
Thinking
in

Java
Fourth Edition

Bruce Eckel
President, MindView, Inc.

Introduction
 to Objects

“We cut nature up, organize it into concepts, and ascribe significances
as we do, largely because we are parties to an agreement that holds
throughout our speech community and is codified in the patterns of
our language … we cannot talk at all except by subscribing to the
organization and classification of data which the agreement decrees.”
Benjamin Lee Whorf (1897-1941)

The genesis of the computer revolution was in a machine. The genesis of our programming
languages thus tends to look like that machine.

But computers are not so much machines as they are mind amplification tools (“bicycles for
the mind,” as Steve Jobs is fond of saying) and a different kind of expressive medium. As a
result, the tools are beginning to look less like machines and more like parts of our minds,
and also like other forms of expression such as writing, painting, sculpture, animation, and
filmmaking. Object-oriented programming (OOP) is part of this movement toward using the
computer as an expressive medium.

This chapter will introduce you to the basic concepts of OOP, including an overview of
development methods. This chapter, and this book, assumes that you have some
programming experience, although not necessarily in C. If you think you need more
preparation in programming before tackling this book, you should work through the
Thinking in C multimedia seminar, downloadable from www.MindView.net.

This chapter is background and supplementary material. Many people do not feel
comfortable wading into object-oriented programming without understanding the big picture
first. Thus, there are many concepts that are introduced here to give you a solid overview of
OOP. However, other people may not get the big picture concepts until they’ve seen some of
the mechanics first; these people may become bogged down and lost without some code to
get their hands on. If you’re part of this latter group and are eager to get to the specifics of the
language, feel free to jump past this chapter—skipping it at this point will not prevent you
from writing programs or learning the language. However, you will want to come back here
eventually to fill in your knowledge so you can understand why objects are important and
how to design with them.

The progress of abstraction
All programming languages provide abstractions. It can be argued that the complexity of the
problems you’re able to solve is directly related to the kind and quality of abstraction. By
“kind” I mean, “What is it that you are abstracting?” Assembly language is a small abstraction
of the underlying machine. Many so-called “imperative” languages that followed (such as
FORTRAN, BASIC, and C) were abstractions of assembly language. These languages are big
improvements over assembly language, but their primary abstraction still requires you to
think in terms of the structure of the computer rather than the structure of the problem you
are trying to solve. The programmer must establish the association between the machine
model (in the “solution space,” which is the place where you’re implementing that solution,
such as a computer) and the model of the problem that is actually being solved (in the

16 Thinking in Java Bruce Eckel

“problem space,” which is the place where the problem exists, such as a business). The effort
required to perform this mapping, and the fact that it is extrinsic to the programming
language, produces programs that are difficult to write and expensive to maintain, and as a
side effect created the entire “programming methods” industry.

The alternative to modeling the machine is to model the problem you’re trying to solve. Early
languages such as LISP and APL chose particular views of the world (“All problems are
ultimately lists” or “All problems are algorithmic,” respectively). Prolog casts all problems
into chains of decisions. Languages have been created for constraint-based programming and
for programming exclusively by manipulating graphical symbols. (The latter proved to be too
restrictive.) Each of these approaches may be a good solution to the particular class of
problem they’re designed to solve, but when you step outside of that domain they become
awkward.

The object-oriented approach goes a step further by providing tools for the programmer to
represent elements in the problem space. This representation is general enough that the
programmer is not constrained to any particular type of problem. We refer to the elements in
the problem space and their representations in the solution space as “objects.” (You will also
need other objects that don’t have problem-space analogs.) The idea is that the program is
allowed to adapt itself to the lingo of the problem by adding new types of objects, so when
you read the code describing the solution, you’re reading words that also express the
problem. This is a more flexible and powerful language abstraction than what we’ve had
before.1 Thus, OOP allows you to describe the problem in terms of the problem, rather than
in terms of the computer where the solution will run. There’s still a connection back to the
computer: Each object looks quite a bit like a little computer—it has a state, and it has
operations that you can ask it to perform. However, this doesn’t seem like such a bad analogy
to objects in the real world—they all have characteristics and behaviors.

Alan Kay summarized five basic characteristics of Smalltalk, the first successful object-
oriented language and one of the languages upon which Java is based. These characteristics
represent a pure approach to object-oriented programming:

1. Everything is an object. Think of an object as a fancy variable; it stores data,
but you can “make requests” to that object, asking it to perform operations on itself. In
theory, you can take any conceptual component in the problem you’re trying to solve
(dogs, buildings, services, etc.) and represent it as an object in your program.

2. A program is a bunch of objects telling each other what to do by
sending messages. To make a request of an object, you “send a message” to that
object. More concretely, you can think of a message as a request to call a method that
belongs to a particular object.

3. Each object has its own memory made up of other objects. Put

another way, you create a new kind of object by making a package containing existing
objects. Thus, you can build complexity into a program while hiding it behind the
simplicity of objects.

4. Every object has a type. Using the parlance, each object is an instance of a

class, in which “class” is synonymous with “type.” The most important distinguishing
characteristic of a class is “What messages can you send to it?”

5. All objects of a particular type can receive the same messages. This

is actually a loaded statement, as you will see later. Because an object of type “circle” is
also an object of type “shape,” a circle is guaranteed to accept shape messages. This

1 Some language designers have decided that object-oriented programming by itself is not adequate to easily solve all
programming problems, and advocate the combination of various approaches into multiparadigm programming
languages. See Multiparadigm Programming in Leda by Timothy Budd (Addison-Wesley, 1995).

Introduction to Objects 17

means you can write code that talks to shapes and automatically handle anything that
fits the description of a shape. This substitutability is one of the powerful concepts in
OOP.

Booch offers an even more succinct description of an object:

An object has state, behavior and identity.

This means that an object can have internal data (which gives it state), methods (to produce
behavior), and each object can be uniquely distinguished from every other object—to put this
in a concrete sense, each object has a unique address in memory.2

An object has an interface
Aristotle was probably the first to begin a careful study of the concept of type; he spoke of
“the class of fishes and the class of birds.” The idea that all objects, while being unique, are
also part of a class of objects that have characteristics and behaviors in common was used
directly in the first object-oriented language, Simula-67, with its fundamental keyword class
that introduces a new type into a program.

Simula, as its name implies, was created for developing simulations such as the classic “bank
teller problem.” In this, you have numerous tellers, customers, accounts, transactions, and
units of money—a lot of “objects.” Objects that are identical except for their state during a
program’s execution are grouped together into “classes of objects,” and that’s where the
keyword class came from. Creating abstract data types (classes) is a fundamental concept in
object-oriented programming. Abstract data types work almost exactly like built-in types:
You can create variables of a type (called objects or instances in object-oriented parlance)
and manipulate those variables (called sending messages or requests; you send a message
and the object figures out what to do with it). The members (elements) of each class share
some commonality: Every account has a balance, every teller can accept a deposit, etc. At the
same time, each member has its own state: Each account has a different balance, each teller
has a name. Thus, the tellers, customers, accounts, transactions, etc., can each be
represented with a unique entity in the computer program. This entity is the object, and each
object belongs to a particular class that defines its characteristics and behaviors.

So, although what we really do in object-oriented programming is create new data types,
virtually all object-oriented programming languages use the “class” keyword. When you see
the word “type” think “class” and vice versa.3

Since a class describes a set of objects that have identical characteristics (data elements) and
behaviors (functionality), a class is really a data type because a floating point number, for
example, also has a set of characteristics and behaviors. The difference is that a programmer
defines a class to fit a problem rather than being forced to use an existing data type that was
designed to represent a unit of storage in a machine. You extend the programming language
by adding new data types specific to your needs. The programming system welcomes the new
classes and gives them all the care and type checking that it gives to built-in types.

The object-oriented approach is not limited to building simulations. Whether or not you
agree that any program is a simulation of the system you’re designing, the use of OOP
techniques can easily reduce a large set of problems to a simple solution.

2 This is actually a bit restrictive, since objects can conceivably exist in different machines and address
spaces, and they can also be stored on disk. In these cases, the identity of the object must be determined by
something other than memory address.

3 Some people make a distinction, stating that type determines the interface while class is a particular
implementation of that interface.

Once a class is established, you can make as many objects of that class as you like, and then
manipulate those objects as if they are the elements that exist in the problem you are trying
to solve. Indeed, one of the challenges of object-oriented programming is to create a one-to-
one mapping between the elements in the problem space and objects in the solution space.

But how do you get an object to do useful work for you? There needs to be a way to make a
request of the object so that it will do something, such as complete a transaction, draw
something on the screen, or turn on a switch. And each object can satisfy only certain
requests. The requests you can make of an object are defined by its interface, and the type is
what determines the interface. A simple example might be a representation of a light bulb:

Light lt = new Light();
lt.on();

The interface determines the requests that you can make for a particular object. However,
there must be code somewhere to satisfy that request. This, along with the hidden data,
comprises the implementation. From a procedural programming standpoint, it’s not that
complicated. A type has a method associated with each possible request, and when you make
a particular request to an object, that method is called. This process is usually summarized by
saying that you “send a message” (make a request) to an object, and the object figures out
what to do with that message (it executes code).

Here, the name of the type/class is Light, the name of this particular Light object is lt, and
the requests that you can make of a Light object are to turn it on, turn it off, make it
brighter, or make it dimmer. You create a Light object by defining a “reference” (lt) for that
object and calling new to request a new object of that type. To send a message to the object,
you state the name of the object and connect it to the message request with a period (dot).
From the standpoint of the user of a predefined class, that’s pretty much all there is to
programming with objects.

The preceding diagram follows the format of the Unified Modeling Language (UML). Each
class is represented by a box, with the type name in the top portion of the box, any data
members that you care to describe in the middle portion of the box, and the methods (the
functions that belong to this object, which receive any messages you send to that object) in
the bottom portion of the box. Often, only the name of the class and the public methods are
shown in UML design diagrams, so the middle portion is not shown, as in this case. If you’re
interested only in the class name, then the bottom portion doesn’t need to be shown, either.

An object provides services
While you’re trying to develop or understand a program design, one of the best ways to think
about objects is as “service providers.” Your program itself will provide services to the user,
and it will accomplish this by using the services offered by other objects. Your goal is to

18 Thinking in Java Bruce Eckel

Introduction to Objects 19

produce (or even better, locate in existing code libraries) a set of objects that provide the
ideal services to solve your problem.

A way to start doing this is to ask, “If I could magically pull them out of a hat, what objects
would solve my problem right away?” For example, suppose you are creating a bookkeeping
program. You might imagine some objects that contain pre-defined bookkeeping input
screens, another set of objects that perform bookkeeping calculations, and an object that
handles printing of checks and invoices on all different kinds of printers. Maybe some of
these objects already exist, and for the ones that don’t, what would they look like? What
services would those objects provide, and what objects would they need to fulfill their
obligations? If you keep doing this, you will eventually reach a point where you can say
either, “That object seems simple enough to sit down and write” or “I’m sure that object must
exist already.” This is a reasonable way to decompose a problem into a set of objects.

Thinking of an object as a service provider has an additional benefit: It helps to improve the
cohesiveness of the object. High cohesion is a fundamental quality of software design: It
means that the various aspects of a software component (such as an object, although this
could also apply to a method or a library of objects) “fit together” well. One problem people
have when designing objects is cramming too much functionality into one object. For
example, in your check printing module, you may decide you need an object that knows all
about formatting and printing. You’ll probably discover that this is too much for one object,
and that what you need is three or more objects. One object might be a catalog of all the
possible check layouts, which can be queried for information about how to print a check. One
object or set of objects can be a generic printing interface that knows all about different kinds
of printers (but nothing about bookkeeping—this one is a candidate for buying rather than
writing yourself). And a third object could use the services of the other two to accomplish the
task. Thus, each object has a cohesive set of services it offers. In a good object-oriented
design, each object does one thing well, but doesn’t try to do too much. This not only allows
the discovery of objects that might be purchased (the printer interface object), but it also
produces new objects that might be reused somewhere else (the catalog of check layouts).

Treating objects as service providers is a great simplifying tool. This is useful not only during
the design process, but also when someone else is trying to understand your code or reuse an
object. If they can see the value of the object based on what service it provides, it makes it
much easier to fit it into the design.

The hidden implementation
It is helpful to break up the playing field into class creators (those who create new data types)
and client programmers4 (the class consumers who use the data types in their applications).
The goal of the client programmer is to collect a toolbox full of classes to use for rapid
application development. The goal of the class creator is to build a class that exposes only
what’s necessary to the client programmer and keeps everything else hidden. Why? Because
if it’s hidden, the client programmer can’t access it, which means that the class creator can
change the hidden portion at will without worrying about the impact on anyone else. The
hidden portion usually represents the tender insides of an object that could easily be
corrupted by a careless or uninformed client programmer, so hiding the implementation
reduces program bugs.

In any relationship it’s important to have boundaries that are respected by all parties
involved. When you create a library, you establish a relationship with the client programmer,
who is also a programmer, but one who is putting together an application by using your
library, possibly to build a bigger library. If all the members of a class are available to
everyone, then the client programmer can do anything with that class and there’s no way to
enforce rules. Even though you might really prefer that the client programmer not directly

4 I’m indebted to my friend Scott Meyers for this term.

manipulate some of the members of your class, without access control there’s no way to
prevent it. Everything’s naked to the world.

So the first reason for access control is to keep client programmers’ hands off portions they
shouldn’t touch—parts that are necessary for the internal operation of the data type but not
part of the interface that users need in order to solve their particular problems. This is
actually a service to client programmers because they can easily see what’s important to them
and what they can ignore.

The second reason for access control is to allow the library designer to change the internal
workings of the class without worrying about how it will affect the client programmer. For
example, you might implement a particular class in a simple fashion to ease development,
and then later discover that you need to rewrite it in order to make it run faster. If the
interface and implementation are clearly separated and protected, you can accomplish this
easily.

Java uses three explicit keywords to set the boundaries in a class: public, private, and
protected. These access specifiers determine who can use the definitions that follow.
public means the following element is available to everyone. The private keyword, on the
other hand, means that no one can access that element except you, the creator of the type,
inside methods of that type. private is a brick wall between you and the client programmer.
Someone who tries to access a private member will get a compile-time error. The
protected keyword acts like private, with the exception that an inheriting class has access
to protected members, but not private members. Inheritance will be introduced shortly.

Java also has a “default” access, which comes into play if you don’t use one of the
aforementioned specifiers. This is usually called package access because classes can access
the members of other classes in the same package (library component), but outside of the
package those same members appear to be private.

Reusing the implementation
Once a class has been created and tested, it should (ideally) represent a useful unit of code. It
turns out that this reusability is not nearly so easy to achieve as many would hope; it takes
experience and insight to produce a reusable object design. But once you have such a design,
it begs to be reused. Code reuse is one of the greatest advantages that object-oriented
programming languages provide.

The simplest way to reuse a class is to just use an object of that class directly, but you can also
place an object of that class inside a new class. We call this “creating a member object.” Your
new class can be made up of any number and type of other objects, in any combination that
you need to achieve the functionality desired in your new class. Because you are composing a
new class from existing classes, this concept is called composition (if the composition
happens dynamically, it’s usually called aggregation). Composition is often referred to as a
“has-a” relationship, as in “A car has an engine.”

20 Thinking in Java Bruce Eckel

