
Thinking
in

Java
Fourth Edition

Bruce Eckel
President, MindView, Inc.

Access Control
Access control (or implementation hiding) is about “not getting it
right the first time.”

All good writers—including those who write software—know that a piece of work isn’t good
until it’s been rewritten, often many times. If you leave a piece of code in a drawer for a while
and come back to it, you may see a much better way to do it. This is one of the prime
motivations for refactoring, which rewrites working code in order to make it more readable,
understandable, and thus maintainable.1

There is a tension, however, in this desire to change and improve your code. There are often
consumers (client programmers) who rely on some aspect of your code staying the same. So
you want to change it; they want it to stay the same. Thus a primary consideration in object-
oriented design is to “separate the things that change from the things that stay the same.”

This is particularly important for libraries. Consumers of that library must rely on the part
they use, and know that they won’t need to rewrite code if a new version of the library comes
out. On the flip side, the library creator must have the freedom to make modifications and
improvements with the certainty that the client code won’t be affected by those changes.

This can be achieved through convention. For example, the library programmer must agree
not to remove existing methods when modifying a class in the library, since that would break
the client programmer’s code. The reverse situation is thornier, however. In the case of a
field, how can the library creator know which fields have been accessed by client
programmers? This is also true with methods that are only part of the implementation of a
class, and not meant to be used directly by the client programmer. What if the library creator
wants to rip out an old implementation and put in a new one? Changing any of those
members might break a client programmer’s code. Thus the library creator is in a strait jacket
and can’t change anything.

To solve this problem, Java provides access specifiers to allow the library creator to say what
is available to the client programmer and what is not. The levels of access control from “most
access” to “least access” are public, protected, package access (which has no keyword), and
private. From the previous paragraph you might think that, as a library designer, you’ll want
to keep everything as “private” as possible, and expose only the methods that you want the
client programmer to use. This is exactly right, even though it’s often counterintuitive for
people who program in other languages (especially C) and who are used to accessing
everything without restriction. By the end of this chapter you should be convinced of the
value of access control in Java.

The concept of a library of components and the control over who can access the components
of that library is not complete, however. There’s still the question of how the components are
bundled together into a cohesive library unit. This is controlled with the package keyword in
Java, and the access specifiers are affected by whether a class is in the same package or in a
separate package. So to begin this chapter, you’ll learn how library components are placed
into packages. Then you’ll be able to understand the complete meaning of the access
specifiers.

1 See Refactoring: Improving the Design of Existing Code, by Martin Fowler, et al. (Addison-Wesley, 1999). Occasionally
someone will argue against refactoring, suggesting that code which works is perfectly good and it’s a waste of time to
refactor it. The problem with this way of thinking is that the lion’s share of a project’s time and money is not in the initial
writing of the code, but in maintaining it. Making code easier to understand translates into very significant dollars.

second does nothing. Use a static import line to import the class into a test program, and
demonstrate the conditional compilation effect.

Package caveat
It’s worth remembering that anytime you create a package, you implicitly specify a directory
structure when you give the package a name. The package must live in the directory indicated
by its name, which must be a directory that is searchable starting from the CLASSPATH.
Experimenting with the package keyword can be a bit frustrating at first, because unless you
adhere to the package-name to directory-path rule, you’ll get a lot of mysterious runtime
messages about not being able to find a particular class, even if that class is sitting there in
the same directory. If you get a message like this, try commenting out the package
statement, and if it runs, you’ll know where the problem lies.

Note that compiled code is often placed in a different directory than source code, but the path
to the compiled code must still be found by the JVM using the CLASSPATH.

Java access specifiers
The Java access specifiers public, protected, and private are placed in front of each
definition for each member in your class, whether it’s a field or a method. Each access
specifier only controls the access for that particular definition.

If you don’t provide an access specifier, it means “package access.” So one way or another,
everything has some kind of access control. In the following sections, you’ll learn about the
various types of access.

Package access
All the examples before this chapter used no access specifiers. The default access has no
keyword, but it is commonly referred to as package access (and sometimes “friendly”). It
means that all the other classes in the current package have access to that member, but to all
the classes outside of this package, the member appears to be private. Since a compilation
unit—a file—can belong only to a single package, all the classes within a single compilation
unit are automatically available to each other via package access.

Package access allows you to group related classes together in a package so that they can
easily interact with each other. When you put classes together in a package, thus granting
mutual access to their package-access members, you “own” the code in that package. It
makes sense that only code that you own should have package access to other code that you
own. You could say that package access gives a meaning or a reason for grouping classes
together in a package. In many languages the way you organize your definitions in files can
be arbitrary, but in Java you’re compelled to organize them in a sensible fashion. In addition,
you’ll probably want to exclude classes that shouldn’t have access to the classes being defined
in the current package.

The class controls the code that has access to its members. Code from another package can’t
just come around and say, “Hi, I’m a friend of Bob’s!” and expect to be shown the
protected, package-access, and private members of Bob. The only way to grant access to a
member is to:

1. Make the member public. Then everybody, everywhere, can access it.

Access Control 153

Robert Duvall

2. Give the member package access by leaving off any access specifier, and put the other
classes in the same package. Then the other classes in that package can access the
member.

3. As you’ll see in the Reusing Classes chapter, when inheritance is introduced, an

inherited class can access a protected member as well as a public member (but not
private members). It can access package-access members only if the two classes are
in the same package. But don’t worry about inheritance and protected right now.

4. Provide “accessor/mutator” methods (also known as “get/set” methods) that read and

change the value. This is the most civilized approach in terms of OOP, and it is
fundamental to JavaBeans, as you’ll see in the Graphical User Interfaces chapter.

public: interface access
When you use the public keyword, it means that the member declaration that immediately
follows public is available to everyone, in particular to the client programmer who uses the
library. Suppose you define a package dessert containing the following compilation unit:

//: access/dessert/Cookie.java
// Creates a library.
package access.dessert;

public class Cookie {
 public Cookie() {
 System.out.println("Cookie constructor");
 }
 void bite() { System.out.println("bite"); }
} ///:~

Remember, the class file produced by Cookie.java must reside in a subdirectory called
dessert, in a directory under access (indicating the Access Control chapter of this book)
that must be under one of the CLASSPATH directories. Don’t make the mistake of thinking
that Java will always look at the current directory as one of the starting points for searching.
If you don’t have a ‘.’ as one of the paths in your CLASSPATH, Java won’t look there.

Now if you create a program that uses Cookie:

//: access/Dinner.java
// Uses the library.
import access.dessert.*;

public class Dinner {
 public static void main(String[] args) {
 Cookie x = new Cookie();
 //! x.bite(); // Can’t access
 }
} /* Output:
Cookie constructor
*///:~

you can create a Cookie object, since its constructor is public and the class is public. (We’ll
look more at the concept of a public class later.) However, the bite() member is
inaccessible inside Dinner.java since bite() provides access only within package dessert,
so the compiler prevents you from using it.

154 Thinking in Java Bruce Eckel

The default package

You might be surprised to discover that the following code compiles, even though it would
appear that it breaks the rules:

//: access/Cake.java
// Accesses a class in a separate compilation unit.

class Cake {
 public static void main(String[] args) {
 Pie x = new Pie();
 x.f();
 }
} /* Output:
Pie.f()
*///:~

In a second file in the same directory:

//: access/Pie.java
// The other class.

class Pie {
 void f() { System.out.println("Pie.f()"); }
} ///:~

You might initially view these as completely foreign files, and yet Cake is able to create a Pie
object and call its f() method. (Note that you must have ‘.’ in your CLASSPATH in order for
the files to compile.) You’d typically think that Pie and f() have package access and are
therefore not available to Cake. They do have package access—that part is correct. The
reason that they are available in Cake.java is because they are in the same directory and
have no explicit package name. Java treats files like this as implicitly part of the “default
package” for that directory, and thus they provide package access to all the other files in that
directory.

private: you can’t touch that!
The private keyword means that no one can access that member except the class that
contains that member, inside methods of that class. Other classes in the same package cannot
access private members, so it’s as if you’re even insulating the class against yourself. On the
other hand, it’s not unlikely that a package might be created by several people collaborating
together, so private allows you to freely change that member without concern that it will
affect another class in the same package.

The default package access often provides an adequate amount of hiding; remember, a
packageaccess member is inaccessible to the client programmer using the class. This is nice,
since the default access is the one that you normally use (and the one that you’ll get if you
forget to add any access control). Thus, you’ll typically think about access for the members
that you explicitly want to make public for the client programmer, and as a result, you might
initially think that you won’t use the private keyword very often, since it’s tolerable to get
away without it. However, it turns out that the consistent use of private is very important,
especially where multithreading is concerned. (As you’ll see in the Concurrency chapter.)

Here’s an example of the use of private:

//: access/IceCream.java
// Demonstrates "private" keyword.

Access Control 155

156 Thinking in Java Bruce Eckel

class Sundae {
 private Sundae() {}
 static Sundae makeASundae() {
 return new Sundae();
 }
}

public class IceCream {
 public static void main(String[] args) {
 //! Sundae x = new Sundae();
 Sundae x = Sundae.makeASundae();
 }
} ///:~

This shows an example in which private comes in handy: You might want to control how an
object is created and prevent someone from directly accessing a particular constructor (or all
of them). In the preceding example, you cannot create a Sundae object via its constructor;
instead, you must call the makeASundae() method to do it for you.4

Any method that you’re certain is only a “helper” method for that class can be made private,
to ensure that you don’t accidentally use it elsewhere in the package and thus prohibit
yourself from changing or removing the method. Making a method private guarantees that
you retain this option.

The same is true for a private field inside a class. Unless you must expose the underlying
implementation (which is less likely than you might think), you should make all fields
private. However, just because a reference to an object is private inside a class doesn’t
mean that some other object can’t have a public reference to the same object. (See the online
supplements for this book to learn about aliasing issues.)

protected: inheritance access
Understanding the protected access specifier requires a jump ahead. First, you should be
aware that you don’t need to understand this section to continue through this book up
through inheritance (the Reusing Classes chapter). But for completeness, here is a brief
description and example using protected.

The protected keyword deals with a concept called inheritance, which takes an existing
class— which we refer to as the base class—and adds new members to that class without
touching the existing class. You can also change the behavior of existing members of the
class. To inherit from a class, you say that your new class extends an existing class, like this:

class Foo extends Bar {

The rest of the class definition looks the same.

If you create a new package and inherit from a class in another package, the only members
you have access to are the public members of the original package. (Of course, if you
perform the inheritance in the same package, you can manipulate all the members that have
package access.) Sometimes the creator of the base class would like to take a particular
member and grant access to derived classes but not the world in general. That’s what
protected does. protected also gives package access—that is, other classes in the same
package may access protected elements.

4 There’s another effect in this case: Since the default constructor is the only one defined, and it’s private, it will prevent
inheritance of this class. (A subject that will be introduced later.)

If you refer back to the file Cookie.java, the following class cannot call the package-access
member bite():

//: access/ChocolateChip.java
// Can’t use package-access member from another package.
import access.dessert.*;

public class ChocolateChip extends Cookie {
 public ChocolateChip() {
 System.out.println("ChocolateChip constructor");
 }
 public void chomp() {
 //! bite(); // Can’t access bite
 }
 public static void main(String[] args) {
 ChocolateChip x = new ChocolateChip();
 x.chomp();
 }
} /* Output:
Cookie constructor
ChocolateChip constructor
*///:~

One of the interesting things about inheritance is that if a method bite() exists in class
Cookie, then it also exists in any class inherited from Cookie. But since bite() has package
access and is in a foreign package, it’s unavailable to us in this one. Of course, you could
make it public, but then everyone would have access, and maybe that’s not what you want. If
you change the class Cookie as follows:

//: access/cookie2/Cookie.java
package access.cookie2;

public class Cookie {
 public Cookie() {
 System.out.println("Cookie constructor");
 }
 protected void bite() {
 System.out.println("bite");
 }
} ///:~

now bite() becomes accessible to anyone inheriting from Cookie:

//: access/ChocolateChip2.java
import access.cookie2.*;

public class ChocolateChip2 extends Cookie {
 public ChocolateChip2() {
 System.out.println("ChocolateChip2 constructor");
 }
 public void chomp() { bite(); } // Protected method
 public static void main(String[] args) {
 ChocolateChip2 x = new ChocolateChip2();
 x.chomp();
 }
} /* Output:
Cookie constructor
ChocolateChip2 constructor
bite
*///:~

Access Control 157

158 Thinking in Java Bruce Eckel

Note that, although bite() also has package access, it is not public.

Exercise 4: (2) Show that protected methods have package access but are not public.

Exercise 5: (2) Create a class with public, private, protected, and package-access
fields and method members. Create an object of this class and see what kind of compiler
messages you get when you try to access all the class members. Be aware that classes in the
same directory are part of the “default” package.

Exercise 6: (1) Create a class with protected data. Create a second class in the same file
with a method that manipulates the protected data in the first class.

Interface and implementation
Access control is often referred to as implementation hiding. Wrapping data and methods
within classes in combination with implementation hiding is often called encapsulation.5
The result is a data type with characteristics and behaviors.

Access control puts boundaries within a data type for two important reasons. The first is to
establish what the client programmers can and can’t use. You can build your internal
mechanisms into the structure without worrying that the client programmers will
accidentally treat the internals as part of the interface that they should be using.

This feeds directly into the second reason, which is to separate the interface from the
implementation. If the structure is used in a set of programs, but client programmers can’t
do anything but send messages to the public interface, then you are free to change anything
that’s not public (e.g., package access, protected, or private) without breaking client code.

For clarity, you might prefer a style of creating classes that puts the public members at the
beginning, followed by the protected, package-access, and private members. The
advantage is that the user of the class can then read down from the top and see first what’s
important to them (the public members, because they can be accessed outside the file), and
stop reading when they encounter the non-public members, which are part of the internal
implementation:

//: access/OrganizedByAccess.java

public class OrganizedByAccess {
 public void pub1() { /* ... */ }
 public void pub2() { /* ... */ }
 public void pub3() { /* ... */ }
 private void priv1() { /* ... */ }
 private void priv2() { /* ... */ }
 private void priv3() { /* ... */ }
 private int i;
 // ...
} ///:~

This will make it only partially easier to read, because the interface and implementation are
still mixed together. That is, you still see the source code—the implementation—because it’s
right there in the class. In addition, the comment documentation supported by Javadoc
lessens the importance of code readability by the client programmer. Displaying the interface
to the consumer of a class is really the job of the class browser, a tool whose job is to look at
all the available classes and show you what you can do with them (i.e., what members are

5 However, people often refer to implementation hiding alone as encapsulation.

Summary
In any relationship it’s important to have boundaries that are respected by all parties
involved. When you create a library, you establish a relationship with the user of that
library—the client programmer—who is another programmer, but one using your library to
build an application or a bigger library.

Without rules, client programmers can do anything they want with all the members of a
class, even if you might prefer they don’t directly manipulate some of the members.
Everything’s naked to the world.

This chapter looked at how classes are built to form libraries: first, the way a group of classes
is packaged within a library, and second, the way the class controls access to its members.

It is estimated that a C programming project begins to break down somewhere between 50K
and 100K lines of code because C has a single namespace, and names begin to collide,
causing extra management overhead. In Java, the package keyword, the package naming
scheme, and the import keyword give you complete control over names, so the issue of
name collision is easily avoided.

There are two reasons for controlling access to members. The first is to keep users’ hands off
portions that they shouldn’t touch. These pieces are necessary for the internal operations of
the class, but not part of the interface that the client programmer needs. So making methods
and fields private is a service to client programmers, because they can easily see what’s
important to them and what they can ignore. It simplifies their understanding of the class.

The second and most important reason for access control is to allow the library designer to
change the internal workings of the class without worrying about how it will affect the client
programmer. You might, for example, build a class one way at first, and then discover that
restructuring your code will provide much greater speed. If the interface and implementation
are clearly separated and protected, you can accomplish this without forcing client
programmers to rewrite their code. Access control ensures that no client programmer
becomes dependent on any part of the underlying implementation of a class.

When you have the ability to change the underlying implementation, you not only have the
freedom to improve your design, you also have the freedom to make mistakes. No matter
how carefully you plan and design, you’ll make mistakes. Knowing that it’s relatively safe to
make these mistakes means you’ll be more experimental, you’ll learn more quickly, and you’ll
finish your project sooner.

The public interface to a class is what the user does see, so that is the most important part of
the class to get “right” during analysis and design. Even that allows you some leeway for
change. If you don’t get the interface right the first time, you can add more methods, as long
as you don’t remove any that client programmers have already used in their code.

Notice that access control focuses on a relationship—and a kind of communication—between
a library creator and the external clients of that library. There are many situations where this
is not the case. For example, you are writing all the code yourself, or you are working in close
quarters with a small team and everything goes into the same package. These situations have
a different kind of communication, and rigid adherence to access rules may not be optimal.
Default (package) access may be just fine.

162 Thinking in Java Bruce Eckel

