
Part Overview

This part introduces design patterns: what they are and how to use

them. Several patterns pertinent to the CAD/CAM problem (Chapter

3, “A Problem That Cries Out for Flexible Code”) are described. They

are presented individually and then related to the earlier problem.

Throughout the pattern-learning chapters, I emphasize the object-ori-

ented strategies espoused by the Gang of Four (as the authors

Gamma, Helm, Johnson, and Vlissides are often referred to) in their

seminal work, Design Patterns: Elements of Reusable Object-Oriented

Software.

Chapter Discusses These Topics

5 An Introduction to Design Patterns

• The concept of design patterns, their origins in archi-
tecture, and how they apply in the discipline of soft-
ware design.

• The motivations for studying design patterns.

6 The Facade Pattern

• What it is, where it is used, and how it is implemented.

• How the Facade pattern relates to the CAD/CAM problem.

7 The Adapter Pattern

• What it is, where it is used, and how it is implemented.

• Comparison between the Adapter pattern and the
Facade pattern.

73

In this part

PART III

Design Patterns

05 Shalloway.qrk 9/1/04 2:08 PM Page 73

• How the Adapter pattern relates to the CAD/CAM
problem.

8 Expanding Our Horizons

• Some important concepts in object-oriented program-
ming: polymorphism, abstraction, classes, and encap-
sulation. It uses what has been learned in Chapters 5
through 7.

9 The Strategy Pattern

• This pattern is the first exposure to patterns as a way
of handling variation in a problem domain.

10 The Bridge Pattern

• This pattern is quite a bit more complex than the previ-
ous patterns. It is also much more useful; therefore, I
go into great detail with the Bridge pattern.

• How the Bridge pattern relates to the CAD/CAM
problem.

11 The Abstract Factory Pattern

• This pattern focuses on creating families of objects.

• What the pattern is, how it is used and implemented.

• How the Abstract Factory pattern relates to the
CAD/CAM problem.

Objectives

At the end of this section, you will understand what design patterns

are, know why they are useful, and be familiar with several specif-

ic patterns. You will also see how these patterns relate to the earlier

CAD/CAM problem. This information, however, may not be enough

to create a better design than we arrived at by over-relying on in-

heritance. However, the stage will be set for using patterns in a way

more powerful than as just recurring solutions. This is different from

the way many design pattern practitioners use them.

74 Part III • Design Patterns

05 Shalloway.qrk 9/1/04 2:08 PM Page 74

Overview

This chapter introduces the concept of design patterns.

This chapter

• Discusses the origins of design patterns in architecture and how

they apply in the discipline of software design.

• Examines the motivations for studying design patterns.

Design patterns are part of the cutting edge of object-oriented tech-

nology. Object-oriented analysis tools, books, and seminars are in-

corporating design patterns. Study groups on design patterns abound.

It is often suggested that people learn design patterns only after they

have mastered basic object-oriented skills. I have found that the op-

posite is true: Learning design patterns early in the learning of ob-

ject-oriented skills greatly helps to improve understanding of

object-oriented analysis and design.

Throughout the rest of the book, I discuss not only design patterns,

but also how they reveal and reinforce good object-oriented princi-

ples. I hope to improve both your understanding of these principles

and illustrate why the design patterns being discussed here repre-

sent good designs.

Some of this material may seem abstract or philosophical. But give

it a chance! This chapter lays the foundation for your understanding

of design patterns. Understanding this material will enhance your

ability to understand and work with new patterns.

75

In this chapter

CHAPTER 5

An Introduction to Design
Patterns

Give this a chance

Design patterns and

object-oriented

design reinforce each

other

05 Shalloway.qrk 9/1/04 2:08 PM Page 75

I have taken many of my ideas from Christopher Alexander’s The

Timeless Way of Building,1 an excellent book that presents the philoso-

phy of patterns succinctly. I discuss these ideas throughout this book.

Design Patterns Arose from Architecture
and Anthropology

Years ago, an architect named Christopher Alexander asked himself,

“Is quality objective?” Is beauty truly in the eye of the beholder, or

would people agree that some things are beautiful and some are not?

The particular form of beauty that Alexander was interested in was

one of architectural quality: What makes us know when an archi-

tectural design is good? For example, if a person were going to design

an entryway for a house, how would he or she know that the design

was good? Can we know good design? Is there an objective basis for

such a judgment? A basis for describing our common consensus?

Alexander postulates that there is such an objective basis within ar-

chitectural systems. The judgment that a building is beautiful is not

simply a matter of taste. We can describe beauty through a measur-

able objective basis.

The discipline of cultural anthropology discovered the same thing. That

body of work suggests that within a culture, individuals will agree to a

large extent on what is considered to be a good design, what is beau-

tiful. Cultures make judgments on good design that transcend individ-

ual beliefs. I believe that transcending patterns serve as objective bases

for judging design. A major branch of cultural anthropology looks for

such patterns to describe the behaviors and values of a culture.2

76 Part III • Design Patterns

Is quality objective?

1. Alexander, C., The Timeless Way of Building, New York: Oxford University Press,
1979.

2. The anthropologist Ruth Benedict is a pioneer in pattern-based analysis of cul-
tures. For examples, see Benedict, R., The Chrysanthemum and the Sword, Boston:
Houghton Mifflin, 1946.

05 Shalloway.qrk 9/1/04 2:08 PM Page 76

A proposition behind design patterns is that the quality of software

systems can be measured objectively.

If you accept the idea that it is possible to recognize and describe a

good quality design, how do you go about creating one? I can imag-

ine Alexander asking himself,

What is present in a good quality design that is not present in a

poor quality design?

and

What is present in a poor quality design that is not present in a

good quality design?

These questions spring from Alexander’s belief that if quality in de-

sign is objective, we should be able to identify what makes designs

good and what makes designs bad.

Alexander studied this problem by making many observations of

buildings, towns, streets, and virtually every other aspect of living

spaces that human beings have built for themselves. He discovered

that, for a particular architectural creation, good constructs had things

in common with each other.

Architectural structures differ from each other, even if they are of the

same type. Yet even though they differ, they can still be of high quality.

For example, two porches may appear structurally different and yet

both may still be considered high quality. They might be solving dif-

ferent problems for different houses. One porch may be a transition

from the walkway to the front door. Another porch might be a place

for shade on a hot day. Or two porches might solve a common prob-

lem (transition) in different ways.

Chapter 5 • An Introduction to Design Patterns 77

How do you get good

quality repeatedly?

Look for the

commonalties

…especially

commonality in the

features of the

problem to be solved

05 Shalloway.qrk 9/1/04 2:08 PM Page 77

Alexander understood this. He knew that structures couldn’t be sep-

arated from the problem they are trying to solve. Therefore, in his

quest to identify and describe the consistency of quality in design,

Alexander realized that he had to look at different structures that

were designed to solve the same problem. For example, Figure 5-1

illustrates two solutions to the problem of demarking an entryway.

78 Part III • Design Patterns

This led to the

concept of a pattern

Figure 5-1 Structures may look different but still solve a common
problem.

Alexander discovered that by narrowing his focus in this way—by

looking at structures that solve similar problems—he could discern

similarities between designs that were high quality. He called these

similarities patterns.

He defined a pattern as “a solution to a problem in a context”:

Each pattern describes a problem which occurs over and over

again in our environment and then describes the core of the so-

lution to that problem, in such a way that you can use this so-

lution a million times over, without ever doing it the same way

twice.3

Let’s review some of Alexander’s work to illustrate this. Table 5-1

presents an excerpt from his The Timeless Way of Building.4

3. Alexander, C., Ishikawa, S., Silverstein, M., A Pattern Language, New York:
Oxford University Press, 1977, p. x.

4. Alexander, C., The Timeless Way of Building, New York: Oxford University Press,
1979.

05 Shalloway.qrk 9/1/04 2:08 PM Page 78

Chapter 5 • An Introduction to Design Patterns 79

Alexander Says My Comments

Table 5-1 Excerpts from The Timeless Way of Building

In the same way, a courtyard, which is
properly formed, helps people come to life
in it.

Consider the forces at work in a courtyard.
Most fundamental of all, people seek some
kind of private outdoor space, where they
can sit under the sky, see the stars, enjoy the
sun, perhaps plant flowers. This is obvious.

But there are more subtle forces too. For in-
stance, when a courtyard is too tightly en-
closed, has no view out, people feel
uncomfortable, and tend to stay away
…they need to see out into some larger and
more distant space.

Or again, people are creatures of habit. If
they pass in and out of the courtyard, every
day, in the course of their normal lives, the
courtyard becomes familiar, a natural place
to go…and it is used.

But a courtyard with only one way in, a
place you only go when you "want" to go
there, is an unfamiliar place, tends to stay
unused…people go more often to places
which are familiar.

Or again, there is a certain abruptness
about suddenly stepping out, from the in-
side, directly to the outside…it is subtle, but
enough to inhibit you.

If there is a transitional space—a porch or a
veranda, under cover, but open to the air—
this is psychologically half way between in-
doors and outdoors, and makes it much

A pattern always has a name and has a pur-
pose. Here, the pattern's name is Courtyard,
and its purpose is to help energize people, to
help them feel alive.

Although it might be obvious sometimes, it is
important to state explicitly the problem
being solved, which is the reason for having
the pattern in the first place. This is what
Alexander does here for Courtyard.

He points out a difficulty with the simplified
solution and then gives us a way to solve the
problem that he has just pointed out.

Familiarity sometimes keeps us from seeing
the obvious. The value of a pattern is that
those with less experience can take advan-
tage of what others have learned before
them: both what must be included to have a
good design, and what must be avoided to
keep from a poor design.

Although patterns are often thought of as
theoretical constructs, in fact they reflect
practical concerns that have arisen repeat-
edly in the past.

Alexander describes a force that is present
(and important), but can be easily over-
looked.

He proposes a solution to a possibly over-
looked challenge to building a great court-
yard. Also he shows that one pattern (here a
courtyard) often provides the context for

05 Shalloway.qrk 9/1/04 2:08 PM Page 79

To review, Alexander says that a description of a pattern involves

four items:

• The name of the pattern

• The purpose of the pattern, the problem it solves

• How we could accomplish this

• The constraints and forces we have to consider in order to ac-

complish it

Alexander postulated that patterns can solve virtually every architec-

tural problem that one will encounter. He further postulated that pat-

terns could be used together to solve complex architectural problems.

How patterns work together is discussed later in this book. For now,

I want to focus on his claim that patterns are useful to solve spe-

cialized problems.

80 Part III • Design Patterns

The four components

required of every

pattern description

Alexander Says My Comments

Table 5-1 Excerpts from The Timeless Way of Building (cont.)

easier, more simple, to take each of the
smaller steps that brings you out into the
courtyard…

When a courtyard has a view out to a larger
space, has crossing paths from different
rooms, and has a veranda or a porch, these
forces can resolve themselves. The view
out makes it comfortable, the crossing
paths help generate a sense of habit there,
the porch makes it easier to go out more
often…and gradually the courtyard be-
comes a pleasant customary place to be.

another pattern (here a porch or veranda).
Patterns provide context for each other be-
cause recognizing a pattern helps clarify the
problem itself, making other patterns easier
to see.

Alexander is telling us how to build a great
courtyard…and then tells us why it is great.

Patterns exist for

almost any design

problem

…and may be

combined to solve

complex problems

05 Shalloway.qrk 9/1/04 2:08 PM Page 80

Moving from Architectural to Software
Design Patterns

What does all of this architectural stuff have to do with us software

developers?

Well, in the early 1990s, some smart developers happened upon

Alexander’s work in patterns. They wondered whether what was true

for architectural patterns would also be true for software design.5

• Were there problems in software that occur over and over again

that could be solved in somewhat the same manner?

• Was it possible to design software in terms of patterns, creating

specific solutions based on these patterns only after the patterns

had been identified?

The group felt the answer to both of these questions was “unequiv-

ocally yes.” The next step was to identify several patterns and develop

standards for cataloging new ones.

Although many people were working on design patterns in the early

1990s, the book that had the greatest influence on this fledging com-

munity was Design Patterns: Elements of Reusable Object-Oriented

Software6 by Gamma, Helm, Johnson, and Vlissides. In recognition of

their important work, these four authors are commonly and affec-

tionately known as the Gang of Four.

This book served several purposes:

Chapter 5 • An Introduction to Design Patterns 81

Adapting Alexander

for software

The Gang of Four

did the early work

on design patterns

5. The ESPRIT consortium in Europe was doing similar work in the 1980s. ESPRIT’s
Project 1098 and Project 5248 developed a pattern-based design methodology
called Knowledge Analysis and Design Support (KADS) that was focused on patterns
for creating expert systems. Karen Gardner extended the KADS analysis patterns
to object orientation. See Gardner, K., Cognitive Patterns: Problem-Solving
Frameworks for Object Technology, New York: Cambridge University Press, 1998.

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Boston: Addison-Wesley, 1995.

05 Shalloway.qrk 9/1/04 2:08 PM Page 81

82 Part III • Design Patterns

Consequences/Forces

The term consequences is used in design patterns and is often mis-

understood. In everyday usage, consequences usually carries a

negative connotation. (You never hear someone say, “I won the

lottery! As a consequence, I now do not have to go to work!”) Within

the design pattern community, on the other hand, consequences

simply refers to cause and effect. That is, if you implement this

pattern in such-and-such a way, this is how it will affect and be af-

fected by the forces present.

• It applied the idea of patterns to software design—calling them

design patterns.

• It described a structure within which to catalog and describe de-

sign patterns.

• It cataloged 23 such patterns.

• It postulated object-oriented strategies and approaches based on

these design patterns.

It is important to realize that the Gang of Four did not create the

patterns described in the book. Rather, they identified patterns that

already existed within the software community, patterns that re-

flected what had been learned about high-quality designs for spe-

cific problems. (Note the similarity to Alexander’s work.)

Today there are several different forms for describing design patterns.

Because this is not a book about writing design patterns, I do not

offer an opinion on the best structure for describing patterns; how-

ever, the following items listed in Table 5-2 need to be included in

any description.

For each pattern that I present in this book, I present a one-page

summary of the key features that describes that pattern.

05 Shalloway.qrk 9/1/04 2:08 PM Page 82

Chapter 5 • An Introduction to Design Patterns 83

Note: Unless otherwise noted, the Key Features summary is ex-

tracted from the pattern description in the GoF book.

Why Study Design Patterns?

Now that you have an idea about what design patterns are, you may

still be wondering, “Why study them?” There are several reasons

that are obvious and some that are not so obvious.

The most commonly stated reasons for studying patterns are because

patterns enable us to

Item Description

Table 5-2 Key Features of Patterns

Name

Intent

Problem

Solution

Participants and
collaborators

Consequences

Implementation

Generic
structure

All patterns have a unique name that identifies
them.

The purpose of the pattern.

The problem that the pattern is trying to solve.

How the pattern provides a solution to the prob-
lem in the context in which it shows up.

The entities involved in the pattern.

The consequences of using the pattern.
Investigates the forces at play in the pattern.

How the pattern can be implemented.

Note: Implementations are just concrete manifes-
tations of the pattern and should not be con-
strued as the pattern itself.

A standard diagram that shows a typical structure
for the pattern.

Design patterns help

with reuse and

communication

05 Shalloway.qrk 9/1/04 2:08 PM Page 83

• Reuse solutions—By reusing already established designs, I get

a head start on my problems and avoid gotchas. I get the benefit

of learning from the experience of others. I do not have to rein-

vent solutions for commonly recurring problems.

• Establish common terminology—Communication and team-

work require a common base of vocabulary and a common view-

point of the problem. Design patterns provide a common point

of reference during the analysis and design phase of a project.

Patterns give you a higher-level perspective on the problem and on

the process of design and object orientation. This frees you from the

tyranny of dealing with the details too early.

By the end of this book, I hope you will agree that this is one of the

greatest reasons to study design patterns. It will shift your mindset

and make you a more powerful analyst.

To illustrate this advantage, I want to relate a conversation between

two carpenters about how to build the drawers for some cabinets.7

Consider two carpenters discussing how to build the drawers for

some cabinets.

Carpenter 1: How do you think we should build these

drawers?

Carpenter 2: Well, I think we should make the joint by

cutting straight down into the wood, and then cut back up

45 degrees, and then going straight back down, and then

back up the other way 45 degrees, and then going straight

back down, and then…

84 Part III • Design Patterns

Design patterns give

a higher perspective

on analysis and

design

Example of the

tyranny of details:

Carpenters making a

set of drawers

7. This section is inspired by a talk given by Ralph Johnson and is adapted by the
authors.

05 Shalloway.qrk 9/1/04 2:08 PM Page 84

Chapter 5 • An Introduction to Design Patterns 85

Now, your job is to figure out what they are talking about!

Isn’t that a confusing description? What is Carpenter 2 prescribing? The

details certainly get in the way! Let’s try to draw out his description.

The details may

confuse the solution

Carpenter Says… Which Looks Like…

“Well, I think we should make the joint by cut-
ting straight down into the wood, and then cut
back up 45 degrees…”

“…then going straight back down, and then
back up the other way 45 degrees, and then
going straight back down, and then…”

“…until you end up with a dovetail joint. That
is what I was describing!”

Doesn’t this sound like code reviews you have heard? The one where

the programmer describes the code in terms such as

This sounds like so

many code reviews:

Details, details,

details

05 Shalloway.qrk 9/1/04 2:08 PM Page 85

And then, I use a WHILE LOOP here to do…followed by

a series of IF statements to do…and here I use a SWITCH

to handle…

You get a description of the details of the code, but you have no idea

what the program is doing and why it is doing it!

Of course, no self-respecting carpenter would talk like this. What

would really happen is something like this:

Carpenter 1: Should we use a dovetail joint or a miter

joint?

Already we see a qualitative difference. The carpenters are discussing

differences in the quality of solutions to a problem; their discussion

is at a higher level, a more abstract level. They avoid getting bogged

down in the details of a particular solution.

When the carpenter speaks of a miter joint, he or she has the fol-

lowing characteristics of the solution in mind:

• It is a simpler solution—A miter joint is a simple joint to make.

You cut the edges of the joining pieces at 45 degrees, abut them,

and then nail or glue them together, as shown in Figure 5-2.

86 Part III • Design Patterns

Carpenters do not

really talk at that

level of detail

Figure 5-2 A miter joint.

05 Shalloway.qrk 9/1/04 2:08 PM Page 86

• It is lightweight—A miter joint is weaker than a dovetail. It

cannot hold together under great stress.

• It is inconspicuous—The miter joint’s single cut is much less

noticeable than the dovetail joint’s multiple cuts.

When the carpenter speaks of a dovetail joint, he or she has other char-

acteristics of the solution in mind. These characteristics may not be ob-

vious to a layman, but would be clearly understood by any carpenter:

• It is a more complex solution—It is more involved to make

a dovetail joint. Thus, it is more expensive.

• It is impervious to temperature and humidity—As these

change, the wood expands or contracts. However, the dovetail

joint will remain solid.

• It is independent of the fastening system—In fact, dovetail

joints do not even depend upon glue to work.

• It is a more aesthetically pleasing joint—It is beautiful to

look at when made well.

In other words, the dovetail joint is a strong, dependable, beautiful

joint that is complex (and therefore expensive) to make.

So, when Carpenter 1 asked

Should we use a dovetail joint or a miter joint?

The real question that was being asked was

Should we use a joint that is expensive to make but is both beau-

tiful and durable, or should we just make a quick and dirty joint

that will last at least until the check clears?

We might say the carpenters’ discussion really occurs at two levels:

the surface level of their words, and the real conversation, which

Chapter 5 • An Introduction to Design Patterns 87

There is a meta-level

conversation going

on

05 Shalloway.qrk 9/1/04 2:08 PM Page 87

occurs at a higher level (a meta-level) that is hidden from the layman

and which is much richer in meaning. This higher level is the level

of “carpenter patterns” and reflects the real design issues for the

carpenters.

In the first case, Carpenter 2 obscures the real issues by discussing the

details of the implementations of the joints. In the second case,

Carpenter 1 wants to decide which joint to use based on costs and

quality of the joint.

Who is more efficient? Who would you rather work with?

This is one thing I mean when I say that patterns can help raise the

level of your thinking. You will learn later in the book that when

you raise your level of thinking like this, new design methods become

available. This is where the real power of patterns lies.

Other Advantages of Studying Design
Patterns

My experience with development groups working with design pat-

terns is that design patterns helped both individual learning and team

development. This occurred because the more junior team members

saw that the senior developers who knew design patterns had some-

thing of value and these junior members wanted it. This provided

motivation for them to learn some of these powerful concepts.

Most design patterns also make software more modifiable and main-

tainable. The reason for this is that they are time-tested solutions.

Therefore, they have evolved into structures that can handle change

more readily than what often first comes to mind as a solution. They

also handle this with easier to understand code—making it easier to

maintain.

88 Part III • Design Patterns

Patterns help us see

the forest and the

trees

Improve team

communications and

individual learning

Improved

modifiability and

maintainability of

code

05 Shalloway.qrk 9/1/04 2:08 PM Page 88

Design patterns, when they are taught properly, can be used to great-

ly increase the understanding of basic object-oriented design princi-

ples. I have seen this countless times in the introductory

object-oriented courses I teach. In those classes, I start with a brief

introduction to the object-oriented paradigm. I then proceed to teach

design patterns, using them to illustrate the basic object-oriented

concepts (encapsulation, inheritance, and polymorphism). By the

end of the three-day course, although we’ve been talking mostly

about patterns, these concepts—which were just introduced to many

of the participants—feel as if they are old friends.

The Gang of Four suggests a few strategies for creating good object-

oriented designs. In particular, they suggest the following:

• Design to interfaces.

• Favor aggregation over inheritance.8

• Find what varies and encapsulate it.

These strategies were employed in most of the design patterns discussed

in this book. Even if you do not learn a lot of design patterns, studying

a few should enable you to learn why these strategies are useful. With

that understanding comes the ability to apply them to your own design

problems even if you do not use design patterns directly.

Another advantage is that design patterns enable you or your team

to create designs for complex problems that do not require large in-

heritance hierarchies. Again, even if design patterns are not used di-

rectly, avoiding large inheritance hierarchies will result in improved

designs.

Chapter 5 • An Introduction to Design Patterns 89

Design patterns

illustrate basic

object-oriented

principles

Adoption of

improved

strategies—even

when patterns aren’t

present

Learn alternatives to

large inheritance

hierarchies

8. Remember, aggregation means a collection of things that are not part of it (air-
planes at an airport), whereas composition means something is a part of another
thing (like wheels on an airplane). The distinction loses much of its importance
in languages that have garbage collection, because you do not have to concern
yourself with the life of the object. (When the object goes away, should its parts
also go away?)

05 Shalloway.qrk 9/1/04 2:08 PM Page 89

Summary

This chapter described what design patterns are. Christopher

Alexander says, “Patterns are solutions to a problem in a context.”

They are more than a kind of template to solve one’s problems. They

are a way of describing the motivations by including both what we

want to have happen along with the problems that are plaguing us.

This chapter examined reasons for studying design patterns. Such

study helps to

• Reuse existing, high-quality solutions to commonly recurring

problems.

• Establish common terminology to improve communications

within teams.

• Shift the level of thinking to a higher perspective.

• Decide whether I have the right design, not just one that works.

• Improve individual learning and team learning.

• Improve the modifiability of code.

• Facilitate adoption of improved design alternatives, even when

patterns are not used explicitly.

• Discover alternatives to large inheritance hierarchies.

Review Questions

Observations

1. Who is credited with the idea for design patterns?

2. Alexander discovered that by looking at structures that solve

similar problems, he could discern what?

3. Define pattern.

90 Part III • Design Patterns

In this chapter

05 Shalloway.qrk 9/1/04 2:08 PM Page 90

4. What are the key elements in the description of a design pattern?

5. What are three reasons for studying design patterns?

6. The Gang of Four suggests a few strategies for creating good

object-oriented designs. What are they?

Interpretations

1. “Familiarity sometimes keeps us from seeing the obvious.” In

what ways can patterns help avoid this?

2. The Gang of Four cataloged 23 patterns. Where did these pat-

terns come from?

3. What is the relationship between “consequence” and “forces”

in a pattern?

4. What do you think “find what varies and encapsulate it”

means?

5. Why is it desirable to avoid large inheritance hierarchies?

Opinions and Applications

1. Think of a building or structure that felt particularly “dead.”

What does it not have in common with similar structures that

seem to be more “alive”?

2. “The real power of patterns is the ability to raise your level of

thinking.” Have you had an experience in which this was true?

Give an example.

Chapter 5 • An Introduction to Design Patterns 91

05 Shalloway.qrk 9/1/04 2:08 PM Page 91

05 Shalloway.qrk 9/1/04 2:08 PM Page 92

Business-Driven Software Development™
Assessments, Consulting, Training, and Coaching

Business-Driven Software Development (BDSD) is Net Objectives’ proprietary integration of Lean-Thinking with Agile
methods across the business, management and development teams to maximize the value delivered from a software development
organization. BDSD has built a reputation and track record of delivering higher quality products faster and with lower cost than
other methods
BDSD goes beyond the first generation of Agile methods such as Scrum and XP by viewing the entire value stream of develop-
ment. Lean-Thinking enables product portfolio management, release planning and critical metrics to create a top-down vision
while still promoting a bottom-up implementation.
BDSD integrates business, management and teams. Popular Agile methods, such as Scrum, tend to isolate teams from the busi-
ness side and seem to have forgotten management’s role altogether.
These are critical aspects of all successful organizations. In BDSD:

 • Business provides the vision and direction; properly select-
ing, sizing and prioritizing those products and enhancements
that will maximize your investment

 • Teams self-organize and do the work; consistently delivering
value quickly while reducing the risk of developing what is
not needed

 • Management bridges the two; providing the right environ-
ment for successful development by creating an organiza-
tional structure that removes impediments to the production
of value. This increases productivity, lowers cost and improves
quality

Become a Lean-Agile Enterprise
All levels of your organization will experience impacts and require
change management. We help prepare executive, mid-management
and the front-line with the competencies required to successfully
change the culture to a Lean-Agile enterprise.
Prioritization is only half the problem. Learn how to both prioritize
and size your initiatives to enable your teams to implement them quickly.
Learn to come from business need not just system capability. There is a disconnect between the business side and development
side in many organizations. Learn how BDSD can bridge this gap by providing the practices for managing the flow of work.

Why Net Objectives
While many organizations are having success with Agile methods, many more are not. Much of this is due to organizations
either starting in the wrong place (e.g., the team when that is not the main problem) or using the wrong method (e.g., Scrum,
just because it is popular). Net Objectives is experienced in all of the Agile team methods (Scrum, XP, Kanban, Scrumban) and
integrates business, management and teams. This lets us help you select the right method for you.

Assessments

See where you are, where you want to go, and how to get there.

Business and Management Training

Lean Software Development

Product Portfolio Management

Enterprise Release Planning

Productive Lean-Agile Team Training

Team training in Kanban, Scrum

Technical Training in ATDD, TDD, Design Patterns

Roles Training

Lean-Agile Project Manager

Product Owner

Assessments

See where you are, where you want to go, and how to get there.

Business and Management Training

Lean Software Development

Product Portfolio Management

Enterprise Release Planning

Productive Lean-Agile Team Training

Team training in Kanban, Scrum

Technical Training in ATDD, TDD, Design Patterns

Roles Training

Lean-Agile Project Manager

Product Owner

For more information about Business Driven Software Development Services
Contact Mike Shalloway at Net Objectives: mike.shalloway@netobjectives.com / 404-593-8375

NetObjectives.com / 1-888-LEAN-244 (888-532-6244)

Team

Lean
Enterprise

Manage
ment

Business

Lean for Execu�ves
Product Porolio
Management

Kanban / Scrum / ATDD

Design Pa�erns / TDD

Lean-Management

Project Management

