
Teaching Design Patterns Through Computer
Game Development
PAUL GESTWICKI and FU-SHING SUN
Ball State University

We present an approach for teaching design patterns that emphasizes object-orientation and pat-
terns integration. The context of computer game development is used to engage and motivate
students, and it is additionally rich with design patterns. A case study is presented based on
EEClone, an arcade-style computer game implemented in Java. Our students analyzed various
design patterns within EEClone, and from this experience, learned how to apply design patterns
in their own game software. The six principal patterns of EEClone are described in detail, followed
by a description of our teaching methodology, assessment techniques, and results.

Categories and Subject Descriptors: D.1.5 [Programming Techniques]: Object-oriented
programming; K.3.2 [Computer and Information Science Education]: Computer Science
Education

General Terms: Design

Additional Key Words and Phrases: design patterns, UML, games in education, assessment

ACM Reference Format:
Gestwicki, P. and Sun, F.-S. 2008. Teaching design patterns through computer game development.
ACM J. Educ. Resour. Comput. 8, 1, Article 2 (March 2008), 21 pages. DOI = 10.1145/1348713.
1348715. http://doi.acm.org/10.1145/1348713.1348715.

1. INTRODUCTION
As computer science educators, we are always seeking to improve our stu-
dents’ learning experiences. It can be difficult to find examples and case studies
that are compelling and appropriate for students. Computer games provide a
context that is familiar and motivating to students, and there has been a sig-
nificant amount of work investigating the educational impact of game pro-
gramming. This article describes the results of using computer games to teach
design patterns for object-oriented programming. The results are based on
a series of experiments conducted from Summer 2006 through Spring 2007,
and it is a part of ongoing research into the applications of games to computer
science and software engineering education.

This builds upon Computer Games as Motivation for Design Patterns, which was presented at
SIGCSE 2007 by Paul Gestwicki [Gestwicki 2007].
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post
on servers, or to redistribute to lists requires prior specific permission and/or a fee. Permission
may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY
10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2008 ACM 1531-4278/2008/03–ART2 $5.00 DOI: 10.1145/1348713.1348715. http://doi.acm.org/

10.1145/1348713.1348715.

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

2: 2 · P. Gestwicki and F.-S. Sun

1.1 Design Patterns
Design patterns provide solution strategies for general problems in object-
oriented software engineering. These patterns were discovered in successful
designs and most famously cataloged by Gamma et al. over a decade ago
[Gamma et al. 1995]. Despite an active patterns community and an abun-
dance of research on patterns education and practice, patterns still tend to be
underrepresented in undergraduate education.

There has been significant research regarding the teaching of design pat-
terns in the computer science introductory sequence. This work ranges from
case studies such as the games Set [Hansen 2004] and Life [Wick 2005] to com-
plete curricular revisions [Decker 2003]. Many of the SIGCSE Nifty Assign-
ments are used to teach specific design patterns and software architectures.
The consensus is that through the use of appropriate case studies, combined
with effective teaching techniques, students in the introductory sequence can
learn patterns. That is, they do not have to be relegated to upper-level courses
on principles of software engineering.

Personal experience indicates that students are often unable to comprehend
patterns from isolated examples. In a graduate-level seminar on visualization
and design patterns, students were asked to develop sample applications to
illustrate various patterns. Many of the students were unable to generate
accurate, isolated instances of the patterns [Gestwicki and Jayaraman 2005].
This is not a coincidence: it is difficult to translate from the isolated examples
of Gamma et al. to the complex and multifaced pattern reifications encoun-
tered in practice. Instead, patterns are best taught by presenting them in
software of significant scale that contains collaborations among patterns. This
belief is supported by the literature: case studies have been used as a means
for showing the definition, benefits, and costs of design patterns [Wick 2005;
Dewan 2005], and some resources have also shifted from a dictionary presen-
tation of patterns to illustrative examples [Holub 2004].

1.2 Games
The modern college freshman has grown up surrounded by the ever-growing
computer game industry, and such games have become an integral part of
popular culture. Our students have shown great interest in not only playing
games, but also in the interdisciplinary study of game design and development,
including visual, audio, business, social, and technical aspects. It is unlikely
that this is a local phenomenon, as others have shown that using computer
games as learning tools motivates students to learn topics they might other-
wise avoid [Claypool and Claypool 2005].

Commercially successful games are usually implemented in C or C++, and
the techniques one encounters in game development magazines, books, and fo-
rums are usually tricks for squeezing a few more frames per second from a logic
and rendering pipeline. In contrast, design patterns bring benefits in clarity
and reusability, not (necessarily or by design) execution efficiency. While the
vocabulary of patterns is certainly not absent from games, its concerns are fre-
quently supplanted by the need for speed. This primacy of optimization results

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

Teaching Design Patterns Through Computer Game Development · 2: 3

in code that is streamlined for one purpose. While these techniques are inter-
esting and perhaps worthy of study for those interested in writing fast and
small code, students benefit more from learning the process of abstraction and
design than from language- and platform-specific tricks.

The interdisciplinary nature of computer game design makes it difficult to
incorporate into traditional computer science curricula. However, it would be a
mistake to disregard the study of games out-of-hand whether due to this com-
plexity or the traditional stigma that they are “just games.” The key to success
for integration into existing programs (as opposed to the generation of game-
specific curricula) is to extract the computer science and software engineering
aspects from games.

It is important to distinguish between game design, which is the process
of developing a game idea [Salen and Zimmerman 2003], and game pro-
gramming, which is the process of implementing game software [Gestwicki
and Sun 2007]. The latter is clearly a domain of software engineering. There
have been attempts to classify “design patterns” within game design [Bjork
and Holopainen 2004], but these are distinct from design patterns for
object-oriented software development. Since game programming using object-
oriented techniques is an instance of object-oriented software engineering, one
can reasonably expect the traditional patterns to be applicable.

1.3 Teaching with Games and Patterns
Using games to teach computer science is not a new idea. We have already
mentioned some examples that use games to teach patterns, and there are
many more. However, many of the examples one encounters in textbooks and
on the Web take shortcuts in the name of clarity and simplicity. For exam-
ple, in a survey of recent Java textbooks, every game example performs all of
its rendering and logic processing on the event thread. This leads to simpler
code, but it ignores the important programming idiom that the processing on
the event thread should be kept to a minimum. In small-scale or turn-based
games with little or no animation, the impact of this poor design decision is
not apparent. However, this approach does not scale to action-oriented games,
which must maintain good frame rates while being responsive to user input.

As an example, consider the game loop. Computer games are driven by a
central loop that is similar to the event-processing loop in all modern interac-
tive software. It can be summarized by the following pseudocode:

while the game is running

update the game elements

redraw the screen

This loop demonstrates active rendering, a technique in which the main
game loop draws the screen directly. Many Java examples found both online
and in print use passive rendering, where the paint or paintComponentmethod
of each game element handles its own drawing, as in AWT or Swing applica-
tions. When using passive rendering, screen drawing is dependent upon the

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

2: 4 · P. Gestwicki and F.-S. Sun

Fig. 1. Two annotated screenshots of EEClone. On the left, the player’s sprite is seen in the
middle of the screen, dodging the flying block obstacles. On the right, the player has triggered
an explosion, and the chain reaction of explosions is evident. The circles emanating from the
explosions are the bonus sprites that the player can collect for extra points.

event thread, and so there is no guarantee of frame rate, which leads to un-
steady animations.

The pseudocode presented above is deceptively simple: the difficulty in
game programming comes from balancing game logic processing and render-
ing within the game loop. In order for a game to achieve smooth animations,
whether it is an action game or an animated puzzle game, the game loop needs
to repeat as many as 70 to 90 times per second [Davison 2005]. This upper
limit synchronizes the scene drawing with the refresh rate rate of modern dis-
play devices. A well-designed game engine will be able to maintain a steady
frame rate by a combination of active rendering, double-buffering, and, when
necessary, dropping frames.

1.4 Overview of EEClone
EEClone was developed as a case study to both explore and teach design pat-
terns. Two screenshots are provided in Figure 1. It was inspired by Every
Extend, a free game for Microsoft Windows published by Omega.1 Commer-
cial versions of the game have been recently released by Q Entertainment for
PlayStation Portable and XBox Live Arcade. In the game, the player controls
a bomb in a world filled with flying obstacles. If the player strikes an obstacle,
a life is lost. If the player detonates the bomb, a life is still lost, but it also
starts a chain reaction of explosions, which earns the player points and more
lives. Some obstacles drop bonuses when destroyed, and these can be picked up
for extra points. However, the amount of points needed to earn extra lives in-
creases. A key aspect of the gameplay involves dodging obstacles until a large
enough chain reaction can be created, all while the timer counts down. Part of
what makes the game fun is this trade-off between risk and reward. EEClone
is a simplified clone of Every Extend, borrowing its interface paradigm but

1http://nagoya.cool.ne.jp/o mega

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

Teaching Design Patterns Through Computer Game Development · 2: 5

using simplified graphics and scoring. It was implemented in Java without
using any native libraries.

EEClone was chosen as an example because the rules are simple, it is exten-
sible, and it contains many of the features of more complex games. The game
requires smooth animation, score keeping, responsive controls, music, sound
effects, and collision processing. From its inception, EEClone was designed
to be simpler than Every Extend but also extensible, so that interested stu-
dents could build on the software to add new features. That is, it was designed
specifically to support software reuse and extensibility, two oft-cited benefits of
object-orientation and design patterns.

2. PATTERNS IN EECLONE
Several patterns are reified in EEClone. The game’s software architecture is a
collaboration of patterns, but for clarity, each pattern is first described in iso-
lation. The method by which patterns are presented here mirrors the method
used to discuss the patterns within our experiment: a discussion of the domain-
specific problem leads to a justification for the design pattern. The software
designs are presented using the Unified Modeling Language (UML) [Booch
et al. 2005]. Design patterns are identified within class diagrams using the
UML collaboration notation. This is an effective and semantically correct use
of the notation and useful for highlighting the collaborative nature of design
patterns.

2.1 Sprites: The State Pattern
A sprite is any non-background element in a game, such as players, enemies,
and projectiles. In EEClone, the player, obstacle blocks, explosions, and heads-
up display are all considered sprites by the game engine. Sprites lend them-
selves to object-oriented design: they have state and they exhibit behaviors.
The state of a sprite, generally, includes its location, velocity, size, and im-
age. The behaviors of sprites usually correspond to either user input for player
sprites or collisions with the player for enemy sprites.

Sprites often exhibit different behaviors based on external or internal game
information. For example, Pac-Man behaves differently after eating a Power
Pellet than before. A state diagram for the player’s sprite in EEClone is pre-
sented in Figure 2. The traditional implementation strategy, exhibited in every
textbook surveyed, is to use integer constants to represent each possible state.
Then, in each method whose behavior is state-dependent, the program uses if

or switch statements to explicitly detect the current state and take the appro-
priate behavior. This procedural approach carries with it all the usual baggage:
state-dependent logic is distributed throughout the code, making the addition
of new states both awkward and error-prone.

The patterns-based alternative is the State pattern, where each state is rep-
resented by its own object. Figure 3 provides an architectural view of this ap-
proach. Each state is implemented in its own class, which encapsulates and
localizes each state’s behavior. All messages sent to the player sprite are del-
egated to the current state object. In Java, these states are implemented as

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

2: 6 · P. Gestwicki and F.-S. Sun

Fig. 2. State diagram for the EEClone player’s sprite.

Fig. 3. The State pattern applied to player state representation. The player sprite can be in one
of four states, each of which is implemented as an anonymous inner class of PlayerSprite.

private anonymous inner classes, which has the benefits of hiding the details
of states within the containing class and also ensuring that there is only one
instance of each state object. The relationship between a class and its inner
classes is indicated using a bidirectional UML containment association. This
is a relatively uncommon notation, but it is semantically appropriate for rep-
resenting inner classes [Holub 2004].

This design incorporates an important yet easily overlooked property of the
State pattern: states are responsible for their own transitions [Gamma et al.
1995]. The state transitions can be modeled as a directed graph, and each state
is only aware of its neighbors.

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

Teaching Design Patterns Through Computer Game Development · 2: 7

Fig. 4. The Facade pattern, which hides the details of the game implementation behind a single
point of entry. The game logic implementation details are hidden from the client. A representative
sample of classes within the game logic implementation are shown.

2.2 Logic vs. Presentation: The Facade Pattern
When programming in Java, one may deploy a game as an applet or as an ap-
plication, and applications can use windowed mode, full-screen exclusive mode
(FSEM), or “almost full-screen” mode [Davison 2005]. These decisions are re-
lated to the presentation and have only minor effect on the game logic. Also,
there are situations when one would want to switch easily between presenta-
tions: debugging a game intended for FSEM can be easier in windowed mode,
for example. Although the separation of concerns is clear, many code samples
in print and on the web combine presentation and game logic into one class,
presumably to simplify or shorten the code.

Figure 4 shows how the facade pattern can be used to hide the game logic
behind the Game class. Using this design, the game’s “wrapper” (a full-screen
window, an applet, etc.) can be changed without affecting the game logic, and
the game logic can be changed without affecting its wrapper. This design can
be used to build a game architecture in which the game logic is a replaceable
module [Nguyen and Wong 2002].

2.3 Controls: The Observer Pattern
The classic example of the observer pattern in Java uses the java.awt.event

classes to process events. Listeners are registered with event producers, and
events are fired and handled on the AWT-Event Thread. Our experience shows
that students have little trouble understanding event-driven programming at
this level. However, when there is nontrivial processing to be done in response
to an event, the best practice is to push this processing onto a different thread.
Many students fail to grasp this lesson, latching instead onto a naı̈ve inter-
pretation of the Observer pattern in which the observer reacts to the stimulus
immediately and on the same thread.

Smooth animation and consistent, responsive input can be achieved with a
more clever application of the Observer pattern. Java’s standard libraries do
not provide a platform-independent approach for polling the keyboard’s state.

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

2: 8 · P. Gestwicki and F.-S. Sun

Fig. 5. The Observer pattern applied to asynchronous processing of keyboard input. The event
thread posts the status of keys, which is read by each update in the main loop of the game thread.

One must use the AWT KeyListener to receive keyboard events unless linking
with a native library such as JInput.2 In order to maintain a smooth ani-
mation, the speed of a sprite must be defined with respect to the number of
updates per second, not the number of key events per second. An elegant so-
lution to this problem is for the key listener to write key state information to
a shared object, and for the main game thread to read the state of this object
during the update step, as illustrated in Figure 5. This demonstrates how the
observer pattern can be used in a multithreaded environment, and this archi-
tecture can be applied in nongame applications as well. This is also an example
of multithreaded processing that does not require synchronization: thread syn-
chronization would introduce unnecessary overhead considering the frequency
of updates and the atomicity of assignment.

2.4 Animation: The Strategy Pattern
In an object-oriented implementation of a game, sprites should be responsible
for rendering themselves. One could combine the logic and presentation in
a single class, but this would make it difficult to add or modify animations
later. For example, one method of animation is to load a series of images and
flip through them; another approach is to render each frame of an animation
using graphics primitives. If the animation logic is mixed with the sprite’s
state logic, it would be very difficult to alter.

An alternative is the Strategy pattern. The architecture of such a solution
involves an Animation interface, attaching animations to sprites at runtime,
and delegating the rendering from the sprite to the animation object. This
approach is illustrated in Figure 6, where a sprite’s animation update and

2https://jinput.dev.java.net

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

Teaching Design Patterns Through Computer Game Development · 2: 9

Fig. 6. The strategy pattern applied to sprite animation.

rendering are delegated to an animation strategy, identified by the Animation

interface. When this design is combined with the state design of Figure 3, each
state of the player sprite may have its own animation strategy, and the corre-
sponding animation is only updated and rendered when its state is active. It is
worth mentioning that the current version of EEClone uses Java2D graphics
primitives, not image-based animations. This is intended as an entry point for
students to modify the provided code.

2.5 Collisions: The Visitor Pattern
Games often contain a variety of elements that can collide with each other, and
the result of the collision depends on the elements’ types. Consider again the
classic Pac-Man: our intrepid hero can collide with walls, ghosts, power pellets,
dots, and fruit. Using a non-OO approach, the types of game elements can be
encoded as integers and then selected via switch. The disadvantages of this
approach are similar to those for the state problem discussed earlier: the logic
for collisions is spread throughout the game, and there is no static verification
that all collisions are considered. An alternative in Java is to use instanceof

to obtain runtime type information, but this requires a rigid type hierarchy
where polymorphic dispatch is preferable.

A pattern-based approach uses the Visitor design pattern. Many students
balk at this pattern’s polymorphic double-dispatch, but it is a natural fit for
the problem of handling sprite collisions, where the behavior of each collision
is dependent on the sprite’s type. We return to the EEClone game for a simple
example, since there are only four types of sprites: the player’s sprite, explosion
sprites, flying block (obstacle) sprites, and bonus sprites. Figure 7 shows how
the pattern is applied with respect to the player sprite and flying block sprite
implementations. Both of these classes have their own collisionHandler,
which is itself a Visitor. The player sprite’s collision handler contains its logic:
if it collides with a bonus sprite, bonus points are earned, and if it collides with
a flying block, a life is lost. The flying block sprite’s collision handler watches
for collisions with explosions, which result in the flying block’s own explosion
and an increase in the player’s score. For both of these, collisions with other
types of sprites do nothing, and so those visit implementations are empty. If
special processing were required upon collision at a later date, it could easily
be added.

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

2: 10 · P. Gestwicki and F.-S. Sun

Fig. 7. The Visitor pattern applied to sprite collision processing. The SpriteManager checks
for bounding box collisions and delegates the handling of collisions to each sprite’s collidesWith

method. The Sprite implementors serve as both Concrete Element and Client.

Fig. 8. The Singleton pattern allows for any object in EEClone to modify music playback.

2.6 Music Engine: The Singleton Pattern
The Singleton pattern is applied when an object is both global and unique for
its type. The apparent simplicity of its intention and implementation leads to
its abuse by amateur software designers. We assert that it should be discussed
in a course on design patterns precisely because it is so easily abused; a failure
to adequately explore this pattern will likely lead to its continued misuse.

In EEClone, a singleton is used for the object that manages music playback.
This allows any object in the executable model to change the music that is
currently played. The OggPlayer class is a singleton, as shown inbreak Fig-
ure 8. Although only the game states currently use this singleton, the pattern
allows for extensions to the game to be able to change or stop the music as
required.

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

Teaching Design Patterns Through Computer Game Development · 2: 11

When presenting this pattern, we observed that our students accepted this
design without argument. The students were surprised to hear that another
professional software designer had debated with us whether this is a good ap-
plication of singleton or not. Our view is that it is reasonable to assume that
there is one global entrypoint into the audio subsystem since the entire engine
is based on the assumption that there is a single computer with a single set
of speakers or headphones. However, one can imagine a case where a game
must support different audio outputs, although our class could not immedi-
ately identify why one would want such a thing. This issue leads directly into
an important discussion about the broad assumptions one must make when
applying the Singleton pattern. It is important in a discussion of design to
balance the desire for extensibility with the necessity of solving the problem at
hand. In this case, we assert that a singleton is the simplest solution, since ex-
tending the engine to a multiheaded or multiuser system significantly changes
the requirements and therefore the design of the entire game engine.

The use of the Ogg Vorbis audio format provides a convenient point to ini-
tiate discussion of intellectual property. Students tend to have some under-
standing of the various audio codecs available, but few appreciate the legal
implications of codec selection. In this case, the choice of Ogg Vorbis was easy:
it is free for perpetuity, and there are several tools available to convert audio
into its format. Embedding the codec logic into EEClone optimizes the size
of the application and provides the detailed source for students who are in-
terested. However, a more robust game engine could easily make use of an
existing audio engine such as OpenAL (http://openal.org).

3. TEACHING, LEARNING, AND ASSESSMENT
Our teaching philosophy is based on active learning principles, which have
shown to be useful in teaching computer science [McConnell 1996; Briggs 2005]
and particularly software design [Warren 2005; Gibson and O’Kelly 2005]. We
engage students with a subject that is of interest to them so that they approach
the problems proactively via individual exploration, peer collaboration, small
group discussion, and other constructive means. To the students, game pro-
gramming is both interesting and significant, and so students are motivated to
succeed. The instructors serve as facilitators and guides in this process [Bon-
well and Eison 1991; Wilkerson and Gijselaers 1996]. To assess the learning
results from using these principles, we use formative assessments such as self-
and peer-evaluation, a form of portfolio assessment, and presentations in ad-
dition to traditional summative assessments [Biggs 1999; Earl 2003].

Design patterns provide a set of best-practices for object-oriented design,
having been discovered in successful software systems [Gamma et al. 1995].
One of the most important benefits of design patterns is that they facilitate
communication: a potentially complicated software design can be concisely
described in terms of interacting patterns. This identifies three roles for de-
sign patterns in education: as examplars of object-oriented design, as practical
and useful solutions to software design problems, and as tools to communicate

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

2: 12 · P. Gestwicki and F.-S. Sun

about design. Based on these observations, we have defined the following
learning objectives:

(1) The student understands object-oriented design and modeling.

(2) The student can identify and apply the specific design patterns addressed
in this experiment.

(3) The student can effectively communicate about software design and design
patterns.

We have developed a variety of assessment tools to measure students’
progress towards achieving these goals. Specifically, these are a multimodal
entry exam, peer evaluation, in-class presentations, project milestone deliver-
ables, and an exit exam.

3.1 Entry Exams
The entry exam was designed to measure students’ knowledge about design,
including both declarative and procedural knowledge. It is insufficient for a
student to only have declarative knowledge about software design since it is
inherently a process. Similarly, it is almost useless for a student to be able to
design if he or she cannot communicate about the design.

The students’ declarative knowledge was assessed using a written exam,
which was distributed on the first day of class and collected on the second.
This instrument was designed to measure students’ knowledge of fundamen-
tal object-oriented design principles and design patterns. The exam provided
several topic areas, for which the student was asked to provide an estima-
tion of self-efficacy on a five-point Likert scale. Students were also asked
to provide an example, in C++ or Java, to demonstrate this understanding.
The list of topics in the written portion of the entry exam were: object-
oriented software design, inheritance, polymorphism, UML, design patterns,
and the difference between procedural and object-oriented design. Four spe-
cific design patterns were also mentioned by name: Singleton, State, Strategy,
and Visitor.

The results of the written exam met our expectation that the students
had little or no knowledge of design patterns (by name). A surprising result
was that students reported moderate understanding of principles of object-
orientation. However, the examples provided by the students did not demon-
strate any such understanding. Students “textbook definitions” were fairly
accurate, but their sample code did not reify the concepts. There is a possible
flaw in this instrument, since not much space was provided for the example
code. It is important to note that there are competing factors: asking students
to write code on paper tends to produce small, non-representative blocks of
code, while requiring students to submit full applications requires much more
time. Additionally, it may be difficult, when following the latter approach, to
determine if the program is merely a copy of an assignment from a previous
class that explicitly demonstrates the concept.

The shortcomings of the written portion of the exam were foreseen and ad-
dressed by complementing it with an interactive exam. In the second class

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

Teaching Design Patterns Through Computer Game Development · 2: 13

meeting, the students were presented with four different scenarios and asked
to design software solutions for them. Since we had a small number of stu-
dents, the entire group collaborated in the process; with a larger class, subsets
of students could be formed. Both instructors observed the process without
interfering, which allowed us to assess students’ understanding and communi-
cation skills. Students’ performance was recorded by marking each student’s
responses in a variety of categories, including aspects of object-orientation and
design patterns. Responses were classified on a scale ranging from strong un-
derstanding to misunderstanding.

Each of the scenarios from the interactive exam are presented below, along
with commentary regarding the intention of the scenario and our students’
reactions.

Scenario 1: In Pac-Man, those who seek world-class high scores know that
each of the four ghosts has its own behavior. How would you design a software
architecture that supports different AI routines for each of Pac-Man’s ghostly
enemies?

This scenario was primarily designed to determine if students understand
delegation, polymorphism, and the Strategy design pattern. Even though our
students did not study this pattern explicitly, their responses indicated that
they understood the benefits of a delegation model over an inheritance model.
That is, no one recommended separate classes for each ghost, but rather a
single ghost class that delegates its decisions (artificial intelligence) to a de-
pendent class.

Scenario 2: At the start of a game of EEClone, when a bomb “spawns,” the
player is invulnerable for a few seconds. During that time, the bomb cannot be
exploded, and neither can it collide with obstacles, although the player can col-
lect bonuses. After the bomb explodes and a brief a pause, a new bomb spawns
as before until the player is out of lives. If the bomb is struck by an obstacle
before it explodes, then it is “dead” for a few seconds before a new one spawns.
While dead, the bomb cannot collide with obstacles or bonuses, nor can it be
moved. Describe a software architecture that manages the many states of the
bomb and its varying behaviors.

This scenario is designed to assess students’ understanding of stateful sys-
tems and the State design pattern. The one graduating senior in the class
had previously encountered state diagrams in a course on programming lan-
guages, and he immediately saw a connection to this formalism. The students
collaborated on a decent state diagram for EEClone, and the rest of the class
learned the fundamentals of state modeling from the one student with this
knowledge. However, while discussing the implementation design, the stu-
dents unanimously agreed to use integer constants to represent the states and
declared the analysis complete. We returned to this discussion later in the
semester when discussing the state design pattern, and at that point, students
were able to understand the shortcomings of their original design.

Scenario 3: In EEClone, the effect of a collision between two sprites depends
on the types of the sprites. For example, the bomb’s hitting an obstacle is differ-
ent than an explosion’s hitting an obstacle. It is desirable to add more types of

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

2: 14 · P. Gestwicki and F.-S. Sun

sprites in future version of the game; these may include time bombs and accel-
erating power-ups. How would you design a software architecture that correctly
handles collisions between sprites, keeping in mind that we want to add more
types of sprites in the future?

This scenario deals with the problem of runtime type recovery: choosing the
type-dependent instructions during program execution. This is most elegantly
addressed with the Visitor design pattern, but the students had a hard time
coming up with a consensus on a good solution. Students with some experi-
ence in Java knew of the instanceof keyword, and this was the best solution
developed.

Scenario 4: Java does not allow polling of the keyboard: that is, you cannot
query what keys have been pressed on the keyboard. The only guaranteed way
to get keyboard input in Java is to attach a KeyListener to your application,
and then Java will call the keyPressed method of the listener whenever a key
is pressed. Usually then, you have one thread that monitors the keyboard (the
AWT-Event thread) while another thread handles updating and rendering the
game state (the “main” thread). We do not know how many keys a user will
press between update-and-render cycles. Describe a multithreaded software ar-
chitecture that manages keyboard input without polling. For example, consider
the input controls for EEClone: arrow keys to move, spacebar to explode.

This scenario is not intended to demonstrate any particular design pattern
but rather to illustrate a common problem in game engines: synchronizing
user activity with program logic. None of our students had significant experi-
ence with multithreaded systems. Although they understood the definition of a
thread and the concept of a producer/consumer model, the groups were unable
to accurately model or communicate about a solution.

In summary, our students’ responses showed some understanding of object-
oriented design, but there was very little clarity. Some students referred ex-
plicitly to function pointers and bit flags, suggesting to us that the student had
some knowledge of the status quo for game development resources, which tend
against object-oriented design in favor of C-style procedural solutions.

3.2 In-Class Presentations
During the semester, students were required to give several in-class presenta-
tions of their progress. At the beginning of the semester, students developed
concept documents. These were used to define the scope of students’ projects.
In the games industry, concept documents are used to provide an overview of
a game along with economic and marketing factors, although we omitted the
latter. Students were not required to make games that would sell; rather, they
were allowed to design any game that they would find interesting and that
was within the scope of one semester’s work. Both interest and scale were dis-
cussed with peers and instructors during class. While this activity could have
been done individually in order to define the scope, we found that involving the
entire group in discussions of game design was a useful team-building activity.
Students learned more about each other and, from our observations, valued
each others’ opinions. It should be noted that very little time was spent on

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

Teaching Design Patterns Through Computer Game Development · 2: 15

Fig. 9. Course Schedule for a 15-week Semester

theories of game design, a separate field of inquiry [Salen and Zimmerman
2003]. Ours was a non-academic treatment of game design, leaving decisions
up to our students, who seemed to have significant experience with various
games and genres. The concept documents were finalized by the second week
of the semester, which coincides with the end of a two-week review of Java,
object-orientation, and UML. For some of the students, this was the first expe-
rience with all of these topics.

For the remainder of the semester, the students were required to give pe-
riodic presentations of their progress both through status reports and mile-
stones; the semester’s schedule of topics and presentations is provided in
Figure 9. The status reports were divided into major and minor classifications,
corresponding to ten- or twenty-minute presentations, respectively; this clas-
sification was an artifact of the course schedule and number of participants.
During milestone presentations, students were required to demonstrate their
program and explain the major changes to the software design and implemen-
tation. These explanations clarified students’ usage of design patterns. The
presentations were informal, akin to “stand-up meetings” in agile development
processes, and they served as assessment instruments for the instructors to
measure students’ progress in both technical and theoretic issues. Specifically,
the instructors were able to measure and direct students’ progress towards the
three primary learning objectives for this course.

The milestones were originally designed to require students to apply the
patterns previously discussed in class. For example, the first milestone re-
quired the application of the State pattern. The sequence of patterns in the
milestones was based on the development of EEClone. However, the stu-
dents’ projects each evolved in different directions, even those within the
same genre. This trend was obvious to the instructors due to the frequency of

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

2: 16 · P. Gestwicki and F.-S. Sun

student presentations, and so the milestone requirements were changed from
pattern-specific features to simply demonstrable progress towards completion.
This teaching technique is similar to the Scrum model for managing student
projects, in which the students are guided towards setting realistic goals and
regularly reporting on their progress [Sanders 2007].

3.3 Observations
Students’ comprehension of design patterns and design principles followed the
same pattern as the instructors’ delivery of the material. For each pattern and
core concept, the class first explored the nature of the problem, such as state-
based games (addressed by the State pattern) or the desire for online pub-
lishing (addressed by Java WebStart). The problems were then framed in the
context of EEClone. Traditional, naı̈ve, and non-patterns-based approaches
were briefly discussed, followed by an introduction to the pattern’s behav-
ior, structure, and implementation. Finally, patterns and concept integration
themes were discussed. The stages of students’ understanding can be classified
into four stages as follows:

(1) Problem understanding. Students first tried to understand the nature
of the problem itself. For example, all the students were familiar with
games that have a menu, a playable game, and a high-score list, but they
had not previously formalized the idea of state transitions.

(2) Structural copying. After the pattern motivation, behavior, and struc-
ture were discussed in class, the students tended to copy the implementa-
tion of the pattern from EEClone directly into their own projects. Several
times, students mentioned in status reports or milestone presentations
that they had successfully used the pattern, although they admitted not
understanding it. We observed that this stage lasted approximately one
week.

(3) Customization. Once the students had working software that integrated
the EEClone pattern implementations, they proceeded to customize the
implementation to match their game engine designs. This stage lasted ap-
proximately two weeks as the students bridged the gap between the prob-
lem, the pattern, and the implementation.

(4) Ownership. Approximately three weeks after presenting a pattern, in-
cluding several student presentations and clarifications by the instructors,
students showed a distinct ownership of the patterns. This was demon-
strated through clarity of communication about the patterns independently
of particular problems or implementations.

It is of utmost importance to this approach that students be guided from the
second step onwards. The point of design patterns is not the patterns them-
selves but the problems they solve. It is important that students understand
the problem prior to seeing the pattern, and furthermore, that the students
return to focusing on the problem after the pattern is implemented.

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

Teaching Design Patterns Through Computer Game Development · 2: 17

3.4 Exit Exam
The formative assessment during the semester allowed the instructors to mea-
sure and guide students toward the three primary learning objectives for this
experiment, and we have explained the process by which students gain owner-
ship over a design pattern. However, mastery of individual patterns is neither
necessary nor sufficient to show a mastery of software design in the large.
Although we observed that students were successful in integrating some pat-
terns, an end-of-semester exit exam was necessary in order to assess students’
understanding of the more holistic aspects of design and patterns.

The exit exam consisted of six essay questions. It was given as a “take-
home exam,” and the students had two days to complete it. The students were
informed that they would be graded on the clarity of their responses, not neces-
sarily the content. Grading the exam was deemed necessary in order to ensure
students’ full participation. The six assessment questions on this exit exam are
presented below along with a brief discussion of their motivation and results.

Question 1. Think back to the beginning of the semester and your original
design for your game and software. Since then, we have explored many ideas of
software design and game design. If you were to start your project again, would
you do anything differently with respect to your software design plans? What
about your game design plans?

Our students’ responses reflected an increased appreciation for the design
phase of software engineering. All of them mentioned that they would have
used more formal techniques such as state, static, and dynamic models. This
indicates that the students have met our first learning objective.

Question 2. What relationships do you see between the game design and
software design processes?

This question is founded in some of our earlier work on the relationships
between software design and game design [Gestwicki and Sun 2007]. All of
our students claimed that game and software design are intrinsically linked,
although this was justified by intuition rather than a scientific approach to
design. However, the responses did demonstrate that the students were able
to identify the differences between game design and software design, which
was not clear from their entry exams.

Question 3. Suppose you are a game software designer working with game
designers. What kinds of documents or other communication would you need
from a design team in order to implement a game idea?

Question 4. Suppose you are a software designer who is leading a team of
programmers. What kind of design document would you give to your team to
ensure that they implement the design correctly?

These two questions relate to the third learning objective, and the students’
responses indicate greatly improved design communication skills. In contrast
with the entry exam, where students struggled to communicate about both
game and software design, the exit exam shows that the students understand
how to effectively communicate between different stakeholders for such a soft-
ware development process.

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

2: 18 · P. Gestwicki and F.-S. Sun

Question 5. Focusing on your game engine, could you produce another game
out of it? That is, could you write another game that reuses a majority of the
code you have written? Would it necessarily be similar to your current game, or
could you produce a vastly different game from your game engine? Could you
have designed your game engine differently to make it more reusable?

Our students’ responses advocated for both reusability and extensibility, two
important aspects of object-oriented software design. They also advocated for
more explicit use and identification of patterns within the game engine, and
this demonstrates that students have met the first two learning objectives.

Question 6. Imagine you were to develop a new game in a different genre.
What lessons from this semester would help your designing or developing a
new game?

The students responded with claims and examples of the applicability of
design patterns to other game genres. As with the previous questions, the
students strongly advocated pattern-based, object-oriented software analysis
after having participated in this experiment. This indicates that the students
have met the first and second learning objectives.

As a formative assessment tool, the exit exam revealed a profound increase
in students’ understanding of software design and design patterns. Addition-
ally, the students were able to clearly identify several salient properties of the
design process in their responses to the third and fourth questions. These re-
sponses stand in contrast to the students’ concept documents, their first work
of the semester, which contained many vague and conflicting ideas.

4. CONCLUSIONS AND FUTURE WORK
Our formative assessment tools suggest that our approach helps students meet
the learning objectives, although larger-scale implementations of this process
are required in order to gather sufficient data for statistically-significant sum-
mative evaluation. Specifically, we are developing assessment techniques to
verify that the four-stage method by which students learn design patterns is
accurate and reproducible. However, it is possible that our methodology does
not scale well to larger class sizes. Future work will involve formal separation
of students’ roles as game and software designers.

Our students played many “design” roles within this experiment: they were
game designers, graphic designers, interface designers, and software design-
ers. This introduces a significant complication in teaching game and software
design. For some of the projects, if the student was unable to correctly de-
sign part of the software, the student changed the game design to match the
software. In practice, it is rare for one person to have so many design roles,
and it would be unacceptable for a software engineer to dictate changes in
game design. However, we allowed this practice for our experiment since our
students did not have any formal training in game design, and many of the
changes were coincidentally beneficial to the game design. One of our future
projects involves forming interdisciplinary teams across two courses, one on
game design (for non-CS majors) and one on software design (for CS majors).

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

Teaching Design Patterns Through Computer Game Development · 2: 19

This structure should better simulate a professional game development expe-
rience, and we plan to adopt established practices of agile development and
team management into the course.

Design is the process of considering alternatives, and good software engi-
neers must be able to weigh each option on its merits. The application of
patterns in EEClone can be used as a springboard for classroom discussion.
Consider again the state pattern as applied to sprites, presented in Section 2.1:
the resulting executable may be nominally faster if integer constants are used
rather than indirection through state objects. The advantage of the state pat-
tern becomes clear when adding new states or maintaining the software. Stu-
dents should be encouraged to experiment with these conflicting concerns and
develop for themselves an appreciation for patterns; as with problem-based
learning, this usually results in students taking more ownership of the mater-
ial than when it is only presented in lectures [Barg et al. 2000].

We have used EEClone to explore how the State, Facade, Observer, Strategy,
Visitor, and Singleton patterns are reified in game software design and imple-
mentation. The case for these patterns was found to be particularly compelling,
but this is not meant to be an exhaustive list. Other games and genres engen-
der other specific patterns. For example, one of our students identified the
Decorator pattern as being applicable in a sprite animation library: the
“power-ups” collected by a spaceship can decorate the drawing of the ship,
eliminating the need for an unmanageable number of customized sprite im-
ages. Future work includes investigation of patterns that are intrinsic to
various types and genres of games, including architectural design patterns
[Buschmann et al. 1996].

No formal longitudinal assessment has been conducted or has been planned
for the students involved in this experiment. The number of participants is
unfortunately too small to yield significant statistics, but we have remained in
contact with most of the students. One of the students is working on a large-
scale project to develop games for science education. He adapted most of the
design patterns we studied into C++ and Flash, and he claims that these have
made his team’s implementation much more manageable. Another student is
now taking a software engineering course and reports that he is able to lead his
team’s development by showing them design patterns in action prior to their
being discussed in lecture. These anecdotes suggest that the software design
lessons learned in this course are significant and have lasting impact on the
students’ software design processes.

A playable version EEClone, its reference implementation, and selected
projects from our research group are available from http://www.cs.bsu.edu/∼
pvg/games.

REFERENCES
BARG, M., FEKETE, A., GREENING, T., HOLLANDS, O., KAY, J., KINGSTON, J. H., AND

CRAWFORD, K. 2000. Problem-based learning for foundations computer science courses. Comp.
Sci. Educ. 10, 2, 1–20.

BIGGS, J. 1999. Teaching for Quality Learning at University. Society for Research into Higher
Education and Open University Press.

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

2: 20 · P. Gestwicki and F.-S. Sun

BJORK, S. AND HOLOPAINEN, J. 2004. Patterns in Game Design. Charles River Media,
Hingham, MA.

BONWELL, C. C. AND EISON, J. A. 1991. Active Learning: Creating Excitement in the Classroom.
ASHE-ERIC Higher Education Report No. 1, Washington, D.C.: The George Washington Uni-
versity, School of Education and Human Development.

BOOCH, G., RUMBAUGH, J., AND JACOBSON, I. 2005. The Unified Modeling Language User Guide,
2nd ed. Addison-Wesley Professional.

BRIGGS, T. 2005. Techniques for active learning in CS courses. J. Comput. Sci. Coll. 21, 2, 156–165.

BUSCHMANN, F., MEUNIER, R., ROHNERT, H., SOMMERLAD, P., AND STAL, M. 1996. Pattern-
Oriented Software Architecture: A System of Patterns. John Wiley and Sons.

CLAYPOOL, K. AND CLAYPOOL, M. 2005. Teaching software engineering through game design. In
Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer
Science Education (ITiCSE’05). ACM Press, New York, NY, 123–127.

DAVISON, A. 2005. Killer Game Programming in Java. O’Reilly Media, Inc.

DECKER, A. 2003. A tale of two paradigms. J. Comput. Sci. Coll. 19, 2, 238–246.

DEWAN, P. 2005. Teaching inter-object design patterns to freshmen. In Proceedings of the 36th
SIGCSE Technical Symposium on Computer Science Education (SIGCSE’05). ACM Press,
New York, NY, 482–486.

EARL, L. M. 2003. Assessment As Learning. Corwin Press, Inc.

GAMMA, E., HELM, R., JOHNSON, R., AND VLISSIDES, J. 1995. Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA.

GESTWICKI, P. AND JAYARAMAN, B. 2005. Methodology and architecture of jive. In Proceedings of
the ACM Symposium on Software Visualization (SoftVis’05). ACM Press, New York, NY, 95–104.

GESTWICKI, P. AND SUN, F. 2007. Game software and the design process. In Proceedings of
the Design Science Research in Information Systems and Technology Conference (DESRIST’07).
362–378.

GESTWICKI, P. V. 2007. Computer games as motivation for design patterns. In Proceedings of the
38th SIGCSE Technical Symposium on Computer Science Education (SIGCSE’07). ACM Press,
New York, NY, 233–237.

GIBSON, J. P. AND O’KELLY, J. 2005. Software engineering as a model of understanding for
learning and problem solving. In Proceedings of the International Workshop on Computing
Education Research (ICER’05). ACM Press, New York, NY, 87–97.

HANSEN, S. 2004. The game of set: an ideal example for introducing polymorphism and de-
sign patterns. In Proceedings of the 35th SIGCSE Technical Symposium on Computer Science
Education (SIGCSE’04). ACM Press, New York, NY, 110–114.

HOLUB, A. 2004. Holub on Patterns: Learning Design Patterns by Looking at Code. APress.

MCCONNELL, J. J. 1996. Active learning and its use in computer science. In Proceedings of the
1st Conference on Integrating Technology into Computer Science Education (ITiCSE’96). ACM
Press, New York, NY, 52–54.

NGUYEN, D. Z. AND WONG, S. B. 2002. Design patterns for games. In Proceedings of the
33rd SIGCSE Technical Symposium on Computer Science Education (SIGCSE’02). ACM Press,
New York, NY, 126–130.

SALEN, K. AND ZIMMERMAN, E. 2003. Rules of Play: Game Design Fundamentals. MIT Press.

SANDERS, D. 2007. Using scrum to manage student projects. J. Comput. Sci. Coll. 23, 1, 79–79.

WARREN, I. 2005. Teaching patterns and software design. In Proceedings of the 7th Australasian
Conference on Computing Education (ACE’05). Australian Computer Society, Inc., Darlinghurst,
Australia, Australia, 39–49.

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

Teaching Design Patterns Through Computer Game Development · 2: 21

WICK, M. R. 2005. Teaching design patterns in cs1: a closed laboratory sequence based on the
game of life. In Proceedings of the 36th Technical Symposium on Computer Science Education
(SIGCSE’05). ACM Press, New York, NY, 487–491.

WILKERSON, L. AND GIJSELAERS, W. H. 1996. Bring Problem-Based Learning to Higher
Education: Theory and Practice. Number 68, Winter 1996, Jossey-Bass Publishers, San
Francisco, CA.

Received June 2007; revised October 2007; accepted December 2007

ACM Journal on Educational Resources in Computing, Vol. 8, No. 1, Article 2, Pub. date: March 2008.

