BAD SMELLS IN CODE v

Chapter 3: Bad
Smells in Code

“If it stinks, change it.”
— Grandma Beck, discussing child raising philosophy

By now you have a good idea of how refactoring works. But just
because you know how doesn't mean you know when. Deciding when
to start refactoring (and when to stop) is just as important to refactor-
ing as knowing how to operate the mechanics of a refactoring.

Now comes the dilemma. It is easy to explain to you how to delete an
instance variable or create a hierarchy. These are simple matters. Try-
ing to explain when you should do these things is not so cut-and-
dried. Rather than appealing to some vague notion of programming
aesthetics (which frankly is what we consultants usually do) | wanted
something a bit more solid.

I was mulling over this tricky issue when | visited Kent in Zurich. Per-
haps he was under the influence of the odors of his new born daughter
at the time, but he had come up with the notion describing the “when”
of refactoring in terms of smells. “Smells,” you say, “and that is sup-
posed to be better than vague aesthetics?” Well, yes. We look at lots of
code, written by projects that span the gamut from wildly successful to
nearly dead. And in doing so, we have learned to look for certain
structures in the code that suggest (sometimes they scream for) the
possibility of refactoring. (We are switching over to “we” in this chap-
ter to reflect the fact that Kent and | wrote this chapter jointly. You can
tell the difference because the funny jokes are mine and the others are
his.)

v ¥ BAD SMELLS IN CODE

One thing we won't try to do here is give you precise criteria for when
a refactoring is overdue. In our experience there is no set of metrics
that rival informed human intuition. What we will do is give you indi-
cations that there is trouble that could be solved by a refactoring. You
will have to develop your own sense of how many instance variables
is too many instance variables and how many lines of code in a
method is too many lines.

Duplicated code

Number one on the stink parade is duplicated code. If you see the
same code structure in more than one place, you can be sure that your
program will be better if you find a way to unify them.

The simplest duplicated code problem is when you have the same
expression in two methods of the same class. Then all you have to do is
Extract Method (114) and invoke the code from both places.

Another common duplication problem is when you have the same
expression in two sibling subclasses. You can eliminate this duplica-
tion by using Extract Method (114) in both classes, then Pull Up Method
(271). If the code is similar but not the same, then you need to use
Extract Method (114) to separate the similar bits from the different bits.
You may then find you can use Form Template Method (289). If the
methods do the same thing using a different algorithm, you can
choose the clearer of the two algorithms and use Substitute Algorithm
(132).

If you have duplicated code in two unrelated classes, consider using
Extract Component (166) in one class, and then use the new component
in the other. Another possibility is that the method really belongs only
in one of the classes and should be invoked by the other class, or that
the method belongs in a third class that should be referred to by both
of the original classes. You have to decide where the method makes
sense, and ensure it is there and nowhere else.

BAD SMELLS IN CODE

Long method

The object programs that live best and longest are those with short
methods. Programmers new to objects often get the feeling that no
computation ever takes place, that object programs are endless
sequences of delegation. When you have lived with a program for a
few years, however, you learn just how valuable all those little meth-
ods are. All of the pay-offs of indirection- explanation, sharing, and
choosing- are supported by little methods.

Since the early days of programming people have realized that the
longer a procedure is, the more difficult it is to understand. Older lan-
guages carried an overhead in subroutine calls, which deterred people
from small method, modern OO languages have pretty much elimi-
nated that overhead. There is still an overhead to the reader of the
code as you have to switch context to look and see what the sub-proce-
dure does. Development environments that allow you to see two
methods at once help to eliminate this; but the real key to making it
easy to understand small methods is good naming. If you have a good
name for a method you don’t need to look at the body.

The net effect of this is that you should be much more aggressive
about decomposing methods. A heuristic we follow is whenever we
feel the need to comment something, we instead write a method. Such
a method contains the code that was commented, but is named after
what the intention of the code is, rather than how it does it. We may do
this on a group of lines, or on as small as a single line of code. We will
do this even if the method call is longer than the code it replaces, pro-
viding the method name explains the purpose of the code. The key
here is not the method length, but the semantic distance between what
the method does and how it does it.

99% of the time, all you have to shorten a method is Extract Method
(114). Find a part of the method that seems to go nicely together and
make a new method.

If you have a method with lots of parameters and temporary variables,
they get in the way of extracting methods. If you try to use Extract
Method, you end up passing so many of the parameters and tempo-
rary variables as parameters to the extracted method that the result is

v ¥ BAD SMELLS IN CODE

scarcely more readable than the original. You can often use Inline Temp
(121) to get rid of the temps. Long lists of parameters can be slimmed
down with Introduce Parameter Object (247) and Preserve Whole Object
(241).

If you've tried that, and you still have too many temps and parame-
ters, then it's time to get out the heavy artillery: Replace Method with
Method Obiject (130).

How do you identify the clumps of code to extract? A good technique
is to look for comments. They often signal this kind of semantic dis-
tance. A block of code with a comment that tells you what it is doing
can be replaced by a method whose name is based on the comment.
Even a single line is worth extracting if it needs explanation.

Conditionals and loops also give signs for extractions. Use Decompose
Conditional (136) to deal with conditional expressions. With loops
extract the loop and the code within the loop into its own method.

Large Class

When a class is trying to do too much, it often shows up as too many
instance variables. When a class has too many instance variables,
duplicated code cannot be far behind.

You can Extract Component (166) to bundle up a number of the vari-
ables. Choose variables to go together in the component that makes
sense with each other. For example, “depositAmount” and “deposit-
Currency” are likely to belong together in a component. More gener-
ally, common prefixes or suffixes for some subset of the variables in a
class suggest the opportunity for a component. If the component
makes sense as a subclass you’ll find Extract Subclass (277) often is eas-
ier. However you can only do this if the subset of instance variables
that are used do not change during an object’s lifetime.

Sometimes a class will not be using all of its instance variables all of
the time. If so, you may be able to Extract Component (166) or Extract
Subclass (277) many times.

BAD SMELLS IN CODE

As with a class with too many instance variables, a class with too
much code is prime breeding ground for duplicated code, chaos, and
death.

The simplest solution (have we mentioned that we like simple solu-
tions?) is if you can eliminate redundancy in the class itself. If you
have five hundred line methods with lots of code in common, you may
be able to turn them into five ten line methods with another ten two
line methods extracted from the original.

As with a class with a huge wad of variables, the usual solution for a
class with too much code is either to Extract Component (166) or Extract
Subclass (277).

Long Parameter List

In our early programming days we were taught to pass everything a
routine needed in as parameters. This was understandable because the
alternative was global data, and global data is evil and usually painful.
Objects change this situation because if you don’t have something you
need, you can always ask another object to get it for you. Thus with
objects you don’t pass in everything the method needs, instead you
pass enough so that the method can get to everything it needs. A lot of
what a method needs is available on method’s host class. Thus in
object-oriented programs parameter lists tend to be much smaller than
on traditional programs.

This is good because long parameter lists are hard to understand, they
get inconsistent and difficult to use, and because you are forever
changing them as you need more data. Most changes are removed by
passing objects because you are much more likely to just need to make
a couple of requests to get at a new piece of data.

Use Replace Parameter with Method (245) when you can get the data in
one parameter by making a request of an object you already know
about. This object might be a field or it might be another parameter.
Use Preserve Whole Object (241) to take a bunch of data gleaned from an
object and replace it with the object itself. If you have several data
items with no logical object, then Introduce Parameter Object (247).

v BAD SMELLS IN CODE

There is one important exception to doing these changes. This is when
you explicitly do not wish to create a dependency from the called
object to the larger object. In those cases unpacking data and sending it
along as parameters is reasonable, but pay attention to the pain
involved. If the parameter list is too long or changes too often you will
need to rethink your dependency structure.

Divergent Change

We structure our software to make change easier, after all software is
meant to be soft. So when we make a change we want to be able to
jump to a single clear point in the system and make the change.

If you look at a class and say, “Well, | will have to change these three
methods every time | get a new database. | have to change these four
methods every time there is a new financial instrument.” you likely
have a situation where two objects are better than one. Of course you
often discover this only after you've added a few databases or financial
instruments. Any change to handle a variation should change a single
class and all the typing in the new class should be expressing the vari-
ation. So for this you identify those things you are changing and use
Extract Component (166) to put them all together.

Shotgun Surgery

You whiff this when every time you add some variation, you have to
make a lot of little changes to a lot of different classes. When the
changes are all over the place, they are hard to find, and it’s easy to
miss an important change. In this case you want to use Move Method
(160) and Move Field (164) to get all the changes into a single class. If no
current class looks like a good candidate, then create one. Often you
can use Inline Component (170) to bring a whole bunch of behavior
together. You then get a small dose of Divergent Change, but you can
easily deal with that.

BAD SMELLS IN CODE

Feature Envy

The whole point of objects is that they are a packaging technique that
packages data together with the processes upon that data. A classic
smell is thus a method that seems more interested in another class than
the one it’s actually in. The most common focus of the envy is the data.
We’ve lost count of the times we’ve seen a method that invokes half-a-
dozen getting methods on another object in order to calculate some
value. Fortunately the cure is obvious, the method clearly wants to be
elsewhere so you use Move Method (160) to get it there. Sometimes only
part of the method suffers from envy, in that case use Extract Method
(114) on the jealous bit and then Move Method (160) to give it a dream
home.

Of course not all cases are so cut and dried. Often a method uses fea-
tures of several classes, so which one should it live with? The heuristic
we use is to which class has most of the data and put the method with
that data. This is often made easier by using Extract Method (114) to
break into methods that go into different places.

Of course there several sophisticated patterns that break this rule.
From the [Gang of Four] Strategy and Visitor immediately leap to
mind. Kent’s Self Delegation is another. You do these to combat the
Divergent Change smell. The fundamental rule of thumb is to put
things together that change together. Data and the behavior that refer-
ences that data usually change together, but there are exceptions.
When those exceptions occur we move the behavior to keep changes in
one place. Strategy and Visitor allow you to change behavior easily
because it isolates the small amount of behavior that needs to be over-
ridden, at the cost of further indirection.

Data Clumps

Data items tend to be like children — they enjoy hanging around in
groups together. Often you’ll see the same three or four data items
together in lots of places: fields in a couple of classes, parameters in
many method signatures. Bunches of data that hang around together
really ought to be made into their own object. The first step is to look

v ¥ BAD SMELLS IN CODE

for where they appear as fields. Use Extract Component (166) on the
fields to turn them into an object. Then turn your attention to method
signatures, using Introduce Parameter Object (247) or Preserve Whole
Object (241) to slim them down. The immediate benefit here is that you
can shrink a lot of parameter lists and make method calling a lot sim-
pler. Don’t worry about data clumps that only use some of the fields of
the new object. As long as you are replacing a couple or more fields
with the new object, you’ll come out ahead.

A good test is to consider deleting one of the data values: if you did
this would the others make any sense? If they don’t that’s a sure sign
that you have an object that’s dying to be born.

Reducing field lists and parameter lists will certainly remove a few
bad smells, but once you have the objects you get the opportunity to
make a nice perfume. You can now look for cases of Divergent Change
which will suggest behavior that can be moved into your new classes.
Before long these classes will be productive members of society.

Case Statements

One of the most obvious symptoms of object-oriented code is its lack
of case (or switch) statements. The problem with case statements is
essentially that of duplication. Often you find the same case statement
scattered about a program for different purposes. If you add a type to
the case you have to find all these case statements and change them.
The object-oriented notion of polymorphism gives you an elegant way
to deal with this problem.

So most times you see a case statement you should think about poly-
morphism, the issue is where should the polymorphism occur. Usu-
ally case statement will switch on a type code. You will want the
method on class that hosts the type code value. So use Extract Method
(114) to extract the switch statement and then Move Method (160) to get
it onto the class where the polymorphism is needed. At that point you
have to decide whether to Replace Type Code with Subclasses (224) or
Replace Type Code with State/Strategy (227). When you have set up the
inheritance structure you can then Replace Switch with Polymorphism
(147).

BAD SMELLS IN CODE

Parallel Inheritance Hierarchies

This smell is really a special case of “the same rate off change in two
objects”. In this case, every time you make a subclass of one class you
also have to make a subclass of another. You can recognize this smell
because the prefixes of the class names in one hierarchy are the same
as the prefixes in another hierarchy.

The general strategy for eliminating the duplication is to make sure
that instances of one hierarchy refer to instances of the other, then use
Move Method (160) and Move Field (164) the hierarchy disappears on the
referring class.

Lazy Class

Each class you create costs money. If there is a class that isn't doing
enough to pay for itself, it should be eliminated.

If you have subclasses that aren't doing enough, try to use Collapse
Hierarchy (288). Nearly useless components should be subjected to
Inline Component (170).

Similar subclasses

Sometimes you will see a class with four subclasses, each of which
only implements three simple methods. Often you will get a vague
feeling that the class doesn't deserve subclasses, but you won't imme-
diately be able to see how to eliminate them. This feeling can last for
months or even years. Don't worry. If you keep nibbling away at the
problems you can see how to solve, eventually you will find yourself
looking at the subclasses again, and all the difficult issues to resolve
will have disappeared.

Once you've done this, look for new opportunities to use inheritance
now that you are no longer wasting it.

v ¥ BAD SMELLS IN CODE

Temporary Field

Sometimes you will see an object where an instance variable is only set
in certain circumstances. Such code is difficult to understand, because
you expect an object to need all of its variables. Trying to understand
why a variable is there when it doesn't seem to be used can drive you
nuts.

Use Extract Component (166) to create a home for the poor orphan vari-
ables. Put all the code that concerns the variables in the component.
You may also be able to eliminate conditional code by using Introduce
Null Object (151) to create an alternative component for when the vari-
ables aren't valid.

Middle Man

One of the prime features of objects is encapsulation: hiding internal
details from the rest of the world. Often this encapsulation comes with
delegation, you ask a director if she is free a meeting, she delegates the
message to her diary, and gives you an answer. All well and good,
there is no need to know whether the director uses a diary, an elec-
tronic gizmo, or a secretary to keep track of her appointments.

However this can go too far (particularly with those who take the Law
of Demeter too seriously). You look at a class’s interface and find half
the methods are delegating to this other class. After a while it’s time to
cut out the middle man and talk to the object that really knows what’s
going on. Use Move Method (160) and Move Field (164) to move features
out of the middle man into the other objects until the middle man has
nothing left.

Alternative classes with different interfaces

Use Rename Method (234) on any methods that do the same thing but
have different signatures for what they do. Often this doesn’t go far
enough. In these cases the classes aren't doing enough yet. Keep using

BAD SMELLS IN CODE

Move Method (160) to move behavior to them until the protocols are the
same. If you have to redundantly move code to accomplish this, you
may be able to use Extract Superclass (282) to atone.

Comments

Don’t worry, we aren’t saying that people shouldn’t write comments.
In our olfactory analogy, comments aren’t a bad smell, indeed they are
a sweet smell.

The reason we mention them here is because comments are often used
as a deodorant. It’s surprising how often you look at thickly com-
mented code, and notice that the comments are there because the code
is bad.

Thus comments lead us to bad code that has all the rotten whiffs we’ve
discussed in the rest of this chapter. Our first action to remove the bad
smells by refactoring. When we’re done we often find that the com-
ments are now superfluous.

When you feel the need to write a comment, try first to refactor the
code so that any comment would be superfluous.

¥ BAD SMELLS IN CODE

