Intro to DevOps

COMPSCI 308 — 2022-04-11
Luke Moffett, Duke CS

Duke

Related |Ideas

. Incident Management : :

Collaboration sioonitoring
DContalners

Infrastructure as Code

. Git
Orchestration "' Testing virtualization

Continuous Integration
Deployment Infrastructure

| P
a Jenkins l Automation Framework I "PPet @
Release SecurityDevOps Cuiture Docker

Duke

Software Delivery Models

Software as a Product Software as a Service

Software Package

@ Software Package
ﬁ 1. Download .‘} «\. O
2. Install .’ ﬁ
Package
Repository I I User
o
N L ® - 3
SR A || TN
User : .
Engineering
Engineerin
Compute 8 8 -

Team
User Land Software Organization Software Organization DUke

Traditional Software Operations

-\ P

@
dh

Development Operations

e Prioritizes Features with Stakeholders e Executes Release to Users (Deployment)

e Implements Features (Coding) e Purchases and Maintains Servers

e Tests Features e Handles technical issues for Users (Service
e |nitiates Release to Users Desk)

e Handles outages (Incident Management)

A%

Duke

Moving Faster with DevOps Principles

* Automation
* Tight Integration between Development and

Operations Teams
*Small Changes with Fast Feedback Loops

* “Shift Left”

Duke

Key ldea: The Software Delivery Pipeline

Rollback on

Failure
Merge Trigger Continuous Integration [Continuous Delivery
(CI) (CD)
Developer

Notify on Failure

Duke

Key |dea: The Software Delivery Pipeline

Rollback on

@, :
Failure
Merge Trigger Continuous Integration Continuous Delivery
] (Cl) (CD)
Developer

1 Notify on Failure

Continuous Integration (Cl) Continuous Delivery (CD)
Pre-Commit Pre-Merge Post-Merge Integration NAENE
Checks Checks Checks Testing Automation

4) 4)\ 4 N\ 4 N 4 N N
I Code Code Unit Testing & Tests on Fresh Analyze
Q : N Install Package
< | Formatting Compilation Coverage Install Telemetry
e\ JN /L J J - J J
T N\ N\ : N N e N [N
> _ uality & .
e Commit Q Y Dynamic : Notify

Can Merge? Security) Publish Docs .
Message : Security Tests Engineers
. J J U Analysis) Y \. J Y,

DORA Metrics

Lead Time for Changes

e Length of time between when a
feature is agreed to to when it is
available to users

e Low is good
e Mean days — eg 13 days

Change Failure Rate

e Percentage of initiated changes
that do not complete
successfully

e Low is Good

Deployment Frequency

e Rate at which ANY new code is
made available to users

e High is Good
* Mean releases/day — eg 5/day

Time to Restore Service

e After an outage starts, the length
of time until users are no longer
experiencing the outage

e Low is Good

* As%-eg, 12.3% e Mean Minutes —eg, 104 minutes

Duke

DORA Metrics

Software delivery performance metric

Deployment frequency

For the primary application or service you work on, how often does your
organization deploy code to production or release it to end users?

Between once per
month and once
every 6 months

Medium

Between once per
week and once
per month

On-demand
(multiple deploys
per day)

Lead time for changes

For the primary application or service you work on, what is your lead time
for changes (i.e., how long does it take to go from code committed to code
successfully running in production)?

Between one
month and six
months

Between one
week and one
month

Between one day
and one week

Time to restore service Between one week Between one day Less than
. . . . and one month and one week one day

For the primary application or service you work on, how long does it

generally take to restore service when a service incident or a defect that

impacts users occurs (e.g., unplanned outage or service impairment)?

Change failure rate 46%-60% 16%-30% 0%-15%

For the primary application or service you work on, what percentage of
changes to production or released to users result in degraded service (e.g.,
lead to service impairment or service outage) and subsequently require
remediation (e.g., require a hotfix, rollback, fix forward, patch)?

Source:

Low/Medium/High
represent
groupings of
organizations
based on overall
DORA metric
performance

Duke

https://cloud.google.com/blog/products/devops-sre/dora-2022-accelerate-state-of-devops-report-now-out

Key Engineering Practices for DevOps

* Design
* Loose Coupling Between Systems
* Single Responsibility Principle Everywhere

* Automation
e Cl—Code Analysis and Testing
* CD - Safe Deployment, Incremental Rollouts, Deploy when Ready
* [aaC

* Operations
* Observability, Monitoring, and Alerting
* On-Call Rotations and Escalation Paths
e Blameless Postmortems

* Reliability
* Fault Tolerant Design, Redundancy, and Self Healing
 Safe Failure
* Backups and Data Recovery

Duke

Products, Tools, and Technologies

* Too Many to Count

e Common Tools

e SCM: GitHub/GitLab/BitBucket

* Containerization: Kubernetes/Docker

* Hosting: AWS/Microsoft Azure/Google Cloud
* |laaC: Terraform/Chef/Puppet/Ansible

e Observability: Splunk/DataDog/New Relic/AppDynamics/Dynatrace/Lightstep

* The Cloud Native Computing Foundation Landscape shows the
breadth of the environment:

Duke

https://landscape.cncf.io/

Summary

* DevOps is more a set of ideas than specific practices
* DevOps is best understood in the industrial context that created it

* Much of the major growth in tech in the 2010’s was companies
enabling these ideas, Cloud providers being the biggest examples
(AWS, Microsoft Azure, Google Cloud, etc)

* The industry has coalesced around a set of high-level practices and
metrics, but the implementation details are still a matter of
considerable debate and experimentation

* By extension, the tooling landscape continues to evolve. There are
many startups providing new tooling.

Duke

