Java SE 8

for the Really

Impatient

i
\‘M i i

\ y

Cay S. Horstmann 2%

) i 77 il
”“ ‘\‘)/h,r {,, i /\. W% e AN \.‘.‘r
N "\l;" Wp ) s Sl ".

¢ Y

7
/. 'A'%, s\ S
. < 7
TN /Mf}; Veu



Chapter

Java was designed in the 1990s as an object-oriented programming language,
when object-oriented programming was the principal paradigm for software
development. Long before there was object-oriented programming, there were
functional programming languages such as Lisp and Scheme, but their benefits
were not much appreciated outside academic circles. Recently, functional pro-
gramming has risen in importance because it is well suited for concurrent and
event-driven (or “reactive”) programming. That doesn’t mean that objects are
bad. Instead, the winning strategy is to blend object-oriented and functional
programming. This makes sense even if you are not interested in concurrency.
For example, collection libraries can be given powerful APIs if the language has
a convenient syntax for function expressions.

The principal enhancement in Java 8 is the addition of functional programming
constructs to its object-oriented roots. In this chapter, you will learn the basic
syntax. The next chapter shows you how to put that syntax to use with Java col-
lections, and in Chapter 3 you will learn how to build your own functional
libraries.

The key points of this chapter are:
* A lambda expression is a block of code with parameters.

* Use a lambda expression whenever you want a block of code executed at a
later point in time.

* Lambda expressions can be converted to functional interfaces.



Chapter 1 m Lambda Expressions

* Lambda expressions can access effectively final variables from the enclosing
scope.

¢ Method and constructor references refer to methods or constructors without
invoking them.

* You can now add default and static methods to interfaces that provide
concrete implementations.

* You must resolve any conflicts between default methods from multiple
interfaces.

1.1 Why Lambdas?

A “lambda expression” is a block of code that you can pass around so it can be
executed later, once or multiple times. Before getting into the syntax (or even the
curious name), let’s step back and see where you have used similar code blocks
in Java all along.

When you want to do work in a separate thread, you put the work into the run
method of a Runnable, like this:

class Worker implements Runnable {
public void run() {
for (int i =0; i < 1000; i++)
doWork();

}

Then, when you want to execute this code, you construct an instance of the Worker
class. You can then submit the instance to a thread pool, or, to keep it simple,
start a new thread:

Worker w = new Worker();
new Thread(w).start();

The key point is that the run method contains code that you want to execute in a
separate thread.

Or consider sorting with a custom comparator. If you want to sort strings by
length instead of the default dictionary order, you can pass a Comparator object to
the sort method:

class LengthComparator implements Comparator<String> {
public int compare(String first, String second) {
return Integer.compare(first.length(), second.length());
}
}



1.1 m Why Lambdas?

Arrays.sort(strings, new LengthComparator());

The sort method keeps calling the compare method, rearranging the elements if
they are out of order, until the array is sorted. You give the sort method a snippet
of code needed to compare elements, and that code is integrated into the rest of
the sorting logic, which you’d probably not care to reimplement.

% NOTE: The call Integer.compare(x, y) returns zero if x and y are equal, a
negative number if x < y, and a positive number if x > y. This static method
has been added to Java 7 (see Chapter 9). Note that you shouldn’t compute
X - y to compare x and y since that computation can overflow for large
operands of opposite sign.

As another example for deferred execution, consider a button callback. You put
the callback action into a method of a class implementing the listener interface,
construct an instance, and register the instance with the button. That happens so
often that many programmers use the “anonymous instance of anonymous class”
syntax:

button.setOnAction(new EventHandler<ActionEvent>() {
public void handle(ActionEvent event) {
System.out.printIn("Thanks for clicking!");
}
b;

What matters is the code inside the handle method. That code is executed
whenever the button is clicked.

% NOTE: Since Java 8 positions JavaFX as the successor to the Swing GUI
toolkit, | use JavaFX in these examples. (See Chapter 4 for more information
on JavaFX.) Of course, the details don’t matter. In every user interface toolkit,
be it Swing, JavaFX, or Android, you give a button some code that you want
to run when the button is clicked.

In all three examples, you saw the same approach. A block of code was passed
to someone—a thread pool, a sort method, or a button. The code was called at
some later time.

Up to now, giving someone a block of code hasn’t been easy in Java. You couldn’t
just pass code blocks around. Java is an object-oriented language, so you had to
construct an object belonging to a class that has a method with the desired code.

In other languages, it is possible to work with blocks of code directly. The Java
designers have resisted adding this feature for a long time. After all, a great



Chapter 1 m Lambda Expressions

strength of Java is its simplicity and consistency. A language can become an un-
maintainable mess if it includes every feature that yields marginally more concise
code. However, in those other languages it isn’t just easier to spawn a thread or
to register a button click handler; large swaths of their APIs are simpler, more
consistent, and more powerful. In Java, one could have written similar APIs that
take objects of classes implementing a particular function, but such APIs would
be unpleasant to use.

For some time now, the question was not whether to augment Java for functional
programming, but how to do it. It took several years of experimentation before
a design emerged that is a good fit for Java. In the next section, you will see how
you can work with blocks of code in Java 8.

1.2 The Syntax of Lambda Expressions

Consider again the sorting example from the preceding section. We pass code
that checks whether one string is shorter than another. We compute

Integer.compare(first.length(), second.length())

What are first and second? They are both strings. Java is a strongly typed language,
and we must specify that as well:

(String first, String second)
-> Integer.compare(first.length(), second.length())

You have just seen your first lambda expression. Such an expression is simply a
block of code, together with the specification of any variables that must be passed
to the code.

Why the name? Many years ago, before there were any computers, the logician
Alonzo Church wanted to formalize what it means for a mathematical function
to be effectively computable. (Curiously, there are functions that are known to
exist, but nobody knows how to compute their values.) He used the Greek letter
lambda (A) to mark parameters. Had he known about the Java API, he would
have written

Afirst.Asecond.Integer.compare(first.Tength(), second.length())

% NOTE: Why the letter A? Did Church run out of other letters of the alphabet?
Actually, the venerable Principia Mathematica used the /A accent to denote
free variables, which inspired Church to use an uppercase lambda A for
parameters. But in the end, he switched to the lowercase version. Ever since,
an expression with parameter variables has been called a lambda expression.




1.2 m The Syntax of Lambda Expressions

You have just seen one form of lambda expressions in Java: parameters, the ->
arrow, and an expression. If the code carries out a computation that doesn't fit
in a single expression, write it exactly like you would have written a method:
enclosed in {} and with explicit return statements. For example,

(String first, String second) -> {
if (first.length() < second.length()) return -1;
else if (first.length() > second.length()) return 1;
else return 0;

}

If a lambda expression has no parameters, you still supply empty parentheses,
just as with a parameterless method:

() > { for (int i =0; i < 1000; i++) doWork(); }

If the parameter types of a lambda expression can be inferred, you can omit them.
For example,

Comparator<String> comp
= (first, second) // Same as (String first, String second)
-> Integer.compare(first.length(), second.length());

Here, the compiler can deduce that first and second must be strings because the
lambda expression is assigned to a string comparator. (We will have a closer look
at this assignment in the next section.)

If a method has a single parameter with inferred type, you can even omit the
parentheses:

EventHandler<ActionEvent> listener = event ->
System.out.printIn("Thanks for clicking!");
// Instead of (event) -> or (ActionEvent event) ->

% NOTE: You can add annotations or the final modifier to lambda parameters
in the same way as for method parameters:

(final String name) -> ...
(@NonNu11 String name) -> ...

You never specify the result type of a lambda expression. It is always inferred
from context. For example, the expression

(String first, String second) -> Integer.compare(first.length(), second.length())

can be used in a context where a result of type int is expected.



Chapter 1 m Lambda Expressions

% NOTE: ltis illegal for a lambda expression to return a value in some branches
but not in others. For example, (int x) -> { if (x >= 0) return 1; } is invalid.

1.3 Functional Interfaces

As we discussed, there are many existing interfaces in Java that encapsulate
blocks of code, such as Runnable or Comparator. Lambdas are backwards compatible
with these interfaces.

You can supply a lambda expression whenever an object of an interface with a
single abstract method is expected. Such an interface is called a functional interface.

% NOTE: You may wonder why a functional interface must have a single

abstract method. Aren’t all methods in an interface abstract? Actually, it has
always been possible for an interface to redeclare methods from the Object
class such as toString or clone, and these declarations do not make the
methods abstract. (Some interfaces in the Java API redeclare Object methods
in order to attach javadoc comments. Check out the Comparator API for an
example.) More importantly, as you will see in Section 1.7, “Default Methods,”
on page 14, in Java 8, interfaces can declare nonabstract methods.

To demonstrate the conversion to a functional interface, consider the Arrays.sort
method. Its second parameter requires an instance of Comparator, an interface with
a single method. Simply supply a lambda:

Arrays.sort(words,
(first, second) -> Integer.compare(first.length(), second.length()));

Behind the scenes, the Arrays.sort method receives an object of some class that
implements Comparator<String>. Invoking the compare method on that object executes
the body of the lambda expression. The management of these objects and classes
is completely implementation dependent, and it can be much more efficient than
using traditional inner classes. It is best to think of a lambda expression as a
function, not an object, and to accept that it can be passed to a functional interface.

This conversion to interfaces is what makes lambda expressions so compelling.
The syntax is short and simple. Here is another example:

button.setOnAction(event ->
System.out.printIn("Thanks for clicking!"));

That’s a lot easier to read than the alternative with inner classes.



1.3 m Functional Interfaces

In fact, conversion to a functional interface is the only thing that you can do with
a lambda expression in Java. In other programming languages that support
function literals, you can declare function types such as (String, String) -> int,
declare variables of those types, and use the variables to save function expres-
sions. However, the Java designers decided to stick with the familiar concept of
interfaces instead of adding function types to the language.

% NOTE: You can't even assign a lambda expression to a variable of type
Object—Object is not a functional interface.

The Java API defines a number of very generic functional interfaces in the
java.util.function package. (We will have a closer look at these interfaces in
Chapters 2 and 3.) One of the interfaces, BiFunction<T, U, R>, describes functions
with parameter types T and U and return type R. You can save our string
comparison lambda in a variable of that type:

BiFunction<String, String, Integer> comp
= (first, second) -> Integer.compare(first.length(), second.length());

However, that does not help you with sorting. There is no Arrays.sort method that
wants a BiFunction. If you have used a functional programming language before,
you may find this curious. But for Java programmers, it’s pretty natural. An in-
terface such as Comparator has a specific purpose, not just a method with given
parameter and return types. Java 8 retains this flavor. When you want to do
something with lambda expressions, you still want to keep the purpose of the
expression in mind, and have a specific functional interface for it.

The interfaces in java.util.function are used in several Java 8 APIs, and you will
likely see them elsewhere in the future. But keep in mind that you can equally
well convert a lambda expression into a functional interface that is a part of
whatever API you use today.

% NOTE: You can tag any functional interface with the @FunctionalInterface an-
notation. This has two advantages. The compiler checks that the annotated
entity is an interface with a single abstract method. And the javadoc page
includes a statement that your interface is a functional interface.

It is not required to use the annotation. Any interface with a single
abstract method is, by definition, a functional interface. But using the
@FunctionalInterface annotation is a good idea.

Finally, note that checked exceptions matter when a lambda is converted to an
instance of a functional interface. If the body of a lambda expression may throw



Chapter 1 m Lambda Expressions

a checked exception, that exception needs to be declared in the abstract method
of the target interface. For example, the following would be an error:

Runnable sleeper = () -> { System.out.printIn("Zzz"); Thread.sleep(1000); };
// Error: Thread.sleep can throw a checked InterruptedException

Since the Runnable.run cannot throw any exception, this assignment is illegal. To
fix the error, you have two choices. You can catch the exception in the body of
the lambda expression. Or assign the lambda to an interface whose single abstract
method can throw the exception. For example, the call method of the Callable
interface can throw any exception. Therefore, you can assign the lambda to a
CallabTe<Void> (if you add a statement return nulT).

1.4 Method References

Sometimes, there is already a method that carries out exactly the action that you’d
like to pass on to some other code. For example, suppose you simply want to
print the event object whenever a button is clicked. Of course, you could call

button.setOnAction(event -> System.out.printin(event));

It would be nicer if you could just pass the println method to the setOnAction
method. Here is how you do that:

button.setOnAction(System.out::println);

The expression System.out::printin is a method reference that is equivalent to the
lambda expression x -> System.out.printIn(x).

As another example, suppose you want to sort strings regardless of letter case.
You can pass this method expression:

Arrays.sort(strings, String::compareToIgnoreCase)

As you can see from these examples, the :: operator separates the method name
from the name of an object or class. There are three principal cases:

* object::instanceMethod
e (Class::staticMethod
e (Class::instanceMethod

In the first two cases, the method reference is equivalent to a lambda expres-
sion that supplies the parameters of the method. As already mentioned,
System.out::printin is equivalent to x -> System.out.printin(x). Similarly, Math: :pow is
equivalent to (x, y) -> Math.pow(x, y).

In the third case, the first parameter becomes the target of the method. For ex-
ample, String::compareToIgnoreCase is the same as (x, y) -> x.compareToIgnoreCase(y).



1.5 m Constructor References

% NOTE: When there are multiple overloaded methods with the same name,
the compiler will try to find from the context which one you mean. For example,
there are two versions of the Math.max method, one for integers and one for
doubTe values. Which one gets picked depends on the method parameters of
the functional interface to which Math: :max is converted. Just like lambda
expressions, method references don't live in isolation. They are always turned
into instances of functional interfaces.

You can capture the this parameter in a method reference. For example,
this::equals is the same as x -> this.equals(x). Itis also valid to use super. The method
expression

super: :instanceMethod

uses this as the target and invokes the superclass version of the given method.
Here is an artificial example that shows the mechanics:

class Greeter {
public void greet() {
System.out.printIn("Hello, world!");
}
}

class ConcurrentGreeter extends Greeter {
public void greet() {
Thread t = new Thread(super: :greet);
t.start();
}
}

When the thread starts, its Runnable is invoked, and super: :greet is executed, calling
the greet method of the superclass.

% NOTE: In an inner class, you can capture the this reference of an enclosing
class as EnclosingClass.this: :method or EnclosingClass.super: :method.

1.5 Constructor References

Constructor references are just like method references, except that the name of
the method is new. For example, Button: :new is a reference to a Button constructor.
Which constructor? It depends on the context. Suppose you have a list of strings.
Then you can turn it into an array of buttons, by calling the constructor on each
of the strings, with the following invocation:



Chapter 1 m Lambda Expressions

List<String> Tabels = ...;
Stream<Button> stream = labels.stream().map(Button::new);
List<Button> buttons = stream.collect(Collectors.toList());

We will discuss the details of the stream, map, and collect methods in Chapter 2.
For now, what’s important is that the map method calls the Button(String) construc-
tor for each list element. There are multiple Button constructors, but the compiler
picks the one with a String parameter because it infers from the context that the
constructor is called with a string.

You can form constructor references with array types. For example, int[]::new
is a constructor reference with one parameter: the length of the array. It is
equivalent to the lambda expression x -> new int[x].

Array constructor references are useful to overcome a limitation of Java. It is not
possible to construct an array of a generic type T. The expression new T[n] is an
error since it would be erased to new Object[n]. That is a problem for library au-
thors. For example, suppose we want to have an array of buttons. The Stream
interface has a toArray method that returns an Object array:

Object[] buttons = stream.toArray();

But that is unsatisfactory. The user wants an array of buttons, not objects. The
stream library solves that problem with constructor references. Pass Button[]: :new
to the toArray method:

Button[] buttons = stream.toArray(Button[]::new);

The toArray method invokes this constructor to obtain an array of the correct type.
Then it fills and returns the array.

1.6 Variable Scope

Often, you want to be able to access variables from an enclosing method or class
in a lambda expression. Consider this example:

pubTic static void repeatMessage(String text, int count) {
Runnable r = () -> {
for (int i = 0; 1 < count; i++) {
System.out.printIn(text);
Thread.yield();
}
b
new Thread(r).start();



1.6 m Variable Scope

Consider a call
repeatMessage("Hello", 1000); // Prints Hello 1,000 times in a separate thread

Now look at the variables count and text inside the lambda expression. Note that
these variables are not defined in the lambda expression. Instead, these are
parameter variables of the repeatMessage method.

If you think about it, something nonobvious is going on here. The code of the
lambda expression may run long after the call to repeatMessage has returned and
the parameter variables are gone. How do the text and count variables stay
around?

To understand what is happening, we need to refine our understanding of a
lambda expression. A lambda expression has three ingredients:

1. A block of code
2. Parameters

3. Values for the free variables, that is, the variables that are not parameters and
not defined inside the code

In our example, the lambda expression has two free variables, text and count. The
data structure representing the lambda expression must store the values for these
variables, in our case, "Hello" and 1000. We say that these values have been captured
by the lambda expression. (It's an implementation detail how that is done. For
example, one can translate a lambda expression into an object with a single
method, so that the values of the free variables are copied into instance variables
of that object.)

% NOTE: The technical term for a block of code together with the values of the
free variables is a closure. If someone gloats that their language has closures,
rest assured that Java has them as well. In Java, lambda expressions are
closures. In fact, inner classes have been closures all along. Java 8 gives
us closures with an attractive syntax.

As you have seen, a lambda expression can capture the value of a variable
in the enclosing scope. In Java, to ensure that the captured value is well-defined,
there is an important restriction. In a lambda expression, you can only reference
variables whose value doesn’t change. For example, the following is illegal:



n Chapter 1 m Lambda Expressions

public static void repeatMessage(String text, int count) {
Runnable r = () -> {
while (count > @) {
count--; // Error: Can’t mutate captured variable
System.out.printIn(text);
Thread.yield();
}

¥
new Thread(r).start();
}

There is a reason for this restriction. Mutating variables in a lambda expression
is not threadsafe. Consider a sequence of concurrent tasks, each updating a shared
counter.

int matches = 0;
for (Path p : files)
new Thread(() -> { if (p has some property) matches++; }).start();
// lllegal to mutate matches

If this code were legal, it would be very, very bad. The increment matches++ is not
atomic, and there is no way of knowing what would happen if multiple threads
execute that increment concurrently.

NOTE: Inner classes can also capture values from an enclosing scope. Before
Java 8, inner classes were only allowed to access final local variables. This
rule has now been relaxed to match that for lambda expressions. An inner
class can access any effectively final local variable—that is, any variable
whose value does not change.

Don’t count on the compiler to catch all concurrent access errors. The prohibition
against mutation only holds for local variables. If matches is an instance or static
variable of an enclosing class, then no error is reported, even though the result
is just as undefined.

Also, it’s perfectly legal to mutate a shared object, even though it is unsound.
For example,

List<Path> matches = new ArrayList<>();
for (Path p : files)
new Thread(() -> { if (p has some property) matches.add(p); }).start();
// Legal to mutate matches, but unsafe

Note that the variable matches is effectively final. (An effectively final variable is a
variable that is never assigned a new value after it has been initialized.) In our



1.6 m Variable Scope

case, matches always refers to the same Arraylist object. However, the object is
mutated, and that is not threadsafe. If multiple threads call add, the result
is unpredictable.

There are safe mechanisms for counting and collecting values concurrently. In
Chapter 2, you will see how to use streams to collect values with certain proper-
ties. In other situations, you may want to use threadsafe counters and collections.
See Chapter 6 for more information on this important topic.

NOTE: As with inner classes, there is an escape hatch that lets a lambda
i expression update a counter in an enclosing local scope. Use an array of
length 1, like this:

int[] counter = new int[1];
button.setOnAction(event -> counter[0]++);

Of course, code like this is not threadsafe. For a button callback, that doesn’t
matter, but in general, you should think twice before using this trick. You will
see how to implement a threadsafe shared counter in Chapter 6.

The body of a lambda expression has the same scope as a nested block. The same
rules for name conflicts and shadowing apply. It is illegal to declare a parameter
or a local variable in the lambda that has the same name as a local variable.

Path first = Paths.get("/usr/bin");

Comparator<String> comp =
(first, second) -> Integer.compare(first.length(), second.length());
// Error: Variable first already defined

Inside a method, you can’t have two local variables with the same name, and
therefore, you can’t introduce such variables in a lambda expression either.

When you use the this keyword in a lambda expression, you refer to the this
parameter of the method that creates the lambda. For example, consider

pubTic class Application() {
pubTic void doWork() {
Runnable runner = () -> { ...; System.out.printIn(this.toString()); ... };

}
}

The expression this.toString() calls the toString method of the Application object,
not the Runnable instance. There is nothing special about the use of this in a lambda
expression. The scope of the lambda expression is nested inside the doWork method,
and this has the same meaning anywhere in that method.



	Contents
	Preface
	About the Author
	1 LAMBDA EXPRESSIONS
	1.1 Why Lambdas?
	1.2 The Syntax of Lambda Expressions
	1.3 Functional Interfaces
	1.4 Method References
	1.5 Constructor References
	1.6 Variable Scope
	1.7 Default Methods
	1.8 Static Methods in Interfaces
	Exercises


	2 THE STREAM API
	2.1 From Iteration to Stream Operations
	2.2 Stream Creation
	2.3 The filter, map, and flatMap Methods
	2.4 Extracting Substreams and Combining Streams
	2.5 Stateful Transformations
	2.6 Simple Reductions
	2.7 The Optional Type
	2.7.1 Working with Optional Values
	2.7.2 Creating Optional Values
	2.7.3 Composing Optional Value Functions with flatMap

	2.8 Reduction Operations
	2.9 Collecting Results
	2.10 Collecting into Maps
	2.11 Grouping and Partitioning
	2.12 Primitive Type Streams
	2.13 Parallel Streams
	2.14 Functional Interfaces
	Exercises


	3 PROGRAMMING WITH LAMBDAS
	3.1 Deferred Execution
	3.2 Parameters of Lambda Expressions
	3.3 Choosing a Functional Interface
	3.4 Returning Functions
	3.5 Composition
	3.6 Laziness
	3.7 Parallelizing Operations
	3.8 Dealing with Exceptions
	3.9 Lambdas and Generics
	3.10 Monadic Operations
	Exercises


	4 JAVAFX
	4.1 A Brief History of Java GUI Programming
	4.2 Hello, JavaFX!
	4.3 Event Handling
	4.4 JavaFX Properties
	4.5 Bindings
	4.6 Layout
	4.7 FXML
	4.8 CSS
	4.9 Animations and Special Effects
	4.10 Fancy Controls
	Exercises


	5 THE NEW DATE AND TIME API
	5.1 The Time Line
	5.2 Local Dates
	5.3 Date Adjusters
	5.4 Local Time
	5.5 Zoned Time
	5.6 Formatting and Parsing
	5.7 Interoperating with Legacy Code
	Exercises


	6 CONCURRENCY ENHANCEMENTS
	6.1 Atomic Values
	6.2 ConcurrentHashMap Improvements
	6.2.1 Updating Values
	6.2.2 Bulk Operations
	6.2.3 Set Views

	6.3 Parallel Array Operations
	6.4 Completable Futures
	6.4.1 Futures
	6.4.2 Composing Futures
	6.4.3 The Composition Pipeline
	6.4.4 Composing Asynchronous Operations
	Exercises


	7 THE NASHORN JAVASCRIPT ENGINE
	7.1 Running Nashorn from the Command Line
	7.2 Running Nashorn from Java
	7.3 Invoking Methods
	7.4 Constructing Objects
	7.5 Strings
	7.6 Numbers
	7.7 Working with Arrays
	7.8 Lists and Maps
	7.9 Lambdas
	7.10 Extending Java Classes and Implementing Java Interfaces
	7.11 Exceptions
	7.12 Shell Scripting
	7.12.1 Executing Shell Commands
	7.12.2 String Interpolation
	7.12.3 Script Inputs

	7.13 Nashorn and JavaFX
	Exercises


	8 MISCELLANEOUS GOODIES
	8.1 Strings
	8.2 Number Classes
	8.3 New Mathematical Functions
	8.4 Collections
	8.4.1 Methods Added to Collection Classes
	8.4.2 Comparators
	8.4.3 The Collections Class

	8.5 Working with Files
	8.5.1 Streams of Lines
	8.5.2 Streams of Directory Entries
	8.5.3 Base64 Encoding

	8.6 Annotations
	8.6.1 Repeated Annotations
	8.6.2 Type Use Annotations
	8.6.3 Method Parameter Reflection

	8.7 Miscellaneous Minor Changes
	8.7.1 Null Checks
	8.7.2 Lazy Messages
	8.7.3 Regular Expressions
	8.7.4 Locales
	8.7.5 JDBC
	Exercises


	9 JAVA 7 FEATURES THAT YOU MAY HAVE MISSED
	9.1 Exception Handling Changes
	9.1.1 The try-with-resources Statement
	9.1.2 Suppressed Exceptions
	9.1.3 Catching Multiple Exceptions
	9.1.4 Easier Exception Handling for Re.ective Methods

	9.2 Working with Files
	9.2.1 Paths
	9.2.2 Reading and Writing Files
	9.2.3 Creating Files and Directories
	9.2.4 Copying, Moving, and Deleting Files

	9.3 Implementing the equals, hashCode, and compareTo Methods
	9.3.1 Null-safe Equality Testing
	9.3.2 Computing Hash Codes
	9.3.3 Comparing Numeric Types

	9.4 Security Requirements
	9.5 Miscellaneous Changes
	9.5.1 Converting Strings to Numbers
	9.5.2 The Global Logger
	9.5.3 Null Checks
	9.5.4 ProcessBuilder
	9.5.5 URLClassLoader
	9.5.6 BitSet
	Exercises


	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Y
	Z


