Copyrighted Material
Foreword by opyrighted Materia "'
D-":.:lrﬂ:;.j .__-_1,_...:-11 Er-,_; gy ?'5'1 .-_..:-h.!_l:lf;l C"..'[,'-_I',ﬂ o

Framework
Design Guidelines

Conventions, Idioms, and Patterns
for Reusable .NET Libraries

ol Microsoft
”"l'". *."""",H o .
e @ Mt

X ‘i* Development

E‘{ﬁ . "
- AL Series b
A A
Ba? * Byrad
=
.

A Krzysztof Cwalina
- Brad Abrams

Copyrighted Material



s 1a

Introduction

F YOU COULD STAND over the shoulder of every developer whao is
I using your framework to write code and explain how it is supposed to
be used, guidelines would not be necessary. These guidelines give vou, as
the framework author, a palette of tools that allow you to form a common
language between framework authors and the developers who will use the
frameworks. For example, exposing an operation as a property instead of
exposing it as a method conveys vital information about how that opera-
tion is to be used.

In the early days of the PC era, the main tools for developing applica-
tions were a programming language compiler, a very small set of standard
libraries, and the raw operating system application programming inter-
faces (APls)—a very basic set of low-level programming tools.

Even as developers were building applications using such basic tools,
they were discovering more and more code that was repetitive and could
be abstracted away through higher level APIs. Operating system vendors
noticed that by providing such higher level APls they could make it
cheaper for developers to create applications for their systems. This
increased the number of applications running on the system, which, in
turn, would make the system more appealing to end users who demanded
a variety of applications. Also, independent tool and component vendors
quickly recognized the business opportunities in raising the API abstrac-
tion level.

Copyrighted Material



2

Copyrighted Material
m INTRODUCTION

In parallel, the industry started, slowly, to accept object-oriented design
with its emphasis on extensibility and reusability.! When reusable library
vendors adopted object-oriented programming (OOFP) for the develop-
ment of their high-level AFls, the concept of what we consider a framework
was born. Application developers were no longer expected to write most
of the application from scratch. The framework would provide most of the
needed pieces that would then be customized and connected” to form
applications.

As more vendors started to provide components, which were to be
reused by stitching them together into a single application, developers
noticed that some of the components did not fit together well. Their appli-
cations looked and worked like a house built by different contractors who
never talked to each other. Likewise, as a larger percentage of application
source code became constructed of APl calls rather than standard lan-
guage constructs, developers started to complain that they now had to
read and write multiple languages: one programming language and sev-
eral “languages” of the components they wanted to reuse. This had signifi-
cant negative impact on developer productivity, and productivity is one of
the main factors in the success of a framework. It became clear that there
was a need for common rules that would ensure consistency and seamless
integration of reusable components.

Today, most application development platforms spell out some kind of
design conventions to be used when designing frameworks for the plat-
form. Frameworks that do not follow such conventions, and so do not inte-
grate well with the platform, are either a source of a constant frustration to

1. Object-oriented languages are not the only languages well suited for developing extensible
and reusable libraries, but they played a key role in popularizing the concepts of reusabil-
ity and extensibility. Extensibility and reusability are a large part of the philosophy ol
object-oriented programming (OOF), and the adoption of OOF contributed to increased
awareness of their benefits.

L Recently there has been a great deal of criticism of object-oriented (O0) design, claiming,
that the promise of reusability never materialized. OO0 is not o guarantee of reusability
(especially without testing), but we are not sure that it was ever promised. On the other
hand, OO provides natural constructs to express units of reusability (iypes), to communi-
cate and control extensibility points {virtual members), and to facilitate decoupling
{abstractions).



Copyrighted Material
1.1 QUALITIES OF A WELL-DESIGNED FRAMEWORK ™

those trying to use them, or are at competitive disadvantage, and ulti-
mately fail in the marketplace. The ones that succeed are often described as
self-consistent, making sense, and finally well-designed.

1.1 Qualities of a Well-Designed Framework

The question is, then, what defines a well-designed framework, and how
do yvou get there? There are many factors, such as performance, reliability,
security, and so on, that atfect software quality. Frameworks, of course,
must adhere to these same quality standards. The difference between
frameworks and other kinds of software is that frameworks are made up of
reusable APls, which presents a set of special considerations in designing
quality frameworks.

1.1.1 Well-Designed Frameworks Are Simple

Although a good framework must also be powerful, most frameworks do
not lack power because it can fairly easily be measured by stacking it up
against the core functional requirements. On the other hand, simplicity
often gets sacrificed when schedule pressure, feature creep, or the desire to
satisfy every little corner-case scenario takes over the development pro-
cess. However, simplicity is a must-have feature of every framework. If
yvou have any second thoughts about the complexity of a design, it is
almost always much better to cut the feature from the current release and
spend more time to get the design right for the next release. If the design
does not feel right, and you ship it anyway, you are likely to regret having
done so.

Many of the guidelines described in this book are motivated by the
desire to strike the right balance between power and simplicity. In particu-
lar, Chapter 2 talks extensively about some basic techniques used by the
most successful framework designers to design the right level of simplicity
and power.

1.1.2 Well-Designed Frameworks Are Expensive to Design
Good framework design does not happen magically. It is hard work that
consumes lots of time and resources. If you are not willing to invest real

3



4

Copyrighted Material
m INTRODUCTION

money in the design, you should not expect to create a well-designed
framework.

Framework design should be an explicit and distinct part of the devel-
opment process’; explicit because it needs to be appropriately planned,
staffed, and executed, and distinct because it cannot just be a side effect of
the implementation process. Too often, we see cases where the framework
is whatever types and members happen to remain public after the imple-
mentation process ends.

The best framework designs are either done by people whose explicit
responsibility is framework design, or by people who can put the frame-
work designer’s hat on at the right time in the development process. Mix-
ing the responsibilities is a mistake and leads to designs that expose
implementation details, which should not be visible to the end user of the
framework.”

1.1.3 Well-Designed Frameworks Are Full of Trade-0ffs
There is no such thing as the perfect design. Design is all about making
trade-offs, and to make the right decisions, vou need to understand the
options, their benefits, and their drawbacks. If you find yourself thinking
you have a design without trade-offs, chances are you are missing some-
thing big as opposed to really finding the silver bullet.

The practices described in this book are presented as guidelines, rather
than rules, exactly because framework design requires managing trade-
offs. Some of the guidelines discuss the trade-offs involved and even

1 Do not misunderstand this as an endorsement of heavy up-front design processes. In fact
heavy APl design processes lead 1o waste as APLs often need to be tweaked after they are
implemented. However the APl design process has to be separate from the implementa-
tion process and has to be incorporated in every part of the product cvcle: the planning
phase (what are the Als our customers need?), the design process (what are the fundion-
ality trade-offs we are willing to make to get the right framework AP1s?), the development
process (have we allocated time to try to use the framework to see how the end result
feels?), the beta process (have we allocated time for the costly API redesign), and mainte-
nance (are we decreasing the design quality as we evolve the framework?),

4. Prototyping is one of the most important parts of the frmmework design process, but proto-
typing is very different from implemeniation.



Copyrighted Material
1.1 QUALITIES OF A WELL-DESIGNED FRAMEWORK ™

provide alternatives that need to be considered given the specifics of the
situation.

1.1.4 Well-Designed Frameworks Borrow from the Past

Most successful frameworks borrow and build on top of existing proven
designs. It is possible—and actually desirable—to introduce completely
novel solutions into framework design, but it should be done with the
utmost caution. As the number of new concepts increases, the probability
that the overall design will be right goes down.

The guidelines contained in this book are based on the experiences we
gained while designing the NET Framework; they encourage borrowing
from things that worked and withstood the test of time, and wam about
ones that did not. We encourage you to use these good practices as a start-
ing point, and to improve on them. Chapter 9 talks extensively about com-
mon design approaches that worked.

1.1.5 Well-Designed Frameworks Are Designed to Evolve
Thinking about how to evolve vour framework in the future is a double-
edged sword. It can lead to additional complexity in the name of “just in
case,” but it can also save vou from shipping something that will degrade
over time, or, even worse, something that will not be able to preserve back-
ward compatibility.” As a general rule it is better to move a complete fea-
ture to the next release rather than half-doing it in the current release.
Whenever making a design trade-off, you should answer the question
of how the decision will affect your ability to evolve the framework in the
future. The guidelines presented in this book take this important concern
into account.

1.1.6 Well-Designed Frameworks Are Integrated

Modern frameworks need to be designed to integrate well with a large
ecosystem of different development tools, programming languages, appli-
cation models, and so on. Distributed computing means the time of frame-

5. Backward compatibility is not discussed in detail in this book, but it should be considered
one of the basics of framework design, together with reliability, security, and performance.

3



6

Copyrighted Material
m INTRODUCTION

works designed for specific application models is over. This is also true of
frameworks designed without thinking about proper tool support or inte-
gration with programming languages used by the developer community.

1.1.7 Well-Designed Frameworks Are Consistent

Consistency is the key characteristic of a well-designed framework. [t is
one of the most important factors affecting productivity. A consistent
framework allows for transfer of knowledge between the parts of the
framework that a developer knows to parts that the developer is trving to
learmn. Consistency also helps developers to quickly recognize which parts
of the design are truly unique to the particular feature area and so require
special attention, and which are just the same old common design patterns
and idioms.

Consistency is probably the main theme of this book. Almost every sin-
gle guideline is partially motivated by consistency, but Chapters 3 to 5 are
probably the most important ones in describing the core consistency
guidelines.

We offer these guidelines to help you make your framework successtul,
The next chapter presents guidelines for general library design.



	Screen shot 2011-02-23 at 11.53.20 AM
	Screen shot 2011-02-21 at 12.04.11 PM
	Screen shot 2011-02-21 at 12.04.35 PM
	Screen shot 2011-02-21 at 12.05.01 PM
	Screen shot 2011-02-21 at 12.05.26 PM
	Screen shot 2011-02-21 at 12.05.44 PM
	Screen shot 2011-02-21 at 12.06.00 PM

