.

’

O
O
O
O

541

you are here »

Download at WoweBook.Com

the dj controller

Now for the Controller

It’s time to write the missing piece: the controller. Remember the controller is
the strategy that we plug into the view to give it some smarts.

Because we are implementing the Strategy Pattern, we need to start with an
interface for any Strategy that might be plugged into the DJ View. We’re going
to call it ControllerInterface.

Heve ave all the
(/ methods the view éan
public interface ControllerInterface { ¢all on the eontroller.
void start();
void stop(); SN\ These should look £amiliar after seeing the model’s
void increaseBEM(); ‘\ interface. You tan stop and start the beat
VO::Ld decreasgBPM 07 «— generation and thange the BPM. This intecface is
vold setBEM(int bpm) 7 E— “rither” than the BeatModel interfate because you
tan adjust the BPMs with intrease and decvease.

i 5&;3 Design Puzzle

You've seen that the view and controller together make use of the Strategy Pattern. Can you draw a
class diagram of the two that represents this pattern?

542 Chapter 12

Download at WoweBook.Com

compound patterns

And here’s the implementation of the controller:
The tontroller implements

[_ the Controller|nterfate.

public class BeatController implements ControllerInterface ({

ge;@t?be/lode}interface model; & The tontroller is the treamy stuff
lew V1iew,
in the middle of the MVC oreo
public BeatController (BeatModelInterface model) ({ tookie, so it is the ob)et{ that
this.model = model; gets to hold on +o the view and the
view = new DJView (this, model); model and glues it all together.
view.createView () ;)
view.createControls () ; 6\ The LOV\‘{'XO"CY‘ 1S PaSSCd '{')\C
view.disableStopMenultem () ; model in the tonstructor and
view.enableStartMenultem() ; then treates the view.

model.initialize();
| P When Yyou thoose Start from the uscrﬂ\
pubtic void start() interface meny, the controller turns the

model.on () ; model on and then alters the user inter ac;
view.disableStartMenultem() ; so that the start menu item is disabled an
view.enableStopMenultem() ; the sjco‘, menu item is enabled.

}

public void stop() {

Likewise, when You ¢hoose S{:oy Lrom the

del.off();
model.off () menw, the controller turns the model of £

view.disableStopMenultem() ;

view.enableStartMenuItem() ; and alters the user interface so that

} the stop menu item is disabled and the
start menu item is enabled.

public void increaseBPM() { é_\

int bpm = model.getBPM() ;

model.setBPM(bpm + 1); [£ the inerease button is ¢licked, the
} tontroller gets the curvent BPMm NOTE: the controller is

£rom the model, adds one, and then making the intelligent

public void decreaseBPM() { seks a new BPM. detisions for the view.

int bpm = model.getBPM() ;
model.setBPM(bpm - 1);
) Same thing here, only we subtract
one from the curvent BPM.

The view jus{ knows how
to turn menu items on

and 0‘“‘, it doesn’t know
the situations in which it

public void setBPM(int bpm) {
é\ should disable them.

model.setBPM (bpm) ;

} F'mall\/, if the user interface is used to

set an arbitrary BPM, the eontroller
instruets the model to set its BPM.

you are here » 543

Download at WoweBook.Com

putting it all together

Putting it all together..

We've got everything we need: a model, a view, and a controller.
Now it’s time to put them all together into a MVC! We’re going to
see and hear how well they work together.

All we need 1s a little code to get things started; it won’t take much:

public class DJTestDrive {
public static void main (String[] args) {
BeatModelInterface model = new BeatModel () ; Fwd:ufafcanmdd
ControllerInterface controller = new BeatController (model) ; ’

) __
.then treate a tontroller and

pass it the model. Remember, the
tontroller treates the view, so we

don't have to do that.

And now for a test run...
File Edit Window Help LetTheBassKick
% java DJTestDrive)
% Run this...
...and \/ou’ll see this. ; \
Things to do © O O View ® O O Control
(1) Start the beat generation with the Start menu item; — DJ Control
notice the controller disables the item afterwards. |
Current BPM: 120 /| Enter BPM:
e Use the text entry along with the increase and decrease T —
buttons to change the BPM. Notice how the view & Set Ry
display reflects the changes despite the fact that it has < 4
no logical link to the controls. (<<) (s> \‘

Notice how the beat bar always keeps up with the beat
since it’s an observer of the model.

Put on your favorite song and see if you can beat match
the beat by using the increase and decrease controls.

© stop the generator. Notice how the controller disables
the Stop menu item and enables the Start menu item.

544 Chapter 12

Download at WoweBook.Com

compound patterns

Exploring Strategy

Let’s take the Strategy Pattern just a little further to get a better
feel for how it is used in MVC. We’re going to see another
friendly pattern pop up too — a pattern you’ll often see hanging
around the MVC trio: the Adapter Pattern.

Think for a second about what the DJ View does: it displays

a beat rate and a pulse. Does that sound like something else?
How about a heartbeat? It just so happens we happen to have a
heart monitor class; here’s the class diagram:

’ d for getting
HeartModel Weve 50{: a metho
/_\ fhe tuevent heart vate.

getHeartRate()
registerBeatObserver()

registerBPMODbserver() 3 & Ahd |utk'll\/; ',{-,5 dcvclo\?crs knew abou{:
Il other heart methods the Beat and BPM Observer in{cr«caccs!

- @ RALN
It certainly would be nice to reuse our current view with the HeartModel, but we need a controller that
works with this model. Also, the interface of the HeatModel doesn’t match what the view expects

because it has a getHeartRate() method rather than a getBPM(). How would you design a set of
classes to allow the view to be reused with the new model?

you are here » 545

Download at WoweBook.Com

mvc and adapter

Adapting the Model

For starters, were going to need to adapt the HeartModel to a BeatModel. If we don’t, the view
won'’t be able to work with the model, because the view only knows how to getBPM(), and the
equivalent heart model method is getHeartRate(). How are we going to do this? We’re going to
use the Adapter Pattern, of course! It turns out that this is a common technique when working
with the MVC: use an adapter to adapt a model to work with existing controllers and views.

Here’s the code to adapt a HeartModel to a BeatModel:
We need £o implement the
\/\ target inkerfate, in this
case, BeatModellnterface.

public class HeartAdapter implements BeatModelInterface {
HeartModelInterface heart;

public HeartAdapter (HeartModelInterface heart) { x W csiorcarc(:crcncc
evre, W

this.h t =h t;
} e - L/ {0 the heart model.

public void initialize() {} s;\\
, . We don't know what these would do
bl d
public void on() {} &——— Ly 3 heart, but it sownds seary. So
public void off () {} —— el Just leave them as “no ops-

public int getBPM() {

.) | 'US'E
. P When Sc{:BPMO is called, we'll §
[franslate it to a getheartRate() call

}
on the heart model.

public void setBPM(int bpm) {} é—\
We don't want 4o do this on a heart!

public void registerObserver (BeatObserver o) { Again, let’s leave it as a “no op”-
heart.registerObserver (o) ;

}

public void removeObserver (BeatObserver o) { Heve are our obsevver methods.
heart.removeObserver (o) ; We ")us{: dclcga{c them to the

) wrapped heart model.

public void registerObserver (RPMObserver o) {
heart.registerObserver (0) ;

}

public void removeObserver (BPMObserver o) {
heart.removeObserver (o) ;

}

546 Chapter 12

Download at WoweBook.Com

compound patterns

Now we're ready for a HeartController

With our HeartAdapter in hand we should be ready to create a controller and get the
view running with the HeartModel. Talk about reuse!

The HeartController implements
the Controllerinterface, \')us{:
like the BeatController did.

public class HeartController implements ControllerInterface {
HeartModelInterface model;
DJView view;

public HeartController (HeartModelInterface model) ({ Like b°£°"' the controller
this.model = model; treates the view and gets
view = new DJView (this, new HeartAdapter (model)) ; cvcry{:hing 3|ucd {:ogc{:hcv.

view.createView() ;
view.createControls () ;

view.disableStopMenultem () ; Theve is one thange: we are passed 3
view.disableStartMenultem() ; HeartModel, not a BeatModel..

}
..and we need to wrap that
model with an adapter before
public void stop() () we hand it to the view.
Finally, the HeartController disables the
menu items as they aren't needed.

public void start() {}

public void increaseBPM() {}

ublic void decreaseBPM
P 0u Theve's not a lot to do here;

public void setBPM(int bpm) {} after all, we can't veally COV\.{‘,rol
} heavts like we tan beat mathines.

And that’s it! Now it’s time for some test code...

public class HeartTestDrive ({
public static void main (Stringl[] args) {
HeartModel heartModel = new HeartModel () ;
ControllerInterface model = new HeartController (heartModel) ;

| gl
All we need to do is eveate

the tontroller and pass it a
heart monitor.

you are here » 547

Download at WoweBook.Com

test the

And now for a test run...

File Edit Window Help CheckMyPulse

% java HeartTestDrive)
Run this...

...and \/ou’ll see this. ’\/

© O O Control
DJ Control
Enter BPM:
Set
<< >>
Things to do © O O View
—

o Notice that the display works great with a heart! Current BPM: 68
The beat bar looks just like a pulse. Because the T —
HeartModel also supports BPM and Beat Observers we
can get beat updates just like with the DJ beats.

e As the heartbeat has natural variation, notice the
display is updated with the new beats per minute. Nice hcaVchy

heart vate.

548

Each time we get a BPM update the adapter is doing
its job of translating getBPM() calls to getHeartRate()
calls.

The Start and Stop menu items are not enabled
because the controller disabled them.

The other buttons still work but have no effect
because the controller implements no ops for them.
The view could be changed to support the disabling of
these items.

Download at WoweBook.Com

