
Software Engineering
The Job

COMPSCI 308 – 2024-04-09
Luke Moffett, Duke CS



Big Picture
Every Job will be Unique
Everything in these slides is meant to give you a flavor of what to consider about places of employment.

Turquoise – Likely to have encountered in your projects
Purple – Would likely see in an internship
Orange – Would likely only see when employed



What is the Job?
To build software that helps a business/government/non-
profit achieve its goals.



“The Best Job in America”
• Work is intellectually stimulating
• Colleagues are largely competent
• You build things that actually run at the end 

of the day
• Each day and task is different
• Culture of trying new things
• Constant Learning
• Excellent Pay
• Flexible work schedules and situations
• Many sources of job security
• Meritocratic culture
• Space for creativity
• Geeks are cool now, kind of

https://xkcd.com/303/ 

https://xkcd.com/303/


Start-Ups

• High Freedom
• Small Tech Footprints
• Uncertainty with Upside
• “Many Hats”
• Management Tends to be 

Technical
• Developing New 

Products/Services
• Peer Abilities Vary

Tech Company

• Sophisticated Platforms
• Internal Standards and 

Bespoke Tools
• High Specialization
• Maintaining/Expanding 

Existing 
Products/Services

• Excellent Compensation
• High Skill Peers/Hard to 

Stand-Out

Big Corp/Gov’t/Non-
Profit

• Stability
• Technology Supports

Mission (“Cost Center”) 
– Best Engineers 
Understand Both

• Integrating or 
Customizing Tools from 
Tech Companies and 
Start-Ups

• Every Industry
• Peer Abilities Vary

Work Environments



Software Delivery Models

Engineering
Team

Software Organization

Software as a Service

Software Package

Server User

Engineering
Team

Software as a Product

Software OrganizationUser Land

User

User
Compute

Software Package

Package
Repository

3. Use

2. Install

1. Download



Common
Responsibilities

Train
ing

Other 
Meetings

Reading and Writing 
Documentation

Asking/Answering Questions
(Email, Chat, In Person)

Planning and Designing (Agile 
Processes)

Coding and Reviewing Code, including Test 
Automation

This in no way represents everything 
you will do, but represents the kinds of 
things you can reasonably expect to 
spend you time on in most jobs.



Catch-Up on 
Emails/Chats

Plan 
Day/Prep 
Stand-up 

Report

Daily 
Stand-up

Follow-
up with 
Peers 
from 

Stand-up

Code Your Stories
(maybe Pair Programming)

(Lots of interrupts to answer chats)
Lunch

Backlog 
Refinement or 
Sprint Planning

Answer 
Questions 
for Peers

Finish Daily Coding
(Grab a peer for help)

Meet with 
Manager Attend Training

Example Day



Work Style features that Vary Significantly 
Between Places

• On-Call Responsibilities
• Degree of Independence/Explicitness of Rules
• Frequency of Releases and Degree of 

Automation
• Technical Sophistication of “Platforms”
• Technical sophistication of management and 

peers
• Remote vs. In-Person vs. Hybrid
• Pair vs. Independent Programming
• Synchronous vs. Asynchronous Communication
• “Culture”

https://xkcd.com/2562/ 

https://xkcd.com/2562/


Daily Challenges of Software Work
• Estimation is extremely difficult, which makes effective 

planning a constant challenge
• Very difficult to decide what’s “good enough” – scope 

is always in flux
• More features than you could ever get done
• Getting access to the knowledge you need (made 

worse with poor documentation)
• Trade-off between investing for the future and 

delivering now
• Shortcuts lead to tech debt, which makes everything slower 

and harder
• Many ways to do things and standardization takes 

effort
• Software verification (testing) is an art and not a 

science

https://xkcd.com/619/ 

https://xkcd.com/619/


Daily Challenges of Software Work
• Rarely working on a project from scratch and need to 

account for “current state”
• Major decisions are made by higher-ups who don’t 

understand technical details
• Continuous Learning

• Need facility in dozens of tools
• Tools change too quickly to master of all of them

• Subject matter experts are frequently not technically 
knowledgeable
• Many decisions are made for non-technical reasons 

(ie, cost of contract)
• Engineering teams have to choose implementations 

within their ability
• Complexity builds up over time and has to be 

continually pruned
• Every piece of code has to be maintained by someone

https://xkcd.com/979/ 

https://xkcd.com/979/


Applying
• Big organizations have formal processes for interns/new grads with no 

flexibility, small organizations treat them as any other hire with a lot of 
flexibility. Know which process you are in.
• Go to on-campus recruiting events with your resume.
• As a student/new grad, your resume should be short (1 page, unless 

you have a lot of OSS contributions)
• Tech internships are long interviews. Your best chance to get a job at a 

company is to get an internship there first.
• There are no shortcuts for passing leetcode-like screenings. You must 

practice if you want a job that requires it.



Interviewing
• Know who you are talking to. What is their role? Are they technical?
• Screening is generally done by a non-technical person first (HR or recruiting) – 

they care about when you graduate and if you seem easy to work with.

• No one expects new grads to know everything (or very much, really). 
They expect you to be able to explain what you have learned. Stick to 
what you know and admit what you don’t (these can be great 
prompts for you to ask questions back to your interviewer).
• Be excited about the tech. Looking like a “geek” is a good thing.
• Whatever the question, explain your thought process. People hiring 

engineers prioritize clear reasoning above almost everything else.
• Don’t obsess over syntax unless you are writing code that is about to 

be run. Ask “can I use pseudo-your-favorite-language?”.
• Pair programming is good practice for coding interviews.



AMA



• Have you tried different project management strategies (Scrum, 
Kanban, etc.)? What are the differences between them and which 
one is your favorite/least favorite?
• How do you resolve conflicts (e.g., if two people have different design 

ideas)?
• What's your favorite part and least favorite part about industry?
• how do you form connections with your team/with your manager?
• how do you get the most out of each meeting?
• Do you ever struggle to be professional/formal? What are some ways 

you try to work around that? Is being informal more common?
• How did you grade interviewees when you were doing interviews?



Appendix



The Software Delivery Pipeline

Developer

Continuous Integration
(CI)

Continuous Delivery 
(CD)

to Users

Trigger Trigger

Notify on Failure

Rollback on
Failure

Integration
Testing

Post-Merge
Checks

Pre-Merge
Checks

Unit Testing & 
Coverage

Quality & 
Security 
Analysis

Code 
Formatting

Commit 
Message

Code 
Compilation

Can Merge? Dynamic 
Security Tests

Release
Automation

Ex
am

pl
es

Continuous Integration (CI) Continuous Delivery (CD)

Tests on Fresh 
Install

Pre-Commit 
Checks

Install Package Analyze 
Telemetry

Publish Docs Notify 
Engineers

Merge


