

Refactoring To Patterns

version 0.17

Joshua Kerievsky
joshua@industriallogic.com

Industrial Logic, Inc.
http://industriallogic.com

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 7 of 199

Introduction

Patterns are a cornerstone of object-oriented design, while test-first
programming and merciless refactoring are cornerstones of evolutionary
design. To stop over- or under-engineering, it’s necessary to learn how
patterns fit into the new, evolutionary rhythm of software development.

The great thing about software patterns is that they convey many useful design ideas. It follows,
therefore, that if you learn a bunch of these patterns, you’ll be a pretty good software designer,
right? I considered myself just that once I’d learned and used dozens of patterns. They helped me
develop flexible frameworks and build robust and extensible software systems. After a couple of
years, however, I discovered that my knowledge of patterns and the way I used them frequently
led me to over-engineer my work.

Once my design skills had improved, I found myself using patterns in a different way: I began
refactoring to patterns, instead of using them for up-front design or introducing them too early
into my code. My new way of working with patterns emerged from my adoption of Extreme
Programming design practices, which helped me avoid both over- and under-engineering.

Zapping Productivity
When you make your code more flexible or sophisticated than it needs to be, you over-engineer
it. Some do this because they believe they know their system’s future requirements. They reason
that it’s best to make a design more flexible or sophisticated today, so it can accommodate the
needs of tomorrow. That sounds reasonable, if you happen to be a psychic.

But if your predictions are wrong, you waste precious time and money. It’s not uncommon to
spend days or weeks fine-tuning an overly flexible or unnecessarily sophisticated software
design—--leaving you with less time to add new behavior or remove defects from a system.

What typically happens with code you produce in anticipation of needs that never materialize? It
doesn’t get removed, because it’s inconvenient to do so, or because you expect that one day the
code will be needed. Regardless of the reason, as overly flexible or unnecessarily sophisticated
code accumulates, you and the rest of the programmers on your team, especially new members,
must operate within a code base that’s bigger and more complicated than it needs to be.

To compensate for this, folks decide to work in discrete areas of the system. This seems to make
their jobs easier, but it has the unpleasant side effect of generating copious amounts of duplicate
code, since everyone works in his or her own comfortable area of the system, rarely seeking
elsewhere for code that already does what he or she needs.

Over-engineered code affects productivity because when someone inherits an over-engineered
design, they must spend time learning the nuances of that design before they can comfortably
extend or maintain it.

Over-engineering tends to happen quietly: Many architects and programmers aren’t even aware
they do it. And while their organizations may discern a decline in team productivity, few know
that over-engineering is playing a role in the problem.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 8 of 199

Perhaps the main reason programmers over-engineer is that they don’t want to get stuck with a
bad design. A bad design has a way of weaving its way so deeply into code that improving it
becomes an enormous challenge. I’ve been there, and that’s why up-front design with patterns
appealed to me so much.

The Patterns Panacea
When I first began learning patterns, they represented a flexible, sophisticated and even elegant
way of doing object-oriented design that I very much wanted to master. After thoroughly
studying the patterns, I used them to improve systems I’d already built and to formulate designs
for systems I was about to build. Since the results of these efforts were promising, I was sure I
was on the right path.

But over time, the power of patterns led me to lose sight of simpler ways of writing code. After
learning that there were two or three different ways to do a calculation, I’d immediately race
toward implementing the Strategy pattern, when, in fact, a simple conditional expression would
have been simpler and faster to program—a perfectly sufficient solution.

On one occasion, my preoccupation with patterns became quite apparent. I was pair
programming, and my pair and I had written a class that implemented Java’s TreeModel
interface in order to display a graph of Spec objects in a tree widget. Our code worked, but the
tree widget was displaying each Spec by calling its toString() method, which didn’t return the
Spec information we wanted. We couldn’t change Spec’s toString() method since other parts of
the system relied on its contents. So we reflected on how to proceed. As was my habit, I
considered which patterns could help. The Decorator pattern came to mind, and I suggested that
we use it to wrap Spec with an object that could override the toString() method. My partner’s
response to this suggestion surprised me. “Using a Decorator here would be like applying a
sledgehammer to the problem when a few light taps with a small hammer would do.” His solution
was to create a small class called NodeDisplay, whose constructor took a Spec instance, and
whose one public method, toString(), obtained the correct display information from the Spec
instance. NodeDisplay took no time to program, since it was less than 10 simple lines of code.
My Decorator solution would have involved creating over 50 lines of code, with many repetitive
delegation calls to the Spec instance.

Experiences like this made me aware that I needed to stop thinking so much about patterns and
refocus on writing small, simple, straightforward code. I was at a crossroads: I’d worked hard to
learn patterns to become a better software designer, but now I needed to relax my reliance on
them in order to become truly better.

Going Too Fast
Improving also meant learning to not under-engineer. Under-engineering is far more common
than over-engineering. We under-engineer when we become exclusively focused on quickly
adding more and more behavior to a system without regard for improving its design along the
way. Many programmers work this way—I know I sure have. You get code working, move on to
other tasks and never make time to improve the code you wrote. Of course, you’d love to have
time to improve your code, but you either don’t get around to it, or you listen to managers or
customers who say we’ll all be more competitive and successful if we simply don’t fix what ain’t
broke.

That advice, unfortunately, doesn’t work so well with respect to software. It leads to the “fast,
slow, slower” rhythm of software development, which goes something like this:

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 9 of 199

1. You quickly deliver release 1.0 of a system, but with junky code.
2. You attempt to deliver release 2.0 of the system, but the junky code slows you down.
3. As you attempt to deliver future releases, you go slower and slower as the junky code

multiplies, until people lose faith in the system, the programmers and even the process
that got everyone into this position.

That kind of experience is far too common in our industry. It makes organizations less
competitive than they could be. Fortunately, there is a better way.

Socratic Development
Test-first programming and merciless refactoring, two of the many excellent Extreme
Programming practices, dramatically improved the way I build software. I found that these two
practices have helped me and the organizations I’ve worked for spend less time over-engineering
and under-engineering, and more time designing just what we need: well-built systems, produced
on time.

Test-first programming enables the efficient evolution of working code by turning programming
into what Kent Beck once likened to a Socratic dialogue: Write test code to ask your system a
question, write system code to respond to the question and keep the dialogue going until you’ve
programmed what you need. This rhythm of programming put my head in a different place.
Instead of thinking about a design that would work for every nuance of a system, test-first
programming enabled me to make a primitive piece of behavior work correctly before evolving it
to the next necessary level of sophistication.

Merciless refactoring is an integral part of this evolutionary design process. A refactoring is a
“behavior-preserving transformation,” or, as Martin Fowler defined it, “a change made to the
internal structure of software to make it easier to understand and cheaper to modify without
changing its observable behavior.” [Fowler, Refactoring: Improving the Design of Existing Code
(Addison-Wesley, 1999)].

Merciless refactoring resembles the way Socrates continually helped dialogue participants
improve their answers to his questions by weeding out inessentials, clarifying ambiguities and
consolidating ideas. When you mercilessly refactor, you relentlessly poke and prod your code to
remove duplication, clarify and simplify.

The trick to merciless refactoring is to not schedule time to make small design improvements, but
to make them whenever your code needs them. The resulting quality of your code will enable you
to sustain a healthy pace of development. Martin Fowler et al.’s book, Refactoring: Improving the
Design of Existing Code (Addison-Wesley, 1999), documents a rich catalog of refactorings, each
of which identifies a common need for an improvement and the steps for making that
improvement.

Why Refactor To Patterns?
On various projects, I’ve observed what and how my colleagues and I refactor. While we use
many of the refactorings described in Fowler’s book, we also find places where patterns can help
us improve our designs. At such times, we refactor to patterns, being careful not to produce
overly flexible or unnecessarily sophisticated solutions.

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 10 of 199

When I explored the motivation for refactoring to patterns, I found that it was identical to the
motivation for implementing non-patterns-based refactorings: to reduce or remove duplication,
simplify the unsimple and make our code better at communicating its intention.

However, the motivation for refactoring to patterns is not the primary motivation for using
patterns that is documented in the patterns literature. For example, let’s look at the documented
Intent and Applicability of the Decorator pattern and then examine Erich Gamma and Kent
Beck’s motivation for refactoring to Decorator in their excellent, patterns-dense testing
framework, JUnit.

Decorator’s Intent [Design Patterns, page 175]:
Attach additional responsibilities to an object dynamically. Decorators provide a flexible
alternative to subclassing for extending functionality.

Decorator’s Applicability (GoF, page 177):

• To add responsibilities to individual objects dynamically and transparently, that is,
without affecting other objects.

• For responsibilities that can be withdrawn.

• When extension by subclassing is impractical. Sometimes a large number of independent

extensions are possible and could produce an explosion of subclasses to support every
combination, or a class definition may be hidden or otherwise unavailable for
subclassing.

Motivation for Refactoring to Decorator in JUnit
Erich remembered the following reason for refactoring to Decorator:

“Someone added TestSetup support as a subclass of TestSuite, and once we added
RepeatedTestCase and ActiveTestCase, we saw that we could reduce code duplication by
introducing the TestSetup , Decorator.” [private email]

Can you see how the motivation for refactoring to Decorator (reducing code duplication) had very
little connection with Decorator’s Intent or Applicability (a dynamic alternative to subclassing)? I
noticed similar disconnects when I looked at motivations for refactorings to other patterns.
Consider these examples:

Pattern Intent (GoF) Refactoring Motivations

Builder
Separate the construction of a complex object from
its representation so that the same construction
process can create different representations.

Simplify code
Remove duplication
Reduce creation errors

Factory
Method

Define an interface for creating an object, but let the
subclasses decide which class to instantiate. The
Factory method lets a class defer instantiation to
subclasses.

Remove duplication
Communicate intent

Template
Method

Define the skeleton of an algorithm in an operation,
deferring some steps to client subclasses. Template
Method lets subclasses redefine certain steps of an
algorithm without changing the algorithm’s
structure.

Remove duplication

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 11 of 199

Based on these observations, I began to document a catalog of refactorings to patterns to illustrate
when it makes sense to make design improvements with patterns. For this work, it’s essential to
show refactorings from real-world projects in order to accurately describe the kinds of forces that
lead to justifiable transformations to a pattern.

My work on refactoring to patterns is a direct continuation of work that Martin Fowler began in
his excellent catalog of refactorings, in which he included the following refactorings to patterns:

• Form Template Method (345)
• Introduce Null Object (260)
• Replace Constructor with Factory Method (304)
• Replace Type Code with State/Strategy (227)
• Duplicate Observed Data (189)

Fowler also noted the following:

There is a natural relation between patterns and refactorings. Patterns are where
you want to be; refactorings are ways to get there from somewhere else. Fowler,
Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999)

This idea agrees with the observation made by the four authors of the classic book, Design
Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley, 1994):

Our design patterns capture many of the structures that result from refactoring. … Design
patterns thus provide targets for your refactorings.

Evolutionary Design
Today, after having become quite familiar with patterns, the “structures that result from
refactoring,” I know that understanding good reasons to refactor to a pattern are more valuable
than understanding the end result of a pattern or the nuances of implementing that end result.

If you’d like to become a better software designer, studying the evolution of great software
designs will be more valuable than studying the great designs themselves. For it is in the
evolution that the real wisdom lies. The structures that result from the evolution can help you, but
without knowing why they were evolved into a design, you’re more likely to misapply them or
over-engineer with them on your next project.

To date, our software design literature has focused more on teaching great solutions than teaching
evolutions to great solutions. We need to change that. As the great poet Goethe said, “That which
thy fathers have bequeathed to thee, earn it anew if thou wouldst possess it.” The refactoring
literature is helping us reacquire a better understanding of good design solutions by revealing
sensible evolutions to those solutions.

If we want to get the most out of patterns, we must do the same thing: See patterns in the context
of refactorings, not just as reusable elements existing apart from the refactoring literature. This is
perhaps my primary motivation for producing a catalog of refactorings to patterns.

By learning to evolve your designs, you can become a better software designer and reduce the
amount of work you over- or under-engineer. Test-first programming and merciless refactoring

DRAFT of Refactoring To Patterns, Copyright © 2002, Joshua Kerievsky, Industrial Logic, Inc. All Rights Reserved.

Page 12 of 199

are the key practices of evolutionary design. Instill refactoring to patterns in your knowledge of
refactorings and you’ll find yourself even better equipped to evolve great designs.

	Joshua Kerievsky
	Introduction
	
	
	
	Going Too Fast

	Introductory Chapters
	Book History
	Patterns Happy
	Small Steps
	Mechanics Matter
	When I Don’t Refactor To Patterns
	Code Smells
	Chain Constructors
	
	
	
	
	
	
	Chain the constructors together to obtain the least duplicate code

	Motivation
	
	Communication

	Mechanics
	Example
	Chaining To An Init Method

	Replace Multiple Constructors with Creation Methods
	
	
	
	
	
	
	Replace the constructors with intention-revealing
	Creation Methods that return object instances

	Motivation
	
	Communication

	Mechanics
	Example
	Parameterized Creation Methods

	Encapsulate Classes with Creation Methods
	
	
	
	
	
	
	
	Make the class constructors non-public and let clients
	create instances of them using superclass Creation Methods

	Motivation
	Forces
	Mechanics
	Example
	Encapsulating Inner Classes

	Extract Creation Class
	Motivation
	Mechanics
	Example

	Move Object Composition to Creation Method
	
	
	
	
	
	
	Move the object composition responsibility
	to an intention-revealing Creation Method

	Motivation
	Prerequisites
	Mechanics
	Example

	Replace Multiple Instances with Singleton
	
	
	
	
	
	
	Replace the multiple instances with a Singleton

	Replace Singleton with Object Reference
	Motivation

	Replace Singleton with Registry
	Introduce Polymorphic Creation with Factory Method
	
	
	
	
	
	
	Make a single superclass version of the method that
	calls a Factory Method to handle the instantiation

	Motivation
	
	Communication

	Mechanics
	Example
	Example 2: Duplication Across Subclasses

	Replace Conditional Calculations with Strategy
	
	
	
	
	
	
	Delegate the calculation to a Strategy object

	Motivation
	Mechanics
	Example

	Replace Implicit Tree with Composite
	Motivation
	Mechanics
	Example

	Encapsulate Composite with Builder
	Motivation
	Mechanics
	Example
	Extended Example

	Form Superset Interface
	Motivation
	Mechanics
	Example

	Move Embellishment to Decorator
	Motivation
	Mechanics
	Example

	Move Protection to Proxy
	Decorated Collections

	Replace Hard-Coded Notifications with Observer
	Motivation
	Mechanics
	Example

	Move Accumulation to Collecting Parameter
	Motivation
	Mechanics
	Example
	JUnit’s Collecting Parameter

	Replace Conditional Searches with Specification
	Motivation
	Mechanics
	Example

	Replace One/Many Distinctions with Composite
	Motivation
	Mechanics
	Example

	Compose Method
	Motivation
	Mechanics
	Example 1
	Example 2
	Example 3

	Separate Versions with Adapters
	
	
	
	Write Adapters for each version

	Motivation
	Mechanics
	Example
	Adapting with Annonymous Inner Classes
	Adapting Legacy Systems

	Adapt Interface
	Motivation
	Mechanics
	Example

	Replace Enum with Type-Safe Enum
	Motivation
	Mechanics
	Example

	Replace State-Altering Conditionals with State
	Motivation
	Mechanics
	Example
	Inner States

	Replace Invariable Behavior with Template Method
	Extract Composite
	Motivation
	Mechanics
	Example

	Replace Subclasses with Visitor
	Motivation
	Mechanics
	Example 1

	Move Rendering To Visitor
	Replace Multiple Instantiations with Flyweight
	Motivation
	Mechanics
	Example

	Replace Singleton with Constant
	Motivation
	Mechanics
	Example

	References
	Appendix A – Naming Conventions
	Appendix B – Loan Terminology
	Conclusion
	Acknowledgements

