
 

Copyright (c) 1996 Object Mentor, Inc.  All Rights Reserved.                                     1

 

The Interface Segregation
Principle

 

This is the fourth of my 

 

Engineering Notebook

 

 columns for 

 

The C++ Report

 

. The articles
that appear in this column focus on the use of C++ and OOD, and address issues of soft-
ware engineering. I strive
for articles that are prag-
matic and directly useful to
the software engineer in the
trenches. In these articles I
make use of Booch’s and
Rumbaugh’s new unified
Modeling Langage (UML
Version 0.8) for document-
ing object oriented designs.
The sidebar provides a
brief lexicon of this nota-
tion.

 

Introduction

 

In my last column (May 96) I discussed the principle of Dependency Inversion (DIP). This
principle states that modules that encapsulate high level policy should not depend upon
modules that implement details. Rather, both kinds of modules should depend upon
abstractions. To be more succinct and simplistic, abstract classes should not depend upon
concrete classes; concrete classes should depend upon abstract classes. A good example of
this principle is the T

 

EMPLATE

 

 M

 

ETHOD

 

 pattern from the GOF

 

1

 

 book. In this pattern, a
high level algorithm is encoded in an abstract base class and makes use of pure virtual
functions to implement its details. Derived classes implement those detailed virtual func-
tions. Thus, the class containing the details depend upon the class containing the abstrac-
tion.

In this article we will examine yet another structural principle: the Interface Segrega-
tion Principle (ISP). This principle deals with the disadvantages of “fat” interfaces.
Classes that have “fat” interfaces are classes whose interfaces are not cohesive. In other

 

1.

 

Design Patterns

 

, Gamma, et. al. Addison Wesley, 1995

Sidebar: Unified Notation 0.8

Base ClassBase ClassBase Class

Derived 1 Derived 2

Had by
Reference

Had By Value

Used



 

2

 

Interface Pollution

 

words, the interfaces of the class can be broken up into groups of member functions. Each
group serves a different set of clients. Thus some clients use one group of member func-
tions, and other clients use the other groups.

The ISP acknowledges that there are objects that require non-cohesive interfaces;
however it suggests that clients should not know about them as a single class. Instead, cli-
ents should know about abstract base classes that have cohesive interfaces. Some lan-
guages refer to these abstract base classes as “interfaces”, “protocols” or “signatures”. 

In this article we will discuss the disadvantages of “fat” or “polluted” interfacse. We
will show how these interfaces get created, and how to design classes which hide them.
Finally we will present a case study in which the a “fat” interface naturally occurs, and we
will employ the ISP to correct it.

 

Interface Pollution

 

Consider a security system. In this system there are Door objects that can be locked and
unlocked, and which know whether they are open or closed. (See Listing 1).

 

Listing 1

 

Security Door

 

class Door
{
  public:
    virtual void Lock()   = 0;
    virtual void Unlock() = 0;
    virtual bool IsDoorOpen() = 0;
};

 

This class is abstract so that clients can use objects that conform to the Door interface,
without having to depend upon particular implementations of Door. 

Now consider that one such implementation. TimedDoor needs to sound an alarm
when the door has been left open for too long. In order to do this the TimedDoor object
communicates with another object called a Timer. (See Listing 2.)

 

Listing 2

 

Timer

 

class Timer
{
  public:
    void Regsiter(int timeout, TimerClient* client);
};

class TimerClient
{
  public:
    virtual void TimeOut() = 0;
};



 

3

 

: The Interface Segregation Principle

 

When an object wishes to be informed about a timeout, it calls the Register function
of the Timer. The arguments of this function are the time of the timeout, and a pointer to a
TimerClient object whose TimeOut function will be called when the timeout expires.

How can we get the TimerClient class to communicate with the TimedDoor class so
that the code in the TimedDoor can be notified of the timeout? There are several alterna-
tives. Figure 1 shows a common solution. We force Door, and therefore TimedDoor, to
inherit from TimerClient. This ensures that TimerClient can register itself with the Timer
and receive the TimeOut message.

Although this solution is common, it is not without problems. Chief among these is
that the Door class now depends upon TimerClient. Not all varieties of Door need timing.
Indeed, the original Door abstraction had nothing whatever to do with timing. If timing-
free derivatives of Door are created, those derivatives will have to provide nil implementa-
tions for the TimeOut method. Moreover, the applications that use those derivatives will
have to #include the definition of the TimerClient class, even though it is not used.

Figure 1 shows a common syndrome of object oriented design in statically typed lan-
guates like C++. This is the syndrome of interface pollution. The interface of Door has
been polluted with an interface that it does not require. It has been forced to incorporate
this interface solely for the benefit of one of its subclasses. If this practice is pursued, then
every time a derivative needs a new interface, that interface will be added to the base class.
This will further pollute the interface of the base class, making it “fat”. 

Moreover, each time a new interface is added to the base class, that interface must be
implemented (or allowed to default) in derived classes. Indeed, an associated practice is to
add these interfaces to the base class as 

 

nil

 

 virtual functions rather than pure virtual func-
tions; specifically so that derived classes are not burdened with the need to implement
them. As we learned in the second article of this column, such a practice violates the
Liskov Substitution Principle (LSP), leading to maintenance and reusability problems.

TimerClient

Door

TimedDoor

Figure 1
TimerClient at top of hierarchy



 

4

 

Interface Pollution

 

Separate Clients mean Separate Interfaces.

 

Door and TimerClient represent interfaces that are used by complely different clients.
Timer uses TimerClient, and classes that manipulate doors use Door. Since the clients are
separate, the interfaces should remain separate too. Why? Because, as we will see in the
next section, clients exert forces upon their server interfaces. 

 

The backwards force applied by clients upon interfaces.

 

When we think of forces that cause changes in software, we normally think about how
changes to interfaces will affect their users. For example, we would be concerned about
the changes to all the users of TimerClient, if the TimerClient interface changed. However,
there is a force that operates in the other direction. That is, sometimes it is the user that
forces a change to the interface. 

For example, some users of Timer will register more than one timeout request. Con-
sider the TimedDoor. When it detects that the Door has been opened, it sends the Register
message to the Timer, requesting a timeout. However, before that timeout expires the door
closes; remains closed for awhile, and then opens again. This causes us to register a 

 

new

 

timeout request before the old one has expired. Finally, the first timeout request expires
and the TimeOut function of the TimedDoor is invoked. And the Door alarms falsely.

We can correct this situation by using the convention shown in Listing 3. We include a
unique timeOutId code in each timeout registration, and repeat that code in the TimeOut
call to the TimerClient. This allows each derivative of TimerClient to know which timeout
request is being responded to.

 

Listing 3

 

Timer with ID

 

class Timer
{
  public:
    void Regsiter(int timeout, 
                  int timeOutId, 
                  TimerClient* client);
};

class TimerClient
{
  public:
    virtual void TimeOut(int timeOutId) = 0;
};

 

Clearly this change will affect all the users of TimerClient. We accept this since the
lack of the timeOutId is an oversight that needs correction. However, the design in Figure
1 will also cause Door, and all clients of Door to be affected (i.e. at least recompiled) by
this fix! Why should a bug in TimerClient have 

 

any

 

 affect on clients of Door derivatives
that do not require timing? It is this kind of strange interdependency that chills customers



 

5

 

: The Interface Segregation Principle

 

and managers to the bone. When a change in one part of the program affects other com-
pletely unerlated parts of the program, the cost and repercussions of changes become
unpredictable; and the risk of fallout from the change increases dramatically.

 

But it’s just a recompile.

 

True. But recompiles can be very expensive for a number of reasons. First of all, they take
time. When recompiles take too much time, developers begin to take shortcuts. They may
hack a change in the “wrong” place, rather than engineer a change in the “right” place;
because the “right” place will force a huge recompilation. Secondly, a recompilation
means a new object module. In this day and age of dynamically linked libraries and incre-
mental loaders, generating more object modules than necessary can be a significant disad-
vantage. The more DLLs that are affected by a change, the greater the problem of
distributing and managing the change.

 

The Interface Segregation Principle (ISP)

 

C

 

LIENTS

 

 

 

SHOULD

 

 

 

NOT

 

 

 

BE

 

 

 

FORCED

 

 

 

TO

 

 

 

DEPEND

 

 

 

UPON

 

 

 

INTERFACES

 

 

 

THAT

 

 

 

THEY

 

 

 

DO

 

 

 

NOT

 

 

 

USE

 

.

 

When clients are forced to depend upon interfaces that they don’t use, then those clients
are subject to changes to those interfaces. This results in an inadvertent coupling between
all the clients. Said another way, when a client depends upon a class that contains inter-
faces that the client does not use, but that other clients 

 

do

 

 use, then that client will be
affected by the changes that those other clients force upon the class. We would like to
avoid such couplings where possible, and so we want to separate the interfaces where pos-
sible.

 

Class Interfaces vs Object Interfaces

 

Consider the TimedDoor again. Here is an object which has two separate interfaces used
by two separate clients; Timer, and the users of Door. These two interfaces 

 

must

 

 be imple-
mented in the same object since the implementation of both interfaces manipulates the
same data. So how can we conform to the ISP? How can we separate the interfaces when
they must remain together?

The answer to this lies in the fact that clients of an object do not need to access it
through the interface of the object. Rather, they can access it through delegation, or
through a base class of the object. 



 

6

 

The Interface Segregation Principle (ISP)

 

Separation through Delegation

 

We can employ the 

 

object form

 

 of theA

 

DAPTER

 

2

 

 pattern to the TimedDoor problem.
The solution is to create an adapter object that derives from TimerClient and delegates to
the TimedDoor. Figure 2 shows this solution. 

When the TimedDoor wants to register a timeout request with the Timer, it creates a
DoorTimerAdapter and registers it with the Timer. When the Timer sends the TimeOut
message to the DoorTimerAdapter, the DoorTimerAdapter delegates the message back to
the TimedDoor.

This solution conforms to the ISP and prevents the coupling of Door clients to Timer.
Even if the change to Timer shown in Listing 3 were to be made, none of the users of Door
would be affected. Moreover, TimedDoor does not have to have the exact same interface
as TimerClient. The DoorTimerAdapter can 

 

translate

 

 the TimerClient interface into the
TimedDoor interface. Thus, this is a very general purpose solution. (See Listing 4)

 

Listing 4

 

Object Form of Adapter Pattern

 

class TimedDoor : public Door
{
  public:
    virtual void DoorTimeOut(int timeOutId);
};

class DoorTimerAdapter : public TimerClient
{
  public:
    DoorTimerAdapter(TimedDoor& theDoor)
    : itsTimedDoor(theDoor) 
    {}

    virtual void TimeOut(int timeOutId)
    {itsTimedDoor.DoorTimeOut(timeOutId);}

 

2. Another GOF pattern. ibid.

Door

AbstractAbstract

TimerClient

TimedDoor
DoorTimer
Adapter

Figure 2
Door Timer Adapter



 

7

 

: The Interface Segregation Principle

 

  private:
    TimedDoor& itsTimedDoor;
};

 

However, this solution is also somewhat inelegant. It involves the creation of a new
object every time we wish to register a timeout. Moreover the delegation requires a very
small, but still non-zero, amount of runtime and memory. There are application domains,
such as embedded real time control systems, in which runtime and memory are scarce
enough to make this a concern.

 

Separation through Multiple Inheritance

 

Figure 3 and Listing 5 show how Multiple Inheritance can be used, in the 

 

class form

 

 of the
A

 

DAPTER

 

 pattern, to achieve the ISP. In this model, TimedDoor inherits from both Door
and TimerClient. Although clients of both base classes can make use of TimedDoor, nei-
ther actually depend upon the TimedDoor class. Thus, they use the same object through
separate interfaces.

 

Listing 5

 

Class Form of Adapter Pattern

 

class TimedDoor : public Door, public TimerClient
{
  public:
    virtual void TimeOut(int timeOutId);
};

 

This solution is my normal preference. Multiple Inheritance does not frighten me.
Indeed, I find it quite useful in cases such as this. The only time I would choose the solu-
tion in Figure 2 over Figure 3 is if the translation performed by the DoorTimerAdapter
object were necessary, or if different translations were needed at different times.

Door TimerClient

TimedDoor

Figure 3
Multiply Inherited Timed Door



 

8

 

The ATM User Interface Example

 

The ATM User Interface Example

 

Now let’s consider a slightly more significant example. The traditional Automated Teller
Machine (ATM) problem. The user interface of an ATM machine needs to be very flexible.
The output may need to be translated into many different language. It may need to be pre-
sented on a screen, or on a braille tablet, or spoken out a speech synthesizer. Clearly this
can be achieved by creating an abstract base class that has pure virtual functions for all the
different messages that need to be presented by the interface.

Consider also that each different transaction that the ATM can perform is encasulated
as a derivative of the class Transaction. Thus we might have classes such as DepositTrans-
action, WithdrawlTransaction, TransferTransaction, etc. Each of these objects issues mes-
sage to the UI. For example, the DepositTransaction object calls the
RequestDepositAmount member function of the UI class. Whereas the TransferTransac-
tion object calls the RequestTransferAmount member function of UI. This corresponds to
the diagram in Figure 5.

Notice that this is precicely the situation that the ISP tells us to avoid. Each of the
transactions is using a portion of the UI that no other object uses. This creates the possibil-
ity that changes to one of the derivatives of Transaction will force coresponding change to
the UI, thereby affecting all the other derivatives of Transaction, and every other class that
depends upon the UI interface. 

This unfortunate coupling can be avoided by segregating the UI interface into indu-
vidual abstract base classes such as DepositUI, WithdrawUI and TransferUI. These
abstract base classes can then be multiply inherited into the final UI abstract class. Figure
6 and Listing 6 show this model.

It is true that, whenever a new derivative of the Transaction class is created, a core-
sponding base class for the abstract UI class will be needed. Thus the UI class and all its
derivatives must change. However, these classes are not widely used. Indeed, they are
probably only used by main, or whatever process boots the system and creates the con-
crete UI instance. So the impact of adding new UI base classes is contained. 

ATM UI

Abstract

Braille UI Screen UI Speech UI

Figure 4
ATM UI Hierarchy



 

9

 

: The Interface Segregation Principle

 

Listing 6

 

Segregated ATM Interfaces

 

class DepositUI
{
  public:
    virtual void RequestDepositAmount() = 0;
};

Transaction

Abstract

Deposit
Transaction

Withdrawl
Transaction

Transfer
Transaction

UI

Abstract

Figure 5
ATM Transaction Hierarchy

Deposit
Transaction

Withdrawl
Transaction

Transfer
Transaction

UI

Abstract

Deposit
UI

Withdrawl
UI

Transfer
UI

Abstract Abstract Abstract

Figure 6
Segregated ATM UI Interface



 

10

 

The ATM User Interface Example

 

class class DepositTransation : public Transaction
{
  public:
    DepositTransaction(DepositUI& ui)
    : itsDepositUI(ui)
    {}

    virtual void Execute()
    {
      ...
      itsDepositUI.RequestDepositAmount();
      ...
    }
  private:
    DepositUI& itsDepositUI;
};

class WithdrawlUI
{
  public:
    virtual void RequestWithdrawlAmount() = 0;
};

class class WithdrawlTransation : public Transaction
{
  public:
    WithdrawlTransaction(WithdrawlUI& ui)
    : itsWithdrawlUI(ui)
    {}

    virtual void Execute()
    {
      ...
      itsWithdrawlUI.RequestWithdrawlAmount();
      ...
    }
  private:
    WithdrawlUI& itsWithdrawlUI;
};

class TransferUI
{
  public:
    virtual void RequestTransferAmount() = 0;
};

class class TransferTransation : public Transaction
{
  public:
    TransferTransaction(TransferUI& ui)
    : itsTransferUI(ui)
    {}

    virtual void Execute()
    {
      ...
      itsTransferUI.RequestTransferAmount();
      ...
    }
  private:
    TransferUI& itsTransferUI;
};

class UI : public DepositUI,



 

11

 

: The Interface Segregation Principle

 

         , public WithdrawlUI,
         , public TransferUI
{
  public:
    virtual void RequestDepositAmount();
    virtual void RequestWithdrawlAmount();
    virtual void RequestTransferAmount();
};

 

A careful examination of Listing 6 will show one of the issues with ISP conformance
that was not obvious from the TimedDoor example. Note that each transaction must some-
how know about its particular version of the UI. DepositTransaction must know about
DepositUI; WithdrawTransaction must know about WithdrawUI, etc. In Listing 6 I have
addressed this issue by forcing each transaction to be constructed with a reference to its
particular UI. Note that this allows me to employ the idom in Listing 7.

 

Listing 7

 

Interface Initialization Idiom

 

UI Gui; // global object;

void f()
{
    DepositTransaction dt(Gui);
}

 

This is handy, but also forces each transaction to contain a reference member to its UI.
Another way to address this issue is to create a set of global constants as shown in Listing
8. As we discovered when we discussed the Open Closed Principle in the January 96 issue,
global variables are not always a symptom of a poor design. In this case they provide the
distinct advantage of easy access. And since they are references, it is impossible to change
them in any way, therefore they cannot be manipulated in a way that would surprise other
users. 

 

Listing 8

 

Seperate Global Pointers

 

// in some module that gets linked in
// to the rest of the app.

static UI Lui; // non-global object;
DepositUI&   GdepositUI   = Lui;
WithdrawlUI& GwithdrawlUI = Lui;
TransferUI&  GtransferUI  = Lui;

// In the depositTransaction.h module

class class WithdrawlTransation : public Transaction
{
  public:

    virtual void Execute()
    {
      ...



 

12

 

The ATM User Interface Example

 

      GwithdrawlUI.RequestWithdrawlAmount();
      ...
    }
};

 

One might be tempted to put all the globals in Listing 8 into a single class in order to
prevent pollution of the global namespace. Listing 9 shows such an approach. This, how-
ever, has an unfortunate effect. In order to use UIGlobals, you must #include ui_globals.h.
This, in turn, #includes depositUI.h, withdrawUI.h, and transferUI.h. This means that any
module wishing to use any of the UI interfaces transitively depends upon all of them;
exactly the situation that the ISP warns us to avoid. If a change is made to any of the UI
interfaces, all modules that #include ui_globals.h are forced to recompile. The UIGlobals
class has recombined the interfaces that we had worked so hard to segregate! 

 

Listing 9

 

Wrapping the Globals in a class

 

// in ui_globals.h

#include “depositUI.h”
#include “withdrawlUI.h”
#include “transferUI.h”

class UIGlobals
{
  public:
    static WithdrawlUI& withdrawl;
    static DepositUI&   deposit;
    static TransferUI&  transfer
};

// in ui_globals.cc

static UI Lui; // non-global object;
DepositUI&   UIGlobals::deposit   = Lui;
WithdrawlUI& UIGlobals::withdrawl = Lui;
TransferUI&  UIGlobals::transfer  = Lui;

 

The Polyad vs. the Monad.

 

Consider a function ‘g’ that needs access to both the DepositUI and the TransferUI. Con-
sider also that we wish to pass the UIs into this function. Should we write the function pro-
totype like this: 

 

void g(DepositUI&, TransferUI&);

 

? Or should we write it like this:

 

void g(UI&);

 

?
The temptation to write the latter (monadic) form is strong. After all, we know that in

the former (polyadic) form, both arguments will refer to the 

 

same object

 

. Moreover, if we
were to use the polyadic form, its invocation would look like this: 

 

g(ui, ui);

 

 Somehow
this seems perverse. 

Perverse or not, the polyadic form is preferable to the monadic form. The monadic
form forces ‘g’ to depend upon every interface included in UI. Thus, when WithdrawUI



 

13

 

: The Interface Segregation Principle

 

changed, ‘g’ and all clients of ‘g’ would have to recompile. This is more perverse than

 

g(ui,ui);

 

! Moreover, we cannot be sure that both arguments of ‘g’ will 

 

always

 

 refer to
the same object! In the future, it may be that the interface objects are separated for some
reason. From the point of view of function ‘g’, the fact that all interfaces are combined
into a single object is information that ‘g’ does not need to know. Thus, I prefer the poly-
adic form for such functions.

 

Conclusion

 

In this article we have discussed the disadvantages of “fat interfaces”; i.e. interfaces that
are not specific to a single client. Fat interfaces lead to inadvertent couplings beween cli-
ents that ought otherwise to be isolated. By making use of the A

 

DAPTER

 

 pattern, either
through delegation (object form) or multiple inheritance (class form), fat interfaces can be
segregated into abstract base classes that break the unwanted coupling between clients.

This article is an extremely condensed version of a chapter from my new book: 

 

Pat-
terns and Advanced Principles of OOD

 

, to be published soon by Prentice Hall. In subse-
quent articles we will explore many of the other principles of object oriented design. We
will also study various design patterns, and their strengths and weaknesses with regard to
implementation in C++. We will study the role of Booch’s class categories in C++, and
their applicability as C++ namespaces. We will define what “cohesion” and “coupling”
mean in an object oriented design, and we will develop metrics for measuring the quality
of an object oriented design. And after that, we will discuss many other interesting topics.


