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Introduction  
    to Objects  

“We cut nature up, organize it into concepts, and ascribe significances 
as we do, largely because we are parties to an agreement that holds 
throughout our speech community and is codified in the patterns of 
our language … we cannot talk at all except by subscribing to the 
organization and classification of data which the agreement decrees.” 
Benjamin Lee Whorf (1897-1941)  

The genesis of the computer revolution was in a machine. The genesis of our programming 
languages thus tends to look like that machine.  

But computers are not so much machines as they are mind amplification tools (“bicycles for 
the mind,” as Steve Jobs is fond of saying) and a different kind of expressive medium. As a 
result, the tools are beginning to look less like machines and more like parts of our minds, 
and also like other forms of expression such as writing, painting, sculpture, animation, and 
filmmaking. Object-oriented programming (OOP) is part of this movement toward using the 
computer as an expressive medium.  

This chapter will introduce you to the basic concepts of OOP, including an overview of 
development methods. This chapter, and this book, assumes that you have some 
programming experience, although not necessarily in C. If you think you need more 
preparation in programming before tackling this book, you should work through the 
Thinking in C multimedia seminar, downloadable from www.MindView.net.  

This chapter is background and supplementary material. Many people do not feel 
comfortable wading into object-oriented programming without understanding the big picture 
first. Thus, there are many concepts that are introduced here to give you a solid overview of 
OOP. However, other people may not get the big picture concepts until they’ve seen some of 
the mechanics first; these people may become bogged down and lost without some code to 
get their hands on. If you’re part of this latter group and are eager to get to the specifics of the 
language, feel free to jump past this chapter—skipping it at this point will not prevent you 
from writing programs or learning the language. However, you will want to come back here 
eventually to fill in your knowledge so you can understand why objects are important and 
how to design with them.  

The progress of abstraction 
All programming languages provide abstractions. It can be argued that the complexity of the 
problems you’re able to solve is directly related to the kind and quality of abstraction. By 
“kind” I mean, “What is it that you are abstracting?” Assembly language is a small abstraction 
of the underlying machine. Many so-called “imperative” languages that followed (such as 
FORTRAN, BASIC, and C) were abstractions of assembly language. These languages are big 
improvements over assembly language, but their primary abstraction still requires you to 
think in terms of the structure of the computer rather than the structure of the problem you 
are trying to solve. The programmer must establish the association between the machine 
model (in the “solution space,” which is the place where you’re implementing that solution, 
such as a computer) and the model of the problem that is actually being solved (in the 
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“problem space,” which is the place where the problem exists, such as a business). The effort 
required to perform this mapping, and the fact that it is extrinsic to the programming 
language, produces programs that are difficult to write and expensive to maintain, and as a 
side effect created the entire “programming methods” industry.  

The alternative to modeling the machine is to model the problem you’re trying to solve. Early 
languages such as LISP and APL chose particular views of the world (“All problems are 
ultimately lists” or “All problems are algorithmic,” respectively). Prolog casts all problems 
into chains of decisions. Languages have been created for constraint-based programming and 
for programming exclusively by manipulating graphical symbols. (The latter proved to be too 
restrictive.) Each of these approaches may be a good solution to the particular class of 
problem they’re designed to solve, but when you step outside of that domain they become 
awkward.  

The object-oriented approach goes a step further by providing tools for the programmer to 
represent elements in the problem space. This representation is general enough that the 
programmer is not constrained to any particular type of problem. We refer to the elements in 
the problem space and their representations in the solution space as “objects.” (You will also 
need other objects that don’t have problem-space analogs.) The idea is that the program is 
allowed to adapt itself to the lingo of the problem by adding new types of objects, so when 
you read the code describing the solution, you’re reading words that also express the 
problem. This is a more flexible and powerful language abstraction than what we’ve had 
before.1 Thus, OOP allows you to describe the problem in terms of the problem, rather than 
in terms of the computer where the solution will run. There’s still a connection back to the 
computer: Each object looks quite a bit like a little computer—it has a state, and it has 
operations that you can ask it to perform. However, this doesn’t seem like such a bad analogy 
to objects in the real world—they all have characteristics and behaviors.  

Alan Kay summarized five basic characteristics of Smalltalk, the first successful object-
oriented language and one of the languages upon which Java is based. These characteristics 
represent a pure approach to object-oriented programming:  

1. Everything is an object. Think of an object as a fancy variable; it stores data, 
but you can “make requests” to that object, asking it to perform operations on itself. In 
theory, you can take any conceptual component in the problem you’re trying to solve 
(dogs, buildings, services, etc.) and represent it as an object in your program.  
 

2. A program is a bunch of objects telling each other what to do by 
sending messages. To make a request of an object, you “send a message” to that 
object. More concretely, you can think of a message as a request to call a method that 
belongs to a particular object.  

 
3. Each object has its own memory made up of other objects. Put 

another way, you create a new kind of object by making a package containing existing 
objects. Thus, you can build complexity into a program while hiding it behind the 
simplicity of objects.  

 
4. Every object has a type. Using the parlance, each object is an instance of a 

class, in which “class” is synonymous with “type.” The most important distinguishing 
characteristic of a class is “What messages can you send to it?”  

 
5. All objects of a particular type can receive the same messages. This 

is actually a loaded statement, as you will see later. Because an object of type “circle” is 
also an object of type “shape,” a circle is guaranteed to accept shape messages. This 

                                                            
1 Some language designers have decided that object-oriented programming by itself is not adequate to easily solve all 
programming problems, and advocate the combination of various approaches into multiparadigm programming 
languages. See Multiparadigm Programming in Leda by Timothy Budd (Addison-Wesley, 1995). 
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means you can write code that talks to shapes and automatically handle anything that 
fits the description of a shape. This substitutability is one of the powerful concepts in 
OOP.  

 
Booch offers an even more succinct description of an object:  

An object has state, behavior and identity.  

This means that an object can have internal data (which gives it state), methods (to produce 
behavior), and each object can be uniquely distinguished from every other object—to put this 
in a concrete sense, each object has a unique address in memory.2 

An object has an interface  
Aristotle was probably the first to begin a careful study of the concept of type; he spoke of 
“the class of fishes and the class of birds.” The idea that all objects, while being unique, are 
also part of a class of objects that have characteristics and behaviors in common was used 
directly in the first object-oriented language, Simula-67, with its fundamental keyword class 
that introduces a new type into a program.  

Simula, as its name implies, was created for developing simulations such as the classic “bank 
teller problem.” In this, you have numerous tellers, customers, accounts, transactions, and 
units of money—a lot of “objects.” Objects that are identical except for their state during a 
program’s execution are grouped together into “classes of objects,” and that’s where the 
keyword class came from. Creating abstract data types (classes) is a fundamental concept in 
object-oriented programming. Abstract data types work almost exactly like built-in types: 
You can create variables of a type (called objects or instances in object-oriented parlance) 
and manipulate those variables (called sending messages or requests; you send a message 
and the object figures out what to do with it). The members (elements) of each class share 
some commonality: Every account has a balance, every teller can accept a deposit, etc. At the 
same time, each member has its own state: Each account has a different balance, each teller 
has a name. Thus, the tellers, customers, accounts, transactions, etc., can each be 
represented with a unique entity in the computer program. This entity is the object, and each 
object belongs to a particular class that defines its characteristics and behaviors.  

So, although what we really do in object-oriented programming is create new data types, 
virtually all object-oriented programming languages use the “class” keyword. When you see 
the word “type” think “class” and vice versa.3 

Since a class describes a set of objects that have identical characteristics (data elements) and 
behaviors (functionality), a class is really a data type because a floating point number, for 
example, also has a set of characteristics and behaviors. The difference is that a programmer 
defines a class to fit a problem rather than being forced to use an existing data type that was 
designed to represent a unit of storage in a machine. You extend the programming language 
by adding new data types specific to your needs. The programming system welcomes the new 
classes and gives them all the care and type checking that it gives to built-in types.  

The object-oriented approach is not limited to building simulations. Whether or not you 
agree that any program is a simulation of the system you’re designing, the use of OOP 
techniques can easily reduce a large set of problems to a simple solution.  

                                                            
2 This is actually a bit restrictive, since objects can conceivably exist in different machines and address 
spaces, and they can also be stored on disk. In these cases, the identity of the object must be determined by 
something other than memory address. 
 
3 Some people make a distinction, stating that type determines the interface while class is a particular 
implementation of that interface.  



Once a class is established, you can make as many objects of that class as you like, and then 
manipulate those objects as if they are the elements that exist in the problem you are trying 
to solve. Indeed, one of the challenges of object-oriented programming is to create a one-to-
one mapping between the elements in the problem space and objects in the solution space.  

But how do you get an object to do useful work for you? There needs to be a way to make a 
request of the object so that it will do something, such as complete a transaction, draw 
something on the screen, or turn on a switch. And each object can satisfy only certain 
requests. The requests you can make of an object are defined by its interface, and the type is 
what determines the interface. A simple example might be a representation of a light bulb:  

 

Light lt = new Light(); 
lt.on(); 

The interface determines the requests that you can make for a particular object. However, 
there must be code somewhere to satisfy that request. This, along with the hidden data, 
comprises the implementation. From a procedural programming standpoint, it’s not that 
complicated. A type has a method associated with each possible request, and when you make 
a particular request to an object, that method is called. This process is usually summarized by 
saying that you “send a message” (make a request) to an object, and the object figures out 
what to do with that message (it executes code).  

Here, the name of the type/class is Light, the name of this particular Light object is lt, and 
the requests that you can make of a Light object are to turn it on, turn it off, make it 
brighter, or make it dimmer. You create a Light object by defining a “reference” (lt) for that 
object and calling new to request a new object of that type. To send a message to the object, 
you state the name of the object and connect it to the message request with a period (dot). 
From the standpoint of the user of a predefined class, that’s pretty much all there is to 
programming with objects.  

The preceding diagram follows the format of the Unified Modeling Language (UML). Each 
class is represented by a box, with the type name in the top portion of the box, any data 
members that you care to describe in the middle portion of the box, and the methods (the 
functions that belong to this object, which receive any messages you send to that object) in 
the bottom portion of the box. Often, only the name of the class and the public methods are 
shown in UML design diagrams, so the middle portion is not shown, as in this case. If you’re 
interested only in the class name, then the bottom portion doesn’t need to be shown, either.  

An object provides services  
While you’re trying to develop or understand a program design, one of the best ways to think 
about objects is as “service providers.” Your program itself will provide services to the user, 
and it will accomplish this by using the services offered by other objects. Your goal is to 

18 Thinking in Java Bruce Eckel 



Introduction to Objects 19 

produce (or even better, locate in existing code libraries) a set of objects that provide the 
ideal services to solve your problem.  

A way to start doing this is to ask, “If I could magically pull them out of a hat, what objects 
would solve my problem right away?” For example, suppose you are creating a bookkeeping 
program. You might imagine some objects that contain pre-defined bookkeeping input 
screens, another set of objects that perform bookkeeping calculations, and an object that 
handles printing of checks and invoices on all different kinds of printers. Maybe some of 
these objects already exist, and for the ones that don’t, what would they look like? What 
services would those objects provide, and what objects would they need to fulfill their 
obligations? If you keep doing this, you will eventually reach a point where you can say 
either, “That object seems simple enough to sit down and write” or “I’m sure that object must 
exist already.” This is a reasonable way to decompose a problem into a set of objects.  

Thinking of an object as a service provider has an additional benefit: It helps to improve the 
cohesiveness of the object. High cohesion is a fundamental quality of software design: It 
means that the various aspects of a software component (such as an object, although this 
could also apply to a method or a library of objects) “fit together” well. One problem people 
have when designing objects is cramming too much functionality into one object. For 
example, in your check printing module, you may decide you need an object that knows all 
about formatting and printing. You’ll probably discover that this is too much for one object, 
and that what you need is three or more objects. One object might be a catalog of all the 
possible check layouts, which can be queried for information about how to print a check. One 
object or set of objects can be a generic printing interface that knows all about different kinds 
of printers (but nothing about bookkeeping—this one is a candidate for buying rather than 
writing yourself). And a third object could use the services of the other two to accomplish the 
task. Thus, each object has a cohesive set of services it offers. In a good object-oriented 
design, each object does one thing well, but doesn’t try to do too much. This not only allows 
the discovery of objects that might be purchased (the printer interface object), but it also 
produces new objects that might be reused somewhere else (the catalog of check layouts).  

Treating objects as service providers is a great simplifying tool. This is useful not only during 
the design process, but also when someone else is trying to understand your code or reuse an 
object. If they can see the value of the object based on what service it provides, it makes it 
much easier to fit it into the design.  

The hidden implementation  
It is helpful to break up the playing field into class creators (those who create new data types) 
and client programmers4 (the class consumers who use the data types in their applications). 
The goal of the client programmer is to collect a toolbox full of classes to use for rapid 
application development. The goal of the class creator is to build a class that exposes only 
what’s necessary to the client programmer and keeps everything else hidden. Why? Because 
if it’s hidden, the client programmer can’t access it, which means that the class creator can 
change the hidden portion at will without worrying about the impact on anyone else. The 
hidden portion usually represents the tender insides of an object that could easily be 
corrupted by a careless or uninformed client programmer, so hiding the implementation 
reduces program bugs.  

In any relationship it’s important to have boundaries that are respected by all parties 
involved. When you create a library, you establish a relationship with the client programmer, 
who is also a programmer, but one who is putting together an application by using your 
library, possibly to build a bigger library. If all the members of a class are available to 
everyone, then the client programmer can do anything with that class and there’s no way to 
enforce rules. Even though you might really prefer that the client programmer not directly 

                                                            
4 I’m indebted to my friend Scott Meyers for this term. 



manipulate some of the members of your class, without access control there’s no way to 
prevent it. Everything’s naked to the world.  

So the first reason for access control is to keep client programmers’ hands off portions they 
shouldn’t touch—parts that are necessary for the internal operation of the data type but not 
part of the interface that users need in order to solve their particular problems. This is 
actually a service to client programmers because they can easily see what’s important to them 
and what they can ignore.  

The second reason for access control is to allow the library designer to change the internal 
workings of the class without worrying about how it will affect the client programmer. For 
example, you might implement a particular class in a simple fashion to ease development, 
and then later discover that you need to rewrite it in order to make it run faster. If the 
interface and implementation are clearly separated and protected, you can accomplish this 
easily.  

Java uses three explicit keywords to set the boundaries in a class: public, private, and 
protected. These access specifiers determine who can use the definitions that follow. 
public means the following element is available to everyone. The private keyword, on the 
other hand, means that no one can access that element except you, the creator of the type, 
inside methods of that type. private is a brick wall between you and the client programmer. 
Someone who tries to access a private member will get a compile-time error. The 
protected keyword acts like private, with the exception that an inheriting class has access 
to protected members, but not private members. Inheritance will be introduced shortly.  

Java also has a “default” access, which comes into play if you don’t use one of the 
aforementioned specifiers. This is usually called package access because classes can access 
the members of other classes in the same package (library component), but outside of the 
package those same members appear to be private.  

Reusing the implementation  
Once a class has been created and tested, it should (ideally) represent a useful unit of code. It 
turns out that this reusability is not nearly so easy to achieve as many would hope; it takes 
experience and insight to produce a reusable object design. But once you have such a design, 
it begs to be reused. Code reuse is one of the greatest advantages that object-oriented 
programming languages provide.  

The simplest way to reuse a class is to just use an object of that class directly, but you can also 
place an object of that class inside a new class. We call this “creating a member object.” Your 
new class can be made up of any number and type of other objects, in any combination that 
you need to achieve the functionality desired in your new class. Because you are composing a 
new class from existing classes, this concept is called composition (if the composition 
happens dynamically, it’s usually called aggregation). Composition is often referred to as a 
“has-a” relationship, as in “A car has an engine.” 
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