

1

1

Clean Code

You are reading this book for two reasons. First, you are a programmer. Second, you want
to be a better programmer. Good. We need better programmers.

2 Chapter 1: Clean Code

This is a book about good programming. It is filled with code. We are going to look at
code from every different direction. We’ll look down at it from the top, up at it from the
bottom, and through it from the inside out. By the time we are done, we’re going to know a
lot about code. What’s more, we’ll be able to tell the difference between good code and bad
code. We’ll know how to write good code. And we’ll know how to transform bad code into
good code.

There Will Be Code

One might argue that a book about code is somehow behind the times—that code is no
longer the issue; that we should be concerned about models and requirements instead.
Indeed some have suggested that we are close to the end of code. That soon all code will
be generated instead of written. That programmers simply won’t be needed because busi-
ness people will generate programs from specifications.

Nonsense! We will never be rid of code, because code represents the details of the
requirements. At some level those details cannot be ignored or abstracted; they have to be
specified. And specifying requirements in such detail that a machine can execute them is
programming. Such a specification is code.

I expect that the level of abstraction of our languages will continue to increase. I
also expect that the number of domain-specific languages will continue to grow. This
will be a good thing. But it will not eliminate code. Indeed, all the specifications written
in these higher level and domain-specific language will be code! It will still need to
be rigorous, accurate, and so formal and detailed that a machine can understand and
execute it.

The folks who think that code will one day disappear are like mathematicians who
hope one day to discover a mathematics that does not have to be formal. They are hoping
that one day we will discover a way to create machines that can do what we want rather
than what we say. These machines will have to be able to understand us so well that they
can translate vaguely specified needs into perfectly executing programs that precisely meet
those needs.

This will never happen. Not even humans, with all their intuition and creativity,
have been able to create successful systems from the vague feelings of their customers.
Indeed, if the discipline of requirements specification has taught us anything, it is that
well-specified requirements are as formal as code and can act as executable tests of that
code!

Remember that code is really the language in which we ultimately express the require-
ments. We may create languages that are closer to the requirements. We may create tools
that help us parse and assemble those requirements into formal structures. But we will
never eliminate necessary precision—so there will always be code.

3Bad Code

Bad Code

I was recently reading the preface to Kent Beck’s
book Implementation Patterns.1 He says, “. . . this
book is based on a rather fragile premise: that
good code matters. . . .” A fragile premise? I dis-
agree! I think that premise is one of the most
robust, supported, and overloaded of all the pre-
mises in our craft (and I think Kent knows it). We
know good code matters because we’ve had to
deal for so long with its lack.

I know of one company that, in the late 80s,
wrote a killer app. It was very popular, and lots of
professionals bought and used it. But then the
release cycles began to stretch. Bugs were not
repaired from one release to the next. Load times
grew and crashes increased. I remember the day I
shut the product down in frustration and never
used it again. The company went out of business
a short time after that.

Two decades later I met one of the early employees of that company and asked him
what had happened. The answer confirmed my fears. They had rushed the product to
market and had made a huge mess in the code. As they added more and more features, the
code got worse and worse until they simply could not manage it any longer. It was the bad
code that brought the company down.

Have you ever been significantly impeded by bad code? If you are a programmer of
any experience then you’ve felt this impediment many times. Indeed, we have a name for
it. We call it wading. We wade through bad code. We slog through a morass of tangled
brambles and hidden pitfalls. We struggle to find our way, hoping for some hint, some
clue, of what is going on; but all we see is more and more senseless code.

Of course you have been impeded by bad code. So then—why did you write it?

Were you trying to go fast? Were you in a rush? Probably so. Perhaps you felt that you
didn’t have time to do a good job; that your boss would be angry with you if you took the
time to clean up your code. Perhaps you were just tired of working on this program and
wanted it to be over. Or maybe you looked at the backlog of other stuff that you had prom-
ised to get done and realized that you needed to slam this module together so you could
move on to the next. We’ve all done it.

We’ve all looked at the mess we’ve just made and then have chosen to leave it for
another day. We’ve all felt the relief of seeing our messy program work and deciding that a

1. [Beck07].

4 Chapter 1: Clean Code

working mess is better than nothing. We’ve all said we’d go back and clean it up later. Of
course, in those days we didn’t know LeBlanc’s law: Later equals never.

The Total Cost of Owning a Mess

If you have been a programmer for more than two or three years, you have probably been
significantly slowed down by someone else’s messy code. If you have been a programmer
for longer than two or three years, you have probably been slowed down by messy code.
The degree of the slowdown can be significant. Over the span of a year or two, teams that
were moving very fast at the beginning of a project can find themselves moving at a snail’s
pace. Every change they make to the code breaks two or three other parts of the code. No
change is trivial. Every addition or modification to the system requires that the tangles,
twists, and knots be “understood” so that more tangles, twists, and knots can be added.
Over time the mess becomes so big and so deep and so tall, they can not clean it up. There
is no way at all.

As the mess builds, the productivity of the team continues to decrease, asymptotically
approaching zero. As productivity decreases, management does the only thing they can;
they add more staff to the project in hopes of increasing productivity. But that new staff is
not versed in the design of the system. They don’t know the difference between a change
that matches the design intent and a change that thwarts the design intent. Furthermore,
they, and everyone else on the team, are under horrific pressure to increase productivity. So
they all make more and more messes, driving the productivity ever further toward zero.
(See Figure 1-1.)

Figure 1-1
Productivity vs. time

5The Total Cost of Owning a Mess

The Grand Redesign in the Sky

Eventually the team rebels. They inform management that they cannot continue to develop
in this odious code base. They demand a redesign. Management does not want to expend
the resources on a whole new redesign of the project, but they cannot deny that productiv-
ity is terrible. Eventually they bend to the demands of the developers and authorize the
grand redesign in the sky.

A new tiger team is selected. Everyone wants to be on this team because it’s a green-
field project. They get to start over and create something truly beautiful. But only the best
and brightest are chosen for the tiger team. Everyone else must continue to maintain the
current system.

Now the two teams are in a race. The tiger team must build a new system that does
everything that the old system does. Not only that, they have to keep up with the changes
that are continuously being made to the old system. Management will not replace the old
system until the new system can do everything that the old system does.

This race can go on for a very long time. I’ve seen it take 10 years. And by the time it’s
done, the original members of the tiger team are long gone, and the current members are
demanding that the new system be redesigned because it’s such a mess.

If you have experienced even one small part of the story I just told, then you already
know that spending time keeping your code clean is not just cost effective; it’s a matter of
professional survival.

Attitude

Have you ever waded through a mess so grave that it took weeks to do what should have
taken hours? Have you seen what should have been a one-line change, made instead in
hundreds of different modules? These symptoms are all too common.

Why does this happen to code? Why does good code rot so quickly into bad code? We
have lots of explanations for it. We complain that the requirements changed in ways that
thwart the original design. We bemoan the schedules that were too tight to do things right.
We blather about stupid managers and intolerant customers and useless marketing types
and telephone sanitizers. But the fault, dear Dilbert, is not in our stars, but in ourselves.
We are unprofessional.

This may be a bitter pill to swallow. How could this mess be our fault? What about the
requirements? What about the schedule? What about the stupid managers and the useless
marketing types? Don’t they bear some of the blame?

No. The managers and marketers look to us for the information they need to make
promises and commitments; and even when they don’t look to us, we should not be shy
about telling them what we think. The users look to us to validate the way the requirements
will fit into the system. The project managers look to us to help work out the schedule. We

6 Chapter 1: Clean Code

are deeply complicit in the planning of the project and share a great deal of the responsi-
bility for any failures; especially if those failures have to do with bad code!

“But wait!” you say. “If I don’t do what my manager says, I’ll be fired.” Probably not.
Most managers want the truth, even when they don’t act like it. Most managers want good
code, even when they are obsessing about the schedule. They may defend the schedule and
requirements with passion; but that’s their job. It’s your job to defend the code with equal
passion.

To drive this point home, what if you were a doctor and had a patient who demanded
that you stop all the silly hand-washing in preparation for surgery because it was taking
too much time?2 Clearly the patient is the boss; and yet the doctor should absolutely refuse
to comply. Why? Because the doctor knows more than the patient about the risks of dis-
ease and infection. It would be unprofessional (never mind criminal) for the doctor to
comply with the patient.

So too it is unprofessional for programmers to bend to the will of managers who don’t
understand the risks of making messes.

The Primal Conundrum

Programmers face a conundrum of basic values. All developers with more than a few years
experience know that previous messes slow them down. And yet all developers feel
the pressure to make messes in order to meet deadlines. In short, they don’t take the time
to go fast!

True professionals know that the second part of the conundrum is wrong. You will not
make the deadline by making the mess. Indeed, the mess will slow you down instantly, and
will force you to miss the deadline. The only way to make the deadline—the only way to
go fast—is to keep the code as clean as possible at all times.

The Art of Clean Code?

Let’s say you believe that messy code is a significant impediment. Let’s say that you accept
that the only way to go fast is to keep your code clean. Then you must ask yourself: “How
do I write clean code?” It’s no good trying to write clean code if you don’t know what it
means for code to be clean!

The bad news is that writing clean code is a lot like painting a picture. Most of us
know when a picture is painted well or badly. But being able to recognize good art from
bad does not mean that we know how to paint. So too being able to recognize clean code
from dirty code does not mean that we know how to write clean code!

2. When hand-washing was first recommended to physicians by Ignaz Semmelweis in 1847, it was rejected on the basis that
doctors were too busy and wouldn’t have time to wash their hands between patient visits.

7The Total Cost of Owning a Mess

Writing clean code requires the disciplined use of a myriad little techniques applied
through a painstakingly acquired sense of “cleanliness.” This “code-sense” is the key.
Some of us are born with it. Some of us have to fight to acquire it. Not only does it let us
see whether code is good or bad, but it also shows us the strategy for applying our disci-
pline to transform bad code into clean code.

A programmer without “code-sense” can look at a messy module and recognize the
mess but will have no idea what to do about it. A programmer with “code-sense” will look
at a messy module and see options and variations. The “code-sense” will help that pro-
grammer choose the best variation and guide him or her to plot a sequence of behavior
preserving transformations to get from here to there.

In short, a programmer who writes clean code is an artist who can take a blank screen
through a series of transformations until it is an elegantly coded system.

What Is Clean Code?

There are probably as many definitions as there are programmers. So I asked some very
well-known and deeply experienced programmers what they thought.

Bjarne Stroustrup, inventor of C++
and author of The C++ Programming
Language

I like my code to be elegant and efficient. The
logic should be straightforward to make it hard
for bugs to hide, the dependencies minimal to
ease maintenance, error handling complete
according to an articulated strategy, and per-
formance close to optimal so as not to tempt
people to make the code messy with unprinci-
pled optimizations. Clean code does one thing
well.

Bjarne uses the word “elegant.” That’s
quite a word! The dictionary in my MacBook®

provides the following definitions: pleasingly
graceful and stylish in appearance or manner; pleasingly ingenious and simple. Notice the
emphasis on the word “pleasing.” Apparently Bjarne thinks that clean code is pleasing to
read. Reading it should make you smile the way a well-crafted music box or well-designed
car would.

Bjarne also mentions efficiency—twice. Perhaps this should not surprise us coming
from the inventor of C++; but I think there’s more to it than the sheer desire for speed.
Wasted cycles are inelegant, they are not pleasing. And now note the word that Bjarne uses

8 Chapter 1: Clean Code

to describe the consequence of that inelegance. He uses the word “tempt.” There is a deep
truth here. Bad code tempts the mess to grow! When others change bad code, they tend to
make it worse.

Pragmatic Dave Thomas and Andy Hunt said this a different way. They used the meta-
phor of broken windows.3 A building with broken windows looks like nobody cares about
it. So other people stop caring. They allow more windows to become broken. Eventually
they actively break them. They despoil the facade with graffiti and allow garbage to col-
lect. One broken window starts the process toward decay.

Bjarne also mentions that error handing should be complete. This goes to the disci-
pline of paying attention to details. Abbreviated error handling is just one way that pro-
grammers gloss over details. Memory leaks are another, race conditions still another.
Inconsistent naming yet another. The upshot is that clean code exhibits close attention to
detail.

Bjarne closes with the assertion that clean code does one thing well. It is no accident
that there are so many principles of software design that can be boiled down to this simple
admonition. Writer after writer has tried to communicate this thought. Bad code tries to do
too much, it has muddled intent and ambiguity of purpose. Clean code is focused. Each
function, each class, each module exposes a single-minded attitude that remains entirely
undistracted, and unpolluted, by the surrounding details.

Grady Booch, author of Object
Oriented Analysis and Design with
Applications

Clean code is simple and direct. Clean code
reads like well-written prose. Clean code never
obscures the designer’s intent but rather is full
of crisp abstractions and straightforward lines
of control.

Grady makes some of the same points as
Bjarne, but he takes a readability perspective. I
especially like his view that clean code should
read like well-written prose. Think back on a
really good book that you’ve read. Remember how the words disappeared to be replaced
by images! It was like watching a movie, wasn’t it? Better! You saw the characters, you
heard the sounds, you experienced the pathos and the humor.

Reading clean code will never be quite like reading Lord of the Rings. Still, the liter-
ary metaphor is not a bad one. Like a good novel, clean code should clearly expose the ten-
sions in the problem to be solved. It should build those tensions to a climax and then give

3. http://www.pragmaticprogrammer.com/booksellers/2004-12.html

http://www.pragmaticprogrammer.com/booksellers/2004-12.html

9The Total Cost of Owning a Mess

the reader that “Aha! Of course!” as the issues and tensions are resolved in the revelation
of an obvious solution.

I find Grady’s use of the phrase “crisp abstraction” to be a fascinating oxymoron!
After all the word “crisp” is nearly a synonym for “concrete.” My MacBook’s dictionary
holds the following definition of “crisp”: briskly decisive and matter-of-fact, without hesi-
tation or unnecessary detail. Despite this seeming juxtaposition of meaning, the words
carry a powerful message. Our code should be matter-of-fact as opposed to speculative.
It should contain only what is necessary. Our readers should perceive us to have been
decisive.

“Big” Dave Thomas, founder
of OTI, godfather of the
Eclipse strategy

Clean code can be read, and enhanced by a
developer other than its original author. It has
unit and acceptance tests. It has meaningful
names. It provides one way rather than many
ways for doing one thing. It has minimal depen-
dencies, which are explicitly defined, and pro-
vides a clear and minimal API. Code should be
literate since depending on the language, not all
necessary information can be expressed clearly
in code alone.

Big Dave shares Grady’s desire for readabil-
ity, but with an important twist. Dave asserts that
clean code makes it easy for other people to enhance it. This may seem obvious, but it can-
not be overemphasized. There is, after all, a difference between code that is easy to read
and code that is easy to change.

Dave ties cleanliness to tests! Ten years ago this would have raised a lot of eyebrows.
But the discipline of Test Driven Development has made a profound impact upon our
industry and has become one of our most fundamental disciplines. Dave is right. Code,
without tests, is not clean. No matter how elegant it is, no matter how readable and acces-
sible, if it hath not tests, it be unclean.

Dave uses the word minimal twice. Apparently he values code that is small, rather
than code that is large. Indeed, this has been a common refrain throughout software litera-
ture since its inception. Smaller is better.

Dave also says that code should be literate. This is a soft reference to Knuth’s literate
programming.4 The upshot is that the code should be composed in such a form as to make
it readable by humans.

4. [Knuth92].

10 Chapter 1: Clean Code

Michael Feathers, author of Working
Effectively with Legacy Code

I could list all of the qualities that I notice in
clean code, but there is one overarching quality
that leads to all of them. Clean code always
looks like it was written by someone who cares.
There is nothing obvious that you can do to
make it better. All of those things were thought
about by the code’s author, and if you try to
imagine improvements, you’re led back to
where you are, sitting in appreciation of the
code someone left for you—code left by some-
one who cares deeply about the craft.

One word: care. That’s really the topic of
this book. Perhaps an appropriate subtitle
would be How to Care for Code.

Michael hit it on the head. Clean code is
code that has been taken care of. Someone has taken the time to keep it simple and orderly.
They have paid appropriate attention to details. They have cared.

Ron Jeffries, author of Extreme Programming
Installed and Extreme Programming
Adventures in C#
Ron began his career programming in Fortran at
the Strategic Air Command and has written code in
almost every language and on almost every
machine. It pays to consider his words carefully.

In recent years I begin, and nearly end, with Beck’s
rules of simple code. In priority order, simple code:

• Runs all the tests;

• Contains no duplication;

• Expresses all the design ideas that are in the
system;

• Minimizes the number of entities such as classes,
methods, functions, and the like.

Of these, I focus mostly on duplication. When the same thing is done over and over,
it’s a sign that there is an idea in our mind that is not well represented in the code. I try to
figure out what it is. Then I try to express that idea more clearly.

Expressiveness to me includes meaningful names, and I am likely to change the
names of things several times before I settle in. With modern coding tools such as Eclipse,
renaming is quite inexpensive, so it doesn’t trouble me to change. Expressiveness goes

11The Total Cost of Owning a Mess

beyond names, however. I also look at whether an object or method is doing more than one
thing. If it’s an object, it probably needs to be broken into two or more objects. If it’s a
method, I will always use the Extract Method refactoring on it, resulting in one method
that says more clearly what it does, and some submethods saying how it is done.

Duplication and expressiveness take me a very long way into what I consider clean
code, and improving dirty code with just these two things in mind can make a huge differ-
ence. There is, however, one other thing that I’m aware of doing, which is a bit harder to
explain.

After years of doing this work, it seems to me that all programs are made up of very
similar elements. One example is “find things in a collection.” Whether we have a data-
base of employee records, or a hash map of keys and values, or an array of items of some
kind, we often find ourselves wanting a particular item from that collection. When I find
that happening, I will often wrap the particular implementation in a more abstract method
or class. That gives me a couple of interesting advantages.

I can implement the functionality now with something simple, say a hash map, but
since now all the references to that search are covered by my little abstraction, I can
change the implementation any time I want. I can go forward quickly while preserving my
ability to change later.

In addition, the collection abstraction often calls my attention to what’s “really”
going on, and keeps me from running down the path of implementing arbitrary collection
behavior when all I really need is a few fairly simple ways of finding what I want.

Reduced duplication, high expressiveness, and early building of simple abstractions.
That’s what makes clean code for me.

Here, in a few short paragraphs, Ron has summarized the contents of this book. No
duplication, one thing, expressiveness, tiny abstractions. Everything is there.

Ward Cunningham, inventor of Wiki,
inventor of Fit, coinventor of eXtreme
Programming. Motive force behind
Design Patterns. Smalltalk and OO
thought leader. The godfather of all
those who care about code.

You know you are working on clean code when each
routine you read turns out to be pretty much what
you expected. You can call it beautiful code when
the code also makes it look like the language was
made for the problem.

Statements like this are characteristic of Ward.
You read it, nod your head, and then go on to the
next topic. It sounds so reasonable, so obvious, that it barely registers as something
profound. You might think it was pretty much what you expected. But let’s take a closer
look.

12 Chapter 1: Clean Code

“. . . pretty much what you expected.” When was the last time you saw a module that
was pretty much what you expected? Isn’t it more likely that the modules you look at will
be puzzling, complicated, tangled? Isn’t misdirection the rule? Aren’t you used to flailing
about trying to grab and hold the threads of reasoning that spew forth from the whole sys-
tem and weave their way through the module you are reading? When was the last time you
read through some code and nodded your head the way you might have nodded your head
at Ward’s statement?

Ward expects that when you read clean code you won’t be surprised at all. Indeed, you
won’t even expend much effort. You will read it, and it will be pretty much what you
expected. It will be obvious, simple, and compelling. Each module will set the stage for
the next. Each tells you how the next will be written. Programs that are that clean are so
profoundly well written that you don’t even notice it. The designer makes it look ridicu-
lously simple like all exceptional designs.

And what about Ward’s notion of beauty? We’ve all railed against the fact that our lan-
guages weren’t designed for our problems. But Ward’s statement puts the onus back on us.
He says that beautiful code makes the language look like it was made for the problem! So
it’s our responsibility to make the language look simple! Language bigots everywhere,
beware! It is not the language that makes programs appear simple. It is the programmer
that make the language appear simple!

Schools of Thought

What about me (Uncle Bob)? What do I think
clean code is? This book will tell you, in hideous
detail, what I and my compatriots think about
clean code. We will tell you what we think makes
a clean variable name, a clean function, a clean
class, etc. We will present these opinions as abso-
lutes, and we will not apologize for our stridence.
To us, at this point in our careers, they are abso-
lutes. They are our school of thought about clean
code.

Martial artists do not all agree about the best
martial art, or the best technique within a martial
art. Often master martial artists will form their
own schools of thought and gather students to
learn from them. So we see Gracie Jiu Jistu,
founded and taught by the Gracie family in Brazil. We see Hakkoryu Jiu Jistu, founded
and taught by Okuyama Ryuho in Tokyo. We see Jeet Kune Do, founded and taught by
Bruce Lee in the United States.

13We Are Authors

Students of these approaches immerse themselves in the teachings of the founder.
They dedicate themselves to learn what that particular master teaches, often to the exclu-
sion of any other master’s teaching. Later, as the students grow in their art, they may
become the student of a different master so they can broaden their knowledge and practice.
Some eventually go on to refine their skills, discovering new techniques and founding their
own schools.

None of these different schools is absolutely right. Yet within a particular school we
act as though the teachings and techniques are right. After all, there is a right way to prac-
tice Hakkoryu Jiu Jitsu, or Jeet Kune Do. But this rightness within a school does not inval-
idate the teachings of a different school.

Consider this book a description of the Object Mentor School of Clean Code. The
techniques and teachings within are the way that we practice our art. We are willing to
claim that if you follow these teachings, you will enjoy the benefits that we have enjoyed,
and you will learn to write code that is clean and professional. But don’t make the mistake
of thinking that we are somehow “right” in any absolute sense. There are other schools and
other masters that have just as much claim to professionalism as we. It would behoove you
to learn from them as well.

Indeed, many of the recommendations in this book are controversial. You will proba-
bly not agree with all of them. You might violently disagree with some of them. That’s fine.
We can’t claim final authority. On the other hand, the recommendations in this book are
things that we have thought long and hard about. We have learned them through decades of
experience and repeated trial and error. So whether you agree or disagree, it would be a
shame if you did not see, and respect, our point of view.

We Are Authors

The @author field of a Javadoc tells us who we are. We are authors. And one thing about
authors is that they have readers. Indeed, authors are responsible for communicating well
with their readers. The next time you write a line of code, remember you are an author,
writing for readers who will judge your effort.

You might ask: How much is code really read? Doesn’t most of the effort go into
writing it?

Have you ever played back an edit session? In the 80s and 90s we had editors like Emacs
that kept track of every keystroke. You could work for an hour and then play back your whole
edit session like a high-speed movie. When I did this, the results were fascinating.

The vast majority of the playback was scrolling and navigating to other modules!

Bob enters the module.
He scrolls down to the function needing change.
He pauses, considering his options.
Oh, he’s scrolling up to the top of the module to check the initialization of a variable.
Now he scrolls back down and begins to type.

14 Chapter 1: Clean Code

Ooops, he’s erasing what he typed!
He types it again.
He erases it again!
He types half of something else but then erases that!
He scrolls down to another function that calls the function he’s changing to see how it is
called.
He scrolls back up and types the same code he just erased.
He pauses.
He erases that code again!
He pops up another window and looks at a subclass. Is that function overridden?

. . .

You get the drift. Indeed, the ratio of time spent reading vs. writing is well over 10:1.
We are constantly reading old code as part of the effort to write new code.

Because this ratio is so high, we want the reading of code to be easy, even if it makes
the writing harder. Of course there’s no way to write code without reading it, so making it
easy to read actually makes it easier to write.

There is no escape from this logic. You cannot write code if you cannot read the sur-
rounding code. The code you are trying to write today will be hard or easy to write
depending on how hard or easy the surrounding code is to read. So if you want to go fast,
if you want to get done quickly, if you want your code to be easy to write, make it easy to
read.

The Boy Scout Rule

It’s not enough to write the code well. The code has to be kept clean over time. We’ve all
seen code rot and degrade as time passes. So we must take an active role in preventing this
degradation.

The Boy Scouts of America have a simple rule that we can apply to our profession.

Leave the campground cleaner than you found it.5

If we all checked-in our code a little cleaner than when we checked it out, the code
simply could not rot. The cleanup doesn’t have to be something big. Change one variable
name for the better, break up one function that’s a little too large, eliminate one small bit of
duplication, clean up one composite if statement.

Can you imagine working on a project where the code simply got better as time
passed? Do you believe that any other option is professional? Indeed, isn’t continuous
improvement an intrinsic part of professionalism?

5. This was adapted from Robert Stephenson Smyth Baden-Powell’s farewell message to the Scouts: “Try and leave this world a
little better than you found it . . .”

15Bibliography

Prequel and Principles

In many ways this book is a “prequel” to a book I wrote in 2002 entitled Agile Software
Development: Principles, Patterns, and Practices (PPP). The PPP book concerns itself
with the principles of object-oriented design, and many of the practices used by profes-
sional developers. If you have not read PPP, then you may find that it continues the story
told by this book. If you have already read it, then you’ll find many of the sentiments of
that book echoed in this one at the level of code.

In this book you will find sporadic references to various principles of design. These
include the Single Responsibility Principle (SRP), the Open Closed Principle (OCP), and
the Dependency Inversion Principle (DIP) among others. These principles are described in
depth in PPP.

Conclusion

Books on art don’t promise to make you an artist. All they can do is give you some of the
tools, techniques, and thought processes that other artists have used. So too this book can-
not promise to make you a good programmer. It cannot promise to give you “code-sense.”
All it can do is show you the thought processes of good programmers and the tricks, tech-
niques, and tools that they use.

Just like a book on art, this book will be full of details. There will be lots of code.
You’ll see good code and you’ll see bad code. You’ll see bad code transformed into good
code. You’ll see lists of heuristics, disciplines, and techniques. You’ll see example after
example. After that, it’s up to you.

Remember the old joke about the concert violinist who got lost on his way to a perfor-
mance? He stopped an old man on the corner and asked him how to get to Carnegie Hall.
The old man looked at the violinist and the violin tucked under his arm, and said: “Prac-
tice, son. Practice!”

Bibliography

[Beck07]: Implementation Patterns, Kent Beck, Addison-Wesley, 2007.

[Knuth92]: Literate Programming, Donald E. Knuth, Center for the Study of Language
and Information, Leland Stanford Junior University, 1992.

	Clean Code
	Contents
	Foreword
	Introduction
	On the Cover
	Chapter 1: Clean Code
	There Will Be Code
	Bad Code
	The Total Cost of Owning a Mess
	The Grand Redesign in the Sky
	Attitude
	The Primal Conundrum
	The Art of Clean Code?
	What Is Clean Code?

	Schools of Thought
	We Are Authors
	The Boy Scout Rule
	Prequel and Principles
	Conclusion
	Bibliography

	Chapter 2: Meaningful Names
	Introduction
	Use Intention-Revealing Names
	Avoid Disinformation
	Make Meaningful Distinctions
	Use Pronounceable Names
	Use Searchable Names
	Avoid Encodings
	Hungarian Notation
	Member Prefixes
	Interfaces and Implementations

	Avoid Mental Mapping
	Class Names
	Method Names
	Don't Be Cute
	Pick One Word per Concept
	Don't Pun
	Use Solution Domain Names
	Use Problem Domain Names
	Add Meaningful Context
	Don't Add Gratuitous Context
	Final Words

	Chapter 3: Functions
	Small!
	Blocks and Indenting

	Do One Thing
	Sections within Functions

	One Level of Abstraction per Function
	Reading Code from Top to Bottom: The Stepdown Rule

	Switch Statements
	Use Descriptive Names
	Function Arguments
	Common Monadic Forms
	Flag Arguments
	Dyadic Functions
	Triads
	Argument Objects
	Argument Lists
	Verbs and Keywords

	Have No Side Effects
	Output Arguments

	Command Query Separation
	Prefer Exceptions to Returning Error Codes
	Extract Try/Catch Blocks
	Error Handling Is One Thing
	The Error.java Dependency Magnet

	Don't Repeat Yourself
	Structured Programming
	How Do You Write Functions Like This?
	Conclusion
	SetupTeardownIncluder
	Bibliography

	Chapter 4: Comments
	Comments Do Not Make Up for Bad Code
	Explain Yourself in Code
	Good Comments
	Legal Comments
	Informative Comments
	Explanation of Intent
	Clarification
	Warning of Consequences
	TODO Comments
	Amplification
	Javadocs in Public APIs

	Bad Comments
	Mumbling
	Redundant Comments
	Misleading Comments
	Mandated Comments
	Journal Comments
	Noise Comments
	Scary Noise
	Don't Use a Comment When You Can Use a Function or a Variable
	Position Markers
	Closing Brace Comments
	Attributions and Bylines
	Commented-Out Code
	HTML Comments
	Nonlocal Information
	Too Much Information
	Inobvious Connection
	Function Headers
	Javadocs in Nonpublic Code
	Example

	Bibliography

	Chapter 5: Formatting
	The Purpose of Formatting
	Vertical Formatting
	The Newspaper Metaphor
	Vertical Openness Between Concepts
	Vertical Density
	Vertical Distance
	Vertical Ordering

	Horizontal Formatting
	Horizontal Openness and Density
	Horizontal Alignment
	Indentation
	Dummy Scopes

	Team Rules
	Uncle Bob's Formatting Rules

	Chapter 6: Objects and Data Structures
	Data Abstraction
	Data/Object Anti-Symmetry
	The Law of Demeter
	Train Wrecks
	Hybrids
	Hiding Structure

	Data Transfer Objects
	Active Record

	Conclusion
	Bibliography

	Chapter 7: Error Handling
	Use Exceptions Rather Than Return Codes
	Write Your Try-Catch-Finally Statement First
	Use Unchecked Exceptions
	Provide Context with Exceptions
	Define Exception Classes in Terms of a Caller's Needs
	Define the Normal Flow
	Don't Return Null
	Don't Pass Null
	Conclusion
	Bibliography

	Chapter 8: Boundaries
	Using Third-Party Code
	Exploring and Learning Boundaries
	Learning log4j
	Learning Tests Are Better Than Free
	Using Code That Does Not Yet Exist
	Clean Boundaries
	Bibliography

	Chapter 9: Unit Tests
	The Three Laws of TDD
	Keeping Tests Clean
	Tests Enable the -ilities

	Clean Tests
	Domain-Specific Testing Language
	A Dual Standard

	One Assert per Test
	Single Concept per Test

	F.I.R.S.T.
	Conclusion
	Bibliography

	Chapter 10: Classes
	Class Organization
	Encapsulation

	Classes Should Be Small!
	The Single Responsibility Principle
	Cohesion
	Maintaining Cohesion Results in Many Small Classes

	Organizing for Change
	Isolating from Change

	Bibliography

	Chapter 11: Systems
	How Would You Build a City?
	Separate Constructing a System from Using It
	Separation of Main
	Factories
	Dependency Injection

	Scaling Up
	Cross-Cutting Concerns

	Java Proxies
	Pure Java AOP Frameworks
	AspectJ Aspects
	Test Drive the System Architecture
	Optimize Decision Making
	Use Standards Wisely, When They Add Demonstrable Value
	Systems Need Domain-Specific Languages
	Conclusion
	Bibliography

	Chapter 12: Emergence
	Getting Clean via Emergent Design
	Simple Design Rule 1: Runs All the Tests
	Simple Design Rules 2–4: Refactoring
	No Duplication
	Expressive
	Minimal Classes and Methods
	Conclusion
	Bibliography

	Chapter 13: Concurrency
	Why Concurrency?
	Myths and Misconceptions

	Challenges
	Concurrency Defense Principles
	Single Responsibility Principle
	Corollary: Limit the Scope of Data
	Corollary: Use Copies of Data
	Corollary: Threads Should Be as Independent as Possible

	Know Your Library
	Thread-Safe Collections

	Know Your Execution Models
	Producer-Consumer
	Readers-Writers
	Dining Philosophers

	Beware Dependencies Between Synchronized Methods
	Keep Synchronized Sections Small
	Writing Correct Shut-Down Code Is Hard
	Testing Threaded Code
	Treat Spurious Failures as Candidate Threading Issues
	Get Your Nonthreaded Code Working First
	Make Your Threaded Code Pluggable
	Make Your Threaded Code Tunable
	Run with More Threads Than Processors
	Run on Different Platforms
	Instrument Your Code to Try and Force Failures
	Hand-Coded
	Automated

	Conclusion
	Bibliography

	Chapter 14: Successive Refinement
	Args Implementation
	How Did I Do This?

	Args: The Rough Draft
	So I Stopped
	On Incrementalism

	String Arguments
	Conclusion

	Chapter 15: JUnit Internals
	The JUnit Framework
	Conclusion

	Chapter 16: Refactoring SerialDate
	First, Make It Work
	Then Make It Right
	Conclusion
	Bibliography

	Chapter 17: Smells and Heuristics
	Comments
	C1: Inappropriate Information
	C2: Obsolete Comment
	C3: Redundant Comment
	C4: Poorly Written Comment
	C5: Commented-Out Code

	Environment
	E1: Build Requires More Than One Step
	E2: Tests Require More Than One Step

	Functions
	F1: Too Many Arguments
	F2: Output Arguments
	F3: Flag Arguments
	F4: Dead Function

	General
	G1: Multiple Languages in One Source File
	G2: Obvious Behavior Is Unimplemented
	G3: Incorrect Behavior at the Boundaries
	G4: Overridden Safeties
	G5: Duplication
	G6: Code at Wrong Level of Abstraction
	G7: Base Classes Depending on Their Derivatives
	G8: Too Much Information
	G9: Dead Code
	G10: Vertical Separation
	G11: Inconsistency
	G12: Clutter
	G13: Artificial Coupling
	G14: Feature Envy
	G15: Selector Arguments
	G16: Obscured Intent
	G17: Misplaced Responsibility
	G18: Inappropriate Static
	G19: Use Explanatory Variables
	G20: Function Names Should Say What They Do
	G21: Understand the Algorithm
	G22: Make Logical Dependencies Physical
	G23: Prefer Polymorphism to If/Else or Switch/Case
	G24: Follow Standard Conventions
	G25: Replace Magic Numbers with Named Constants
	G26: Be Precise
	G27: Structure over Convention
	G28: Encapsulate Conditionals
	G29: Avoid Negative Conditionals
	G30: Functions Should Do One Thing
	G31: Hidden Temporal Couplings
	G32: Don't Be Arbitrary
	G33: Encapsulate Boundary Conditions
	G34: Functions Should Descend Only One Level of Abstraction
	G35: Keep Congurable Data at High Levels
	G36: Avoid Transitive Navigation

	Java
	J1: Avoid Long Import Lists by Using Wildcards
	J2: Don't Inherit Constants
	J3: Constants versus Enums

	Names
	N1: Choose Descriptive Names
	N2: Choose Names at the Appropriate Level of Abstraction
	N3: Use Standard Nomenclature Where Possible
	N4: Unambiguous Names
	N5: Use Long Names for Long Scopes
	N6: Avoid Encodings
	N7: Names Should Describe Side-Effects

	Tests
	T1: Insufficient Tests
	T2: Use a Coverage Tool!
	T3: Don't Skip Trivial Tests
	T4: An Ignored Test Is a Question about an Ambiguity
	T5: Test Boundary Conditions
	T6: Exhaustively Test Near Bugs
	T7: Patterns of Failure Are Revealing
	T8: Test Coverage Patterns Can Be Revealing
	T9: Tests Should Be Fast

	Conclusion
	Bibliography

	Appendix A: Concurrency II
	Client/Server Example
	The Server
	Adding Threading
	Server Observations
	Conclusion

	Possible Paths of Execution
	Number of Paths
	Digging Deeper
	Conclusion

	Knowing Your Library
	Executor Framework
	Nonblocking Solutions
	Nonthread-Safe Classes

	Dependencies Between Methods Can Break Concurrent Code
	Tolerate the Failure
	Client-Based Locking
	Server-Based Locking

	Increasing Throughput
	Single-Thread Calculation of Throughput
	Multithread Calculation of Throughput

	Deadlock
	Mutual Exclusion
	Lock & Wait
	No Preemption
	Circular Wait
	Breaking Mutual Exclusion
	Breaking Lock & Wait
	Breaking Preemption
	Breaking Circular Wait

	Testing Multithreaded Code
	Tool Support for Testing Thread-Based Code
	Conclusion
	Tutorial: Full Code Examples
	Client/Server Nonthreaded
	Client/Server Using Threads

	Appendix B: org.jfree.date.SerialDate
	Appendix C: Cross References of Heuristics
	Epilogue
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

