

9Refactoring for Software Design Smells. http://dx.doi.org/10.1016/B978-0-12-801397-7.00002-3
Copyright © 2015 Elsevier Inc. All rights reserved.

CHAPTER

Design Smells 2
Do you smell it?

That smell.

A kind of smelly smell.

The smelly smell that smells…smelly
Mr. Krabs1

The previous chapter introduced technical debt and its impact on a software
 organization. We also looked at the various factors that contribute to technical debt.
One such factor is inadequate awareness of design smells and refactoring. We have
repeatedly observed in software development projects that designers are aware of the
fundamental design principles, but sorely lack knowledge about the correct applica-
tion of those principles. As a result, their design becomes brittle and rigid and the
project suffers due to accumulation of technical debt.

Psychologists have observed that mistakes are conducive to learning, and have
suggested that the reason lies in the element of surprise upon finding out that we are
wrong. There is also a well-known cliché that we learn more from our mistakes than
our successes.

This book, therefore, adopts an approach different from the traditional approaches
towards software design. Instead of focusing on design principles and applying them
to examples, we take examples of design smells, and discuss why they occurred and
what can be done to address them. In the process, we reveal the design principles
that were violated or not applied properly. We believe that such an approach towards
design that focuses on smells will help the readers gain a better understanding of
software design principles and help them create more effective designs in practice.

Before we delve into the catalog of smells, we first discuss why we need to care
about smells and various factors that lead to the occurrence of smells. We then pres-
ent a simple, yet powerful classification framework that helps categorize smells
based on the design principles that the smells violate.

1 “SpongeBob SquarePants”, episode “Help Wanted”, season one, aired on May 1, 1999.

CHAPTER 2 Design Smells10

2.1 WHY CARE ABOUT SMELLS?
One of the key indicators of technical debt is poor software quality. Consider some of
the common challenges that developers face while working in software projects that
are accumulating technical debt:

 • The software appears to be getting insanely complex and hard to comprehend.

Why is the “understandability” of software getting worse?

 • The software continues to change with requests for defect fixes and enhance-
ments and takes increasingly more time for the same. Why is the software’s
“changeability” and “extensibility” getting worse?

 • Logically, there seem to be many aspects or parts of the software that can be
reused. However, why is it becoming increasingly difficult to reuse parts of the
software (i.e., why is its “reusability” getting worse)?

 • Customers are becoming increasingly unhappy about the software and want a
more reliable and stable product. The quality assurance team is finding it more
difficult to write tests. Why is the software’s “reliability” and “testability” getting
worse?

Since software design is known to have a major impact on software quality, and

the focus of this book is on software design, we summarize these above qualities2 in
the context of software design in Table 2.1. Note that we use the term design frag-
ment in this table to denote a part of the design such as an abstraction (e.g., a class,

2 Please note that there are numerous other important quality attributes (such as performance and security)
that are impacted by structural design smells. However, we believe an in-depth discussion of these quali-
ties and their relationship to design smells is an entire book in itself, and hence omitted it from this book.

Table 2.1 Important Quality Attributes and Their Definitions

Quality Attribute Definition

Understandability The ease with which the design fragment can be comprehended.
Changeability The ease with which a design fragment can be modified (without

causing ripple effects) when an existing functionality is changed.
Extensibility The ease with which a design fragment can be enhanced or

extended (without ripple effects) for supporting new functionality.
Reusability The ease with which a design fragment can be used in a problem

context other than the one for which the design fragment was
originally developed.

Testability The ease with which a design fragment supports the detection of
defects within it via testing.

Reliability The extent to which the design fragment supports the correct
realization of the functionality and helps guard against the
introduction of runtime problems.

2.1 Why Care About Smells? 11

interface, abstract class) or a collection of abstractions and their relationships (e.g.,
inheritance hierarchies, dependency graphs).

We need to care about smells because smells negatively impact software quality,
and poor software quality in turn indicates technical debt. To give a specific exam-
ple, consider a class that has multiple responsibilities assigned to it in a clear viola-
tion of the Single Responsibility Principle (see Appendix A). Note that this smell is
named Multifaceted Abstraction in this book (see Section 3.4). Table 2.2 provides an

Table 2.2 Impact of Multifaceted Abstraction on Key Quality Attributes

Quality Attribute
Impact of Multifaceted Abstraction on the Quality
Attribute

Understandability A class with the Multifaceted Abstraction smell has multiple
aspects realized into the abstraction, increasing the cognitive
load on the user. When a class has multiple responsibilities,
it takes more time and effort to understand each responsibil-
ity, how they relate to each other in the abstraction, etc. This
adversely affects its understandability.

Changeability &
extensibility

When a class has multiple responsibilities, it is difficult to
determine which members should be modified to support a
change or enhancement. Further, a modification to a member
may impact unrelated responsibilities within the same class;
this in turn can have a ripple effect across the entire design. For
this reason, the amount of time and effort required to change
or extend the class while still ensuring that the resulting ripple
effect has no adverse impact on the correctness of the software
is considerably greater. These factors negatively impact change-
ability and extensibility.

Reusability Ideally, a well-formed abstraction that supports a single respon-
sibility has the potential to be reused as a unit in a different
context. When an abstraction has multiple responsibilities, the
entire abstraction must be used even if only one of the respon-
sibilities needs to be reused. In such a case, the presence of
unnecessary responsibilities may become a costly overhead that
must be addressed. Thus the abstraction’s reusability is com-
promised. Further, in an abstraction with multiple responsibilities,
sometimes the responsibilities may be intertwined. In such a
case, even if only a single responsibility needs to be reused, the
overall behavior of the abstraction may be unpredictable, again
affecting its reusability.

Testability Often, when a class has multiple responsibilities, these respon-
sibilities may be tightly coupled to each other, making it difficult
to test each responsibility separately. This can negatively impact
the testability of the class.

Reliability The effects of modification to a class with intertwined
 responsibilities may be unpredictable and lead to runtime problems.
For instance, consider the case in which each responsibility
 operates on a separate set of variables. When these variables are
put together in a single abstraction, it is easy to mistakenly access
the wrong variable, resulting in a runtime problem.

CHAPTER 2 Design Smells12

overview of how this smell impacts the design quality in terms of the quality attri-
butes defined in Table 2.1. Note that the specific impact of each smell on key quality
attributes is described in Chapters 3 to 6.

The impact of design smells is not limited to just software quality. In some
cases, it can even severely impact the reputation of the organization. For instance,
the presence of design smells in a framework or a library (i.e., software that
exposes an Application Programming Interface(API)) that is going to be used by
clients can adversely impact how the organization is perceived by the community.
This is because it is hard to fix design smells in the API/framework once the clients
start using the API.

2.2 WHAT CAUSES SMELLS?
Since smells have an impact on design quality, it is important to understand smells
and how they are introduced into software design. We want to point out that since
design smells contribute to technical debt, there is some overlap in the causes of
design smells and technical debt. Thus, some of the causes of technical debt that were
discussed in the previous chapter are relevant here, for example, lack of good design-
ers and lack of refactoring; to avoid repetition, we did not include them here. Figure 2.1
shows a pictorial summary of the causes of smells discussed in this section.

FIGURE 2.1

Common causes of design smells.

2.2 What Causes Smells? 13

2.2.1 VIOLATION OF DESIGN PRINCIPLES
Design principles provide guidance to designers in creating effective and high-qual-
ity software solutions. When designers violate design principles in their design, the
violations manifest as smells.

Consider the Calendar class that is part of the java.util package. A class
abstracting real-world calendar functionality is expected to support date-related func-
tionality (which it does), but the java.util.Calendar class supports time-related
functionality as well. An abstraction should be assigned with a unique responsibility.
Since java.util.Calendar class is overloaded with multiple responsibilities, it indi-
cates the violation of the principle of abstraction (in particular, violation of the Single
Responsibility Principle). We name this the Multifaceted Abstraction (see Section
3.4) smell because the class supports multiple responsibilities.

Similarly, consider the class java.util.Stack which extends java.util.
Vector. Stack and Vector conceptually do not share an IS-A relationship because
we cannot substitute a Stack object where an instance of Vector is expected. Hence
this design indicates a violation of the principle of hierarchy (specifically, the viola-
tion of the principle of substitutability - see Appendix A). We name this smell Broken
Hierarchy (Section 6.8) since substitutability is broken.

2.2.2 INAPPROPRIATE USE OF PATTERNS
Sometimes, architects and designers apply well-known solutions to a problem context
without fully understanding the effects of those solutions. Often, these solutions are
in the form of design patterns, and architects/designers feel pressured to apply these
patterns to their problem context without fully understanding various forces that need
to be balanced properly. This creates designs that suffer from symptoms such as too
many classes or highly coupled classes with very few responsibilities [81].

Applying design patterns must be a very methodical and thought-out process.
A design pattern, as captured by its class and sequence diagram notations, is only a
reference solution; thus, there can be hundreds of variants of the design pattern, each
with a particular consequence. An architect/designer who does not fully understand
the finer aspects and implications of using a particular variation can end up severely
impacting the design quality.

There is an interesting interplay between design smells and design patterns.
Often, the most suitable way to address a design smell is to use a particular design
pattern. However, it is also the case that the (wrong, unnecessary, or mis-)application
of a design pattern can often lead to a design smell (also called an antipattern)!

2.2.3 LANGUAGE LIMITATIONS
Deficiencies in programming languages can lead to design smells. For example, Java
did not support enumerations in its initial versions, hence programmers were forced to
use classes or interfaces to hold constants. This resulted in the introduction of Unneces-
sary Abstraction smell (Section 3.5) in their designs. As another example, consider the

CHAPTER 2 Design Smells14

classes AbstractQueuedSynchronizer and AbstractQueuedLongSynchronizer from
JDK. Both classes derive directly from AbstractOwnableSynchronizer and the methods
differ in the primitive types they support (int and long). This resulted in an Unfactored
 Hierarchy smell (see Section 6.3). Since the generics feature in Java does not support
primitive types, it is not possible to eliminate such code duplication when programming
in Java.

2.2.4 PROCEDURAL THINKING IN OO
Often, when programmers with procedural programming background transition to
object-oriented paradigm, they mistakenly think of classes as “doing” things instead
of “being” things. This mindset manifests in the form of using imperative names for
classes, functional decomposition, missing polymorphism with explicit type checks,
etc., which result in design smells in an object-oriented context (for example, see
Section 3.2).

2.2.5 VISCOSITY
One of the reasons that developers may resort to hacks and thus introduce design
smells instead of adopting a systematic process to achieve a particular requirement
is viscosity [79]. Viscosity is of two types: software viscosity and environment
viscosity. Software viscosity refers to the “resistance” (i.e., increased effort and
time) that must be encountered when the correct solution is being applied to a
problem. If, on the other hand, a hack requires less time and effort (i.e., it offers
“low resistance”), it is likely that developers will resort to that hack, giving rise to
design smells.

Environment viscosity refers to the “resistance” offered by the software devel-
opment environment that must be overcome to follow good practices. Often, if the
development environment is slow and inefficient and requires more time and effort
to follow good practices than bad practices, developers will resort to bad practices.
Factors that contribute to the environment viscosity include the development process,
reuse process, organizational requirements, and legal constraints.

2.2.6 NONADHERENCE TO BEST PRACTICES AND PROCESSES
Industrial software development is a complex affair that involves building of large-
scale software by a number of people over several years. One of the ways such
complexity can be better managed is through adherence to processes and best prac-
tices. Often, when a process or practice is not followed correctly or completely,
it can result in design smells. For instance, a best practice for refactoring is that
a “composite refactoring” (i.e., a refactoring that consists of multiple steps [13])
should be performed atomically. In other words, either all or no steps in the refac-
toring should be executed. If this best practice is not adhered to and a composite
refactoring is left half-way through, it can lead to a design smell (see anecdote in
Section 6.9 for an example).

2.5 A Classification of Design Smells 15

2.3 HOW TO ADDRESS SMELLS?
Clearly, smells significantly impact the design quality of a piece of software. It is
therefore important to find, analyze, and address these design smells. Performing
refactoring is the primary means of repaying technical debt. Note that the refactoring
suggestions for each specific smell are described as part of the smell descriptions
in Chapters 3 to 6. Further, Chapter 8 provides a systematic approach for repaying
technical debt via refactoring.

2.4 WHAT SMELLS ARE COVERED IN THIS BOOK?
Smells can be classified as architectural, design (i.e., microarchitectural), or imple-
mentation level smells. It is also possible to view smells as structural or behavioral
smells. We limit our focus in this book to structural design smells (see Figure 2.2).

The discussion on smells in this book is focused on popular object-orientation
languages such as Java, C#, and C++. We also limit ourselves to language features
supported in all three languages. For example, we do not cover multiple-inheritance
in detail and limit as much as possible to single inheritance since multiple class
inheritance is not supported in Java and C#.

Note that none of the design smells covered in this book are invented by us. All
the design smells covered in this book have been presented or discussed earlier in
research papers, books, or documentation of design analysis tools.

2.5 A CLASSIFICATION OF DESIGN SMELLS
When we set out to study structural design smells, we found 283 references to struc-
tural design smells in the existing literature. We realized that it is difficult to make
sense of these smells unless we have a proper classification framework in place.
In general, classification of entities improves human cognition by introducing hier-
archical abstraction levels. Classification not only makes us mentally visualize the

FIGURE 2.2

Scope of smells covered in this book.

CHAPTER 2 Design Smells16

entities, but also helps us differentiate them and understand them. Therefore, we
wanted to create a classification framework for structural design smells.

2.5.1 DESIGN PRINCIPLES BASED CLASSIFICATION OF SMELLS
While we were exploring possible classification schemes for design smells, we real-
ized that it would be very useful to developers if they were aware of the design prin-
ciple that was violated in the context of a smell. Thus, we sought to classify design
smells as a violation of one or more design principles. Another factor that influenced
our use of this classification scheme is that if we can easily trace the cause of smells
to violated design principles, we can get a better idea of how to address them.

For design principles, we use the object model (which is a conceptual frame-
work of object orientation) of Booch et al. [47]. The four “major elements” of his
object model are abstraction, encapsulation, modularization,3 and hierarchy. These
are shown in Table 2.3. These principles are described in further detail in the intro-
duction to Chapters 3, 4, 5, and 6.

We treat the four major elements of Booch’s object model as “design principles”
and refer to them collectively as PHAME (Principles of Hierarchy, Abstraction,
Modularization, and Encapsulation). These principles form the foundation of the
smell classification scheme used in this book. Thus, each design smell is mapped to
that particular design principle that the smell most negatively affects.

2.5.2 NAMING SCHEME FOR SMELLS
We realized that in order to be useful to practitioners, our naming scheme for smells
should be carefully designed. Our objectives here were four-fold:

3 For the ease of naming smells, we have used the term modularization instead of the original term
modularity used by Booch et al. [47].

Table 2.3 High-level Principles Used in Our Classification

Design Principle Description

Abstraction The principle of abstraction advocates the simplification of entities
through reduction and generalization: reduction is by elimination
of unnecessary details and generalization is by identification and
specification of common and important characteristics [48].

Encapsulation The principle of encapsulation advocates separation of concerns
and information hiding [41] through techniques such as hiding
implementation details of abstractions and hiding variations.

Modularization The principle of modularization advocates the creation of cohesive
and loosely coupled abstractions through techniques such as
localization and decomposition.

Hierarchy The principle of hierarchy advocates the creation of a hierarchical
organization of abstractions using techniques such as classifica-
tion, generalization, substitutability, and ordering.

2.5 A Classification of Design Smells 17

 • The naming scheme should be uniform so that a standard way is used to name
all the smells

 • The naming scheme should be concise so that it is easy for practitioners to recall

 • Smells should be named such that it helps the practitioner understand what
design principle was mainly violated due to which the smell occurred

 • The name of a smell should qualify the violated design principle so that it gives
an indication of how the smell primarily manifests

To achieve these objectives, we developed a novel naming scheme for design

smells. In this naming scheme, each smell name consists of two words: an adjective
(the first word) that qualifies the name of the violated design principle (the second
word). Since the name of a smell consists of only two words, it is easy to remem-
ber. Further, specifying the violated design principle in the smell name allows a
designer to trace back the cause of a smell to that design principle. This helps guide
him towards adopting a suitable solution to address that specific smell. Figure 2.3

Missing Abstrac!on

Impera!ve Abstrac!on

Incomplete Abstrac!on

Mul!faceted Abstrac!onAbstrac!on

Modulariza!on

Hierarchy

Unnecessary Abstrac!on

Unu!lized Abstrac!on

Duplicate Abstrac!on

Broken Modulariza!on

Deficient Encapsula!on

Leaky Encapsula!on

Missing Encapsula!on

Unexploited Encapsula!on

Missing Hierarchy

Unnecessary Hierarchy

Unfactored Hierarchy

Wide Hierarchy

Specula!ve Hierarchy

Deep Hierarchy

Rebellious Hierarchy

Broken Hierarchy

Mul!path Hierarchy

Cyclic Hierarchy

Insufficient Modulariza!on

Hub-like Modulariza!on

Cyclically-dependent
Modulariza!on

Classifica!on of
Design Smells

Encapsula!on

FIGURE 2.3

Classification of design smells.

CHAPTER 2 Design Smells18

illustrates our classification scheme (based on PHAME) and the naming scheme for
smells covered in this book.

Note that these four design principles are not mutually exclusive. Therefore,
the cause of some of the smells can be traced back to the violation of more than
one design principle. In such situations, we leverage the enabling techniques
for each principle, i.e., depending on the enabling technique it violates, we clas-
sify the smell under the corresponding principle. Let us discuss this using an
example.

Consider the smell where data and/or methods that ideally should have been
localized into a single abstraction are separated and spread across multiple abstrac-
tions. We could argue that this smell arises due to wrong assignment of responsibili-
ties across abstractions, therefore this smell should be classified under abstraction.
We could also argue that since there is tight coupling between abstractions across
which the data and/or methods are spread, this smell should be classified under
modularization. To resolve this situation, we look at the enabling technique that this
smell violates. In this case, this smell directly violates the enabling technique for
modularization, “localize related data and methods,” hence we classify this smell
under modularization.

2.5.3 TEMPLATE FOR DOCUMENTING SMELLS
For a consistent way of describing different design smells, we have adopted a uni-
form template to describe them. All the smells in this book have been documented
using the template provided in Table 2.4.

Table 2.4 Design Smell Template Used in This Book

Template
Element Description

Name &
description

A concise, intuitive name based on our naming scheme (comprises
two words: first word is an adjective, and second word is the primarily
violated design principle). The name is followed by a concise descrip-
tion of the design smell (along with its possible forms).

Rationale Reason/justification for the design smell in the context of well-known
design principles and enabling techniques. (See Appendix A for a
detailed list of design principles).

Potential causes List of typical reasons for the occurrence of the smell (a nonexhaustive
list based on our experience).

Example(s) One or more examples highlighting the smell. If a smell has multiple
forms, each form may be illustrated using a specific example.

Suggested
refactoring

This includes generic high-level suggestions and steps to refactor the
design smell, and a possible refactoring suggestion for each example
discussed in the Examples section.

2.5 A Classification of Design Smells 19

Chapters 3 to 6, respectively, cover smells that violate the principles of abstrac-
tion, encapsulation, modularization, and hierarchy.

Template
Element Description

Impacted quality
attributes

The design quality attributes that are negatively impacted because of
this smell. The set of design quality attributes that are included for this
discussion in the context of smells includes understandability, change-
ability, extensibility, reusability, testability, and reliability (see Table 2.1).

Aliases Alternative names documented in literature that are used to describe
the design smell. This includes variants, i.e., design smells docu-
mented in literature that are fundamentally identical to, but exhibit a
slight variation from, the smell. The variation may include a special
form, or a more general form of the design smell.

Practical
considerations

Sometimes, in a real-world context, a particular design decision that
introduces a smell may be purposely made either due to constraints
(such as language or platform limitations) or to address a larger prob-
lem in the overall design. This section provides a non-exhaustive list of
such considerations.

Table 2.4 Design Smell Template Used in This Book—cont’d

	Front
Cover
	Refactoring for
Software Design
Smells
	Copyright
	Dedication
	Contents
	Foreword by Grady Booch
	Foreword by Dr. Stéphane Ducasse
	Preface
	WHAT IS THIS BOOK ABOUT?
	WHAT DOES THIS BOOK COVER?
	WHO SHOULD READ THIS BOOK?
	WHAT ARE THE PREREQUISITES FOR READING THIS BOOK?
	HOW TO READ THIS BOOK?
	WHERE CAN I FIND MORE INFORMATION?
	WHY DID WE WRITE THIS BOOK?

	Acknowledgments
	Chapter 1 - Technical Debt
	1.1 WHAT IS TECHNICAL DEBT?
	1.2 WHAT CONSTITUTES TECHNICAL DEBT?
	1.3 WHAT IS THE IMPACT OF TECHNICAL DEBT?
	1.4 WHAT CAUSES TECHNICAL DEBT?
	1.5 HOW TO MANAGE TECHNICAL DEBT?

	Chapter 2 - Design Smells
	2.1 WHY CARE ABOUT SMELLS?
	2.2 WHAT CAUSES SMELLS?
	2.3 HOW TO ADDRESS SMELLS?
	2.4 WHAT SMELLS ARE COVERED IN THIS BOOK?
	2.5 A CLASSIFICATION OF DESIGN SMELLS

	Chapter 3 - Abstraction Smells
	3.1 MISSING ABSTRACTION
	3.2 IMPERATIVE ABSTRACTION
	3.3 INCOMPLETE ABSTRACTION
	3.4 MULTIFACETED ABSTRACTION
	3.5 UNNECESSARY ABSTRACTION
	3.6 UNUTILIZED ABSTRACTION
	3.7 DUPLICATE ABSTRACTION

	Chapter 4 - Encapsulation Smells
	4.1 DEFICIENT ENCAPSULATION
	4.2 LEAKY ENCAPSULATION
	4.3 MISSING ENCAPSULATION
	4.4 UNEXPLOITED ENCAPSULATION

	Chapter 5 - Modularization Smells
	5.1 BROKEN MODULARIZATION
	5.2 INSUFFICIENT MODULARIZATION
	5.3 CYCLICALLY-DEPENDENT MODULARIZATION
	5.4 HUB-LIKE MODULARIZATION

	Chapter 6 - Hierarchy Smells
	6.1 MISSING HIERARCHY
	6.2 UNNECESSARY HIERARCHY
	6.3 UNFACTORED HIERARCHY
	6.4 WIDE HIERARCHY
	6.5 SPECULATIVE HIERARCHY
	6.6 DEEP HIERARCHY
	6.7 REBELLIOUS HIERARCHY
	6.8 BROKEN HIERARCHY
	6.9 MULTIPATH HIERARCHY
	6.10 CYCLIC HIERARCHY

	Chapter 7 - The Smell Ecosystem
	7.1 THE ROLE OF CONTEXT
	7.2 INTERPLAY OF SMELLS

	Chapter 8 - Repaying Technical Debt in Practice
	8.1 THE TOOLS
	8.2 THE PROCESS
	8.3 THE PEOPLE

	Appendix A - Software Design Principles
	A.1 ABSTRACTION
	A.2 ACYCLIC DEPENDENCIES PRINCIPLE
	A.3 DON’T REPEAT YOURSELF PRINCIPLE
	A.4 ENCAPSULATION
	A.5 INFORMATION HIDING PRINCIPLE
	A.6 KEEP IT SIMPLE SILLY
	A.7 LISKOV’S SUBSTITUTION PRINCIPLE
	A.8 HIERARCHY
	A.9 MODULARIZATION
	A.10 OPEN/CLOSE PRINCIPLE
	A.11 SINGLE RESPONSIBILITY PRINCIPLE
	A.12 VARIATION ENCAPSULATION PRINCIPLE

	Appendix B - Tools for Repaying Technical Debt
	Appendix C - Notations for Figures
	Appendix D - Suggested Reading
	D.1 ESSENTIALS
	D.2 REFACTORING AND REENGINEERING
	D.3 PATTERNS AND ANTI-PATTERNS
	D.4 TECHNICAL DEBT

	Bibliography
	Index

