
2/17/2021 Bad code smells - A Taxonomy

https://web.archive.org/web/20201105221533/http://mikamantyla.eu/BadCodeSmellsTaxonomy.html 1/2

A Taxonomy for "Bad Code Smells"
Citation

If you wish to cite this taxonomy please use the following article

Mäntylä, M. V. and Lassenius, C. "Subjective Evaluation of Software Evolvability Using Code Smells: An Empirical Study". Journal of
Empirical Software Engineering, vol. 11, no. 3, 2006, pp. 395-431. (pdf)

Taxonomy

The reason for creating the taxonomy is to provide better understanding of the smells and to recognize the relationships between smells. I feel that
with a long flat list of the code smells it is easy to lose the overall picture (at least that happened to me when I first studied the list of code smells
in (Fowler&Beck 2000)). Thus, here is a taxonomy of five groups.

Group
name

Smells in
group Discussion

The Bloaters

-Long Method
 -Large Class

 -Primitive
Obsession

 -Long
Parameter
List

 -DataClumps

Bloater smells represents something that has grown so large that it cannot be effectively handled.

It seems likely that these smells grow a little bit at a time. Hopefully nobody designs, e.g., Long Methods.

Primitive Obsession is actually more of a symptom that causes bloats than a bloat itself. The same holds for Data
Clumps. When a Primitive Obsession exists, there are no small classes for small entities (e.g. phone numbers).
Thus, the functionality is added to some other class, which increases the class and method size in the software.
With Data Clumps there exists a set of primitives that always appear together (e.g. 3 integers for RGB colors).
Since these data items are not encapsulated in a class this increases the sizes of methods and classes. 

The Object-
Orientation
Abusers

-Switch
Statements

 -Temporary
Field

 -Refused
Bequest

 -Alternative
Classes with
Different
Interfaces

The common denominator for the smells in the Object-Orientation Abuser category is that they represent cases
where the solution does not fully exploit the possibilities of object-oriented design.

For example, a Switch Statement might be considered acceptable or even good design in procedural programming,
but is something that should be avoided in object-oriented programming. The situation where switch statements or
type codes are needed should be handled by creating subclasses. Parallel Inheritance Hierarchies and Refused
Bequest smells lack proper inheritance design, which is one of the key elements in object-oriented programming.
The Alternative Classes with Different Interfaces smell lacks a common interface for closely related classes, so it
can also be considered a certain type of inheritance misuse. The Temporary Field smell means a case in which a
variable is in the class scope, when it should be in method scope. This violates the information hiding principle.

The Change
Preventers

-Divergent
Change

 -Shotgun
Surgery 

 -Parallel
Inheritance
Hierarchies

Change Preventers are smells is that hinder changing or further developing the software

These smells violate the rule suggested by Fowler and Beck which says that classes and possible changes should
have a one-to-one relationship. For example, changes to the database only affect one class, while changes to
calculation formulas only affect the other class.

The Divergent Change smell means that we have a single class that needs to be modified by many different types
of changes. With the Shotgun Surgery smell the situation is the opposite, we need to modify many classes when
making a single change to a system (change several classes when changing database from one vendor to another)

Parallel Inheritance Hierarchies, which means a duplicated class hierarchy, was originally placed in OO-abusers. One
could also place it inside of The Dispensables since there is redundant logic that should be replaced.

The
Dispensables

-Lazy class
 -Data class 
 -Duplicate

Code
 -Dead Code, 

 -Speculative
Generality

The common thing for the Dispensable smells is that they all represent something unnecessary that should be
removed from the source code.

This group contains two types of smells (dispensable classes and dispensable code), but since they violate the same
principle, we will look at them together. If a class is not doing enough it needs to be removed or its responsibility
needs to be increased. This is the case with the Lazy class and the Data class smells. Code that is not used or is
redundant needs to be removed. This is the case with Duplicate Code, Speculative Generality and Dead Code
smells. 

The Couplers

-Feature
Envy

 -
Inappropriate
Intimacy

 -Message
Chains 

 -Middle Man

This group has four coupling-related smells.

One design principle that has been around for decades is low coupling (Stevens et al. 1974) . This group has 3
smells that represent high coupling. Middle Man smell on the other hand represent a problem that might be created
when trying to avoid high coupling with constant delegation. Middle Man is a class that is doing too much simple
delegation instead of really contributing to the application.

The Feature Envy smell means a case where one method is too interested in other classes, and the Inappropriate
Intimacy smell means that two classes are coupled tightly to each other. Message Chains is a smell where class A
needs data from class D. To access this data, class A needs to retrieve object C from object B (A and B have a
direct reference). When class A gets object C it then asks C to get object D. When class A finally has a reference to
class D, A asks D for the data it needs. The problem here is that A becomes unnecessarily coupled to classes B, C,
and D, when it only needs some piece of data from class D. The following example illustrates the message chain
smell: A.getB().getC().getD().getTheNeededData()

Of course, I could make an argument that these smells should belong to the Object-Orientation abusers group, but
since they all focus strictly on coupling, I think it makes the taxonomy more understandable if they are introduced
in a group of their own.

SEP NOV DEC

05
2019 2020

113 captures

👤 ⍰❎
f 🐦

▾


