
595

Chapter Sixteen

Object-Oriented Software
Development

Inheritance and Polymorphism

Summing Up
The previous chapter introduced dynamic memory allocation and a linked list. The
notions of indirection and dynamic memory allocation, introduced in the preceding
two chapters, will be used in this chapter to store a collection of dissimilar elements.

Coming Up
This chapter uses a team-based approach to introduce the two other major features
of the object-oriented paradigm:

* inheritance: the ability to derive a new class from an existing class
* polymorphism: the ability of different types of objects to respond to the

same message in different ways
A case study presents another object-oriented approach to software development.
Along the way, the team discovers a class hierarchy that provides experience with
inheritance, polymorphism, and heterogeneous collections. After studying this chapter,
you will be able to

* recognize generalization that may be implemented with inheritance
* derive new classes from old ones
* override member functions and add new features to derived classes
* apply object-oriented design heuristics for inheritance
* understand and use polymorphism

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

596

16.1 Discovery of Inheritance
through Generalization

This section provides another case study in object-oriented software development.
This time the problem is from the domain of a college library system. It follows the
same methodology presented with the Chapter 12 cashless jukebox case study. This
problem is very similar to a problem described in Nancy Wilkinson’s book Using
CRC Cards [Wilkinson 95]. Related items such as a library class hierarchy, inherit-
ance, polymorphism, a date class, and a data structure capable of storing different
classes of objects are described in Problem Solving and Program Implementation
[Mercer 91].

THE PROBLEM STATEMENT: College library application

The college library has requested a system that supports a small set of library opera-

tions: students borrowing items, returning borrowed items, and paying fees. Late fees

and due dates have been established at the following rates:

Late Fee Borrowing Period

Book: $0.50 per day 14 days

Videotape: $5.00 one day late plus $1.50 for each 2 days

additional day late

CD-ROM: $2.50 per day 7 days

A student with more than seven borrowed items, any one late item, or late fees greater

than $25.00 may not borrow anything new.

Object-oriented software development attempts to model a real-world system
as a collection of interacting objects—each with its own set of responsibilities. This
helps organize the system into workable pieces. The three-step object-oriented soft-
ware development strategy introduced in Chapter 12 is repeated here for your con-
venience:

1. Identify classes that model (shape) the system as a natural and sensible
set of abstractions.

2. Determine the purpose, or main responsibility, of each class. The respon-
sibilities of a class are what an instance of the class must be able to do

597

16.1 DISCOVERY OF INHERITANCE THROUGH GENERALIZATION

(member functions) and what each object must know about itself (data
members).

3. Determine the helper classes for each. To help complete its responsibil-
ity, a class typically delegates responsibility to one or more other objects.
These are called helper classes.

The team consists of the library domain expert, Deena, and five students who are
analyzing the college library system as part of a computer science honors option:
Jessica, Jason, Steve, Matt, and Misty. Austen is the object expert this time.

16.1.1 Identify the Classes
The team now has some experience with object-oriented software development. They
plan to use their experience. The first goal, or deliverable, is a set of potential classes
that model the problem statement. Each class will describe its major responsibility.
The team starts by writing down all the nouns and noun phrases in the problem
statement, redundant entries not recorded.

NOUNS (FROM THE PROBLEM STATEMENT)

college library system library operations CD-ROM

librarian student item seven borrowed books

fee book videotape

late fee day due date

The following list represents the set of potential classes for modeling a solution:

POTENTIAL CLASSES: A first pass at finding key abstractions

Somewhat Sure Not Sure

librarian system

student operations

book late fees

video due date

CD-ROM day

seven borrowed books fine

college library

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

598

Matt recommends keeping librarian as the name for a class responsible for
coordinating the activities of checking books in and out.

A student class will be a useful key abstraction. After all, students will be check-
ing books out, checking them in, and paying fines. The domain expert, Deena, men-
tions that librarian should also be allowed to lend books to faculty, staff, and other
members of the community. After all, it’s a state university paid for in part by state
taxes. So the team decides to change the class name to borrower to reflect the gen-
eral notion of someone who can borrow a book from the library.

Misty doesn’t believe “seven borrowed books” should be a key abstraction. One
of the programmers on the team chimes in and suggests, “This is not a problem. I
can see this as a bag of book objects.” The domain expert Deena remarks, “A book
bag?—cool.” Since the team is currently looking for classes that help observers un-
derstand what the system does rather then how the system will eventually do it, the
team decides that “seven borrowed books” is not a class. Instead, this is a knowledge
responsibility.

Austen uses some object-speak: “A borrower should know its own collection of
borrowed books.” Matt jumps in and asks Austen, “Aren’t CD-ROMs and videotapes
in the same category? They can be borrowed too!” Deena agrees. Austen states that
Matt has implicitly discovered a basic concept of object-oriented analysis. Some classes
have things in common. In this case, there are several categories of things that can
be borrowed: books, CD-ROMs, and videotapes. The team considers the responsibili-
ties these classes have in common. After some discussion, Jason and Jessica produce
the following list of responsibilities that all three classes of objects have in common.
Each book, cdRom, and video should:

* know its due date
* compute its due date
* determine its late fee
* know its borrower
* check itself out
* check itself in

Self-Check
16-1 Which responsibilities are the same for these three classes?

16-2 Which responsibilities should be carried out differently?

Jason notices that the term “borrowable item” has been floating around. Austen
suggests there could be an abstraction named borrowableItem that supplies the

599

attributes and behavior common to all items that could be borrowed from the li-
brary. Although differences exist in the computation of late fees and the setting of
due dates, each borrowableItem has several common responsibilities. Steve com-
plains that borrowableItem is a bit of a tongue-twister. Matt suggests lendable:
“lendable represents things that are, well, lendable.” Deena likes this new name.
lendable it is.

Austen points out that the team has intuitively discovered the inheritance rela-
tionship between classes. Inheritance is another name for generalization. Matt in-
stinctively saw several seemingly different objects and found some common things.
He generalized. Since no one has seen or heard of the inheritance relationship, Austen
draws the following diagram on the chalkboard:

FIGURE 16.1. The inheritance relationship in UML notation (lendable is the abstract class)

cdRombook video

lendable

Austen explains that the C++ culture would refer to lendable as the base class.
The other three classes—book, cdRom, and video—are known as derived classes.
The member functions and data members common to all lendables should be listed
in the base class (lendable). Through inheritance, each derived class (book, cdRom,
and video) inherits member functions from the base class (lendable). Austen then
displays a design heuristic in order to explicitly encourage the team to accept the
inheritance relationship between classes as good design.

OBJECT-ORIENTED DESIGN HEURISTIC 16.1 (RIEL’S 5.10)

If two or more classes have common data and behavior, then those classes should inherit

from a common base class that captures those data and methods.

The common data and operations include:
* a date for knowing the borrower and the due date
* operations such as check self out and check self in

However, without some difference amongst the derived classes, there is no reason to
use the inheritance relationship. Instead, there should be just one class. So, in addi-

16.1 DISCOVERY OF INHERITANCE THROUGH GENERALIZATION

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

600

tion to commonalities as mentioned above, there must be enough differences to jus-
tify having more than one class. There are two, possibly three, major differences
between the three classes:

1. computation of the due dates

2. computation of late fees

3. different attributes (video has a movie-studio attribute, for example)

Jason is confused and questions Austen. Jason doesn’t understand why there is
a lendable class in the library system. Austen decides it might prove useful if he
explained the difference between an abstract class and a concrete class. An abstract
class describes the data and operations meant to be common to all derived classes.
An abstract class cannot be instantiated. Therefore, this code should be rendered
illegal:

lendable aLendable; // ERROR--attempt to construct abstract class

Abstract classes exist to capture common operations and data. They are not to be
constructed.

A concrete class is one that can be instantiated. Therefore, these constructions
must be legal:

book aBook; // To be implemented later
cdRom aCDROM;
video aVideo;

Self-Check
16-3 List the abstract class in the following account hierarchy:

basicChecking checkingWithLoan

account

16-4 List the concrete class(es) in this inheritance hierarchy.

16-5 List an operation that would make one class different from another.

16-6 List one operation that would be the same for the concrete classes.

601

16-7 List one data member that both derived classes would likely have.

16-8 List one data member that would exist in one class, but not in the
other.

Jessica claims to understand the notion of the inheritance relationship, although
the implementation is not in her head yet. Austen remarks, “I could show you how
all this works, but don’t worry about it for now. I’ll show the implementation details
in a bit.” Matt articulates that the team should get back on task with analyzing the
college library system.

Jason reminds the group that the following classes have been identified so far:
* librarian
* borrower
* lendable (and the derived classes: book, cdRom, and video)
With some consensus realized, Steve wants to know what the user interface will

look like. Will there be text-based input and output communication between the
user and the system? Is a graphical user interface desired? What about a card reader
or touchscreen for input? Steve enjoyed the touchscreen ordering system recently
tested at the local Taco Bell. Misty points out that it has since been removed.
Deena, the domain expert, isn’t sure what the interface should look like. She be-
lieves the library will be okay with a text-based interface to the system. Text-based
input and output are acceptable. Matt draws a picture so everyone can understand
the relationship between a user and librarian:

FIGURE 16.2

librarian
user: I'm borrower #1234.

I want to borrow book
A76.73.C153M46.

Steve wonders whether user should be included as one of the classes to model
the problem. Misty reminds Steve that the user is a person who approaches librar-
ian, shows identification, and makes a request. borrower represents an object in-
side the system that knows everything about that user that the system will need to
know. For example, borrower could also be responsible for knowing if its human

16.1 DISCOVERY OF INHERITANCE THROUGH GENERALIZATION

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

602

counterpart (the user) owes any late fees. User is not going to be a class. However, it
could play a part in the scenarios. Austen confirms that this is a good decision. Matt
lets Austen in on a little secret: “We went through this once before with the cashless
jukebox that’s jammin’ in the student center.”

Deena has a problem with the concept of a book class and a borrower class.
Certainly the system must maintain many borrowers and many books. Matt relates,
“One class can create many instances, or objects. Since there will be many lendables
and many borrowers, we should probably add two new classes named borrowerList
and lendableList to store, retrieve, and delete borrowers and lendables, respec-
tively.” The team agrees. It worked for the jukebox.

The team feels as though they have captured several key abstractions (classes)
for this application. They now have a framework for analyzing the problem in more
detail. There is a sense that the primary responsibility of each class has been recog-
nized. The team documents their progress with a table that lists class names along
with their primary responsibilities.

Class Name Primary Responsibility

librarian Represent object responsible for coordinating activities of checking books in and out.

borrower Represent one instance of someone who can borrow a lendable. There may be

thousands of borrowers.

lendable Represent an abstract class from which many “borrowable” items can be derived. This

abstract class captures the common member functions and data members of any item

that can be borrowed from the college library.

book Represent one book that can be checked in and checked out. There may be thousands

of books.

cdRom Represent one CD-ROM that can be checked in and checked out. There may be

thousands of cdRoms stored in the database.

video Represent one videotape that can be checked in and checked out. There may be

thousands of videos.

borrowerList Retrieve, delete, add, or update any borrower from the thousands of borrowers in

the database of valid borrowers.

lendableList Retrieve, delete, add, or update any lendable from thousands of “borrowable” items.

This following picture provides an abstract view of the system so far. It also
marks the boundaries of the system. Everything in gray is in the system under

603

development. The users and physical items that can be borrowed are outside the
system.

FIGURE 16.3

Users

Lendables

librarian
borrowerList

borrower

lendableList

Coordinates
activities Stores valid borrowers

Stores all books, cdRoms, and videos

book cdRom video

lendable

16.2 Refinement of Responsibilities
With primary responsibilities identified, the team now sets about the task of identi-
fying and refining other responsibilities. The team will also identify helpers—the
other classes needed to carry out a specific responsibility. The team will try to an-
swer questions such as: What are the responsibilities? Which class should take on
each of the responsibilities? and What class(es) help accomplish another class’s re-
sponsibility? Responsibilities convey the purpose of a class and its role in the sys-
tem. Analysis is enhanced when the team thinks that each instance of a class will be
responsible for two things:

1. the knowledge each object of the class must maintain

2. the actions each object of the class can perform

Austen recommends that the team to be prepared to ask the following two ques-
tions:

1. What should an object of the class know about itself (knowledge)?

2. What should an object of the class be able to do (actions)?

16.2 REFINEMENT OF RESPONSIBILITIES

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

604

Assigning a responsibility to a class means that every instance of that class will
have that responsibility. This is true when there are many instances of the class—
as in lendables and borrowers. It is also true when there is only one instance of the
class—such as librarian and lendableList.

The next team activity involves assigning more specific responsibilities to the
classes already identified. One technique involves role playing. Each team member
assumes the role of one of the classes. The team members play out scenarios while
adding responsibilities and helpers to CRH cards.

16.2.1 A “User Cannot Borrow” Scenario
At this point, team members assume the roles of the classes. They plan to try sce-
narios to see how one instance of a class interacts with other objects. A scenario is
the answer to the question What happens when . . . ? The team decides the first
scenario will be the response to this question:

16.2.1.1 Scenario 1: “What happens when user #1234 wants to check out a book and
currently has seven borrowed lendables?”

librarian: Well, I’m the librarian so I guess I’ll start. I just got a user ID. It’s #1234.
Now User, what do you want to do?

User: I want to check out a book.

librarian: Now I need to know the call number of the book.

User: The book’s call number is QA76.1.

librarian: Okay, now let me verify that this user can borrow. I’ll ask borrowerList
to look up the borrower with ID #1234.

borrowerList: I found the borrower you asked for. I’m sending it back to you. I’ll add
getBorrower to my responsibility list. I must know all borrowers.

librarian: Thanks, borrowerList. Now I have the software object that represents
the human user. I believe my job will be easier if I can send borrower a canBorrow
message. I am now helping borrower. What about it, current borrower, can you
borrow a new book?

borrower: Since I am responsible for knowing my borrowed lendables, I should be
able to tell you if I have seven or more things checked out. Hey wait a minute,
you didn’t ask me if I had seven borrowed items. You asked me if I could borrow.
So I am going to add a canBorrow responsibility to my list. I will return a code
indicating that I can borrow. Will false or true do? To borrow, my late fine must

605

be $25.00 or less and I must have fewer than seven borrowed items, none of
which can be overdue. It seems like I’ll need to know my own borrowed lendables.
I have seven borrowed items. No, I cannot borrow.

librarian: Thanks, borrower. Things are made easier for me because I can delegate
the canBorrow responsibility to you. Also, remember when we were working on
the jukebox. Chelsea told us that we should try to distribute system intelligence
as evenly as possible. We had a canSelect message to simplify the jukebox.
Now, I can just send a canBorrow message to you. I think I now must send an
appropriate message to the user that borrowing a book is not an option.

The team decides they have run this particular scenario to its logical conclu-
sion. They also feel that there are obviously many possible scenarios to role play
such as successfully checking out a book and returning a lendable. The team also
wonders if users should be able to look up a book by call number to see if it is in or
out. Perhaps a user might want to know when a book is due back in the library. This
suggests that a lendable should know when it is due and it should be able to tell
someone the actual due date.

Deena confirms that this is certainly desirable behavior. However, the problem
specification does not list these requirements. The team agrees to plan for the possi-
bility of adding such enhancements later.

16.2.2 A Check-Out Scenario
16.2.2.1 Scenario 2: “What happens when user #1234 wants to borrow a lendable

with call number QA76.2, has three books out, none of which are late, and has
late fines of only $5.00?”

librarian: I’ll start again; I’ll get the user ID.

User: My ID is #1234.

librarian: Let me ask borrowerList for the proper borrower. Please getBorrower
with ID #1234.

borrowerList: I found the borrower you asked for. I’m sending it back to you.

librarian: User, what do you want to do?

User: I want to borrow something with call number QA76.2.

librarian: Now I have the current borrower and the current lendable in my pos-
session. I think I’ll check with borrower: can you borrow?

16.2 REFINEMENT OF RESPONSIBILITIES

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

606

borrower: Let me see if I have fewer than seven borrowed items. Yes, I currently am
borrowing three lendables. Now, are any lendables overdue? Let me ask the
first lendable in my list of borrowed items: lendableo, are you overdue?

lendable0: I am responsible for knowing if I am overdue. I’ll have to ask date to
compare my due date with today’s date. I will add the responsibilities “know
due date” and isOverdue. I asked date for help.

“Who’s date?” asks Deena. She wants to know what a date class would be re-
sponsible for. The team decides to add date as a key abstraction and see what its
responsibilities are. One of the programmers writes down date as a helper on a CRH
card and agrees to play the role of date.

date: To compare the due date with today’s date, I must be able to get today’s date
and to compare two dates. Yes lendable0, today’s date is less than or equal to
the due date. I’ll add <= and todaysDate to my responsibilities.

lendable0: Thanks, date. I am not overdue.

borrower: I’ll check my other lendables. lendable1, lendable2? None are overdue.
Since I also have no late fees, I can tell librarian, “Yes, I can borrow something
new.”

librarian: lendableList, please get me the lendable QA76.2.

lendableList: Okay, here is the lendable.

librarian: What should I do now?

The team pauses and considers a couple of possibilities. It seems as if the current
borrower and the current lendable both need to be updated somehow to record that
the lendable has been checked out. It seems logical to update the lendable first and
then send it to the borrower to add to its list of lendables. It also seems appropriate to
update lendableList and borrowerList. That ensures that all borrowers and lendables
are accurately updated.

Austen recommends that the team first ask the question, What should be done
to update lendable? The team decides that the book’s status should become “not
available.” Also, lendable’s dueDate should be set to the appropriate day in the
future so later on the borrower can ask the book if it is overdue. The team also
believes that it is important to know who has borrowed the lendable—in case some-
one wants to find out who has it. The team comes up with two alternatives.

607

The first alternative places the responsibility of updating a lendable upon
librarian. The second alternative delegates this responsibility to the lendable
itself. The team decides to role play both alternatives. Here is the first.

16.2.2.2 Alternative 1 (updating the lendable)

librarian: lendable, compute and set your due date.

lendable: Okay, I’ll setDueDate to either 2, 7, or 14 days from today—depending on
what class of lendable is currently being checked out.

Austen breaks in saying, “That’s polymorphism!” The class can be determined
while the program is running. The particular version of setDueDate will depend on
the class of the object. And the class of object cannot be determined until the mo-
ment the lendable is being checked out—at runtime.

lendable: I’ll set the due date. I’ll add a computeDueDate responsibility to my CRH
card.

librarian: lendable, now please record #1234 as your borrower.

lendable: Okay, I’ll set my borrower ID as user #1234.

librarian: Okay, now mark yourself as not available.

lendable: Done.

16.2.2.3 Alternative 2 (updating the lendable)

librarian: lendable, you could be responsible for checking yourself out. If I tell you
who the borrower is, could you check yourself out?

lendable: Sure. I add these new responsibilities to my CRH card: computeDueDate
and checkSelfOut.

Which alternative is better? One way to assess the design is to ask yourself
what feels better. Alternative 2 feels better somehow. But wouldn’t it be nice to have
some design heuristics to make us feel better about feeling better? Well, it turns out
that the first alternative has a higher degree of coupling. There were three different
message sends versus the single message send of the second alternative. Addition-
ally, the second alternative has better cohesion—the three responsibilities of lendable
accomplished by a lendable::checkSelfOut message are closely related.

16.2 REFINEMENT OF RESPONSIBILITIES

CHAPTER SIXTEEN OBJECT-ORIENTED SOFTWARE DEVELOPMENT: INHERITANCE AND POLYMORPHISM

608

1. Know my borrower.

2. Compute my due date and set my due date.

3. Update my availability status.

Additionally, the first alternative requires librarian to know more than is neces-
sary about the internal state of the lendable. Alternative 2 delegates responsibility
to the more appropriate class. So the team member holding the lendable card adds
lendable::checkSelfOut(borrower) to the set of responsibilities on the CRH card.

Now, has this scenario reached its logical conclusion? No. The borrower does not
know about its new borrowed book. Remember that it is the responsibility of each
borrower to know its borrowed books. The borrower must be updated. Here is one
conclusion to this scenario.

librarian: borrower, let’s follow the design heuristic we just talked about. I’ll just
send this message: borrower.checkOut(lendable)

borrower: It seems as though I should be able to add a lendable to my list of bor-
rowed lendables. I’ll add borrower::checkOut(lendable) as a responsibility
on my CRH card.

librarian: Please inform the user that everything is okay—the user may take the
lendable along. Whoops, I almost forgot. I better update borrowerList and
lendableList. borrowerList, please put this borrower away.

borrowerList: Okay, I’ll add putBorrower(borrower) to my CRH card.

librarian: lendableList, please but this lendable away.

lendableList: Okay, I’ll add lendableList::putLendable(lendable) to my CRH
card.

librarian: So User, anything else?

User: No, I’m outta here.

librarian: Okay, I’m ready to process another user.

The check-out scenario has reached a logical conclusion.

Self-Check
16-9 Write a check-out algorithm that sends any message you desire to

any object you desire. Use any of the objects shown next as if the
classes were already implemented. Add any message you like.

