

470

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

Information Systems: The Classic Three-Tier Architecture

An early influential description of a layered architecture for information sys-
tems that included a user interface and persistent storage of data was known as
a three-tier architecture (Figure 30.14), described in the 1970s in [TK78].
The phrase did not achieve popularity until the mid 1990s, in part due to its pro-
motion in [Gartner95] as a solution to problems associated with the widespread
use of two-tier architectures.

The original term is now less common, but its motivation is still relevant. A

classic description of the vertical tiers in a three-tier architecture is:

1. Interface—windows, reports, and so on.

2. Application Logic—tasks and rules that govern the process.

3. Storage—persistent storage mechanism.

Calculate taxes

Interface

Application
Logic

Authorize
payments

Storage
Database

Figure 30.14 Classic view of a three-tier architecture.

The singular quality of a three-tier architecture is the separation of the applica-
tion logic into a distinct logical middle tier of software. The interface tier is rela-
tively free of application processing; windows or web pages forward task
requests to the middle tier. The middle tier communicates with the back-end
storage layer.

There was some misunderstanding that the original description implied or
required a physical deployment on three computers, but the intended descrip-
tion was purely logical; the allocation of the tiers to compute nodes could vary
from one to three. See Figure 30.15.

THE MODEL-VIEW SEPARATION PRINCIPLE

Related Patterns

Figure 30.15 A three-tier logical division deployed in two physical architectures.

The three-tier architecture was contrasted by the Gartner Group with a
two-tier design, in which, for example, application logic is placed within window
definitions, which read and write directly to a database; there is no middle tier
that separates out the application logic. Two-tier client-server architectures
became especially popular with the rise of tools such as Visual Basic and
PowerBuilder.
Two-tier designs have (in some cases) the advantage of initial quick develop-
ment, but can suffer the complaints covered in the Problems section. Neverthe-
less, there are applications that are primarily simple CRUD (create, retrieve,
update, delete) data intensive systems, for which this is a suitable choice.

�� Indirection—layers can add a level indirection to lower-level services.

�� Protected Variation—layers can protect against the impact of varying
implementations.

�� Low Coupling and High Cohesion—layers strongly support these goals.

�� Its application specifically to object-oriented information
systems is described in [Fowler96].

Also Known As Layered Architecture [Shaw96, Gemstone00]

30.3 The Model-View Separation Principle

This principle has been discussed several times; this section summarizes it.

What kind of visibility should other packages have to the Presentation layer?

471

calculate
taxes

Application
Logic

Interface

calculate
taxes

Application
Logic

Interface

classic 3-tier architecture deployed
on 2 nodes: "thicker client"

classic 3-tier architecture
deployed on 3 nodes: "thiner client"

UML notation:
a node. This is
a processing
resource such
as a computer.

30 - DESIGNING THE LOGICAL ARCHITECTURE WITH PATTERNS

How should non-window classes communicate with windows? It is desirable
that there is no direct coupling from other components to window objects
because the windows are related to a particular application, while (ideally) the
non-windowing components may be reused in new applications or attached to a
new interface. The is the Model-View Separation principle.
In this context, model is a synonym for the Domain layer of objects. View is a
synonym for presentation objects, such as windows, applets and reports.
The Model-View Separation principle4 states that model (domain) objects
should not have direct knowledge of view (presentation) objects, at least as view
objects. So, for example, a Register or Sale object should not directly send a mes-
sage to a GUI window object ProcessSaleFrame, asking it to display something,
change color, close, and so forth.
As previously discussed, a legitimate relaxation of this principle is the Observer
pattern, where the domain objects send messages to UI objects viewed only in
terms of an interface such as PropertyListener or AlarmListener.
A further part of this principle is that the domain classes encapsulate the infor-
mation and behavior related to application logic. The window classes are rela-
tively thin; they are responsible for input and output, and catching GUI events,
but do not maintain data or directly provide application functionality.
The motivation for Model-View Separation includes:

�� To support cohesive model definitions that focus on the domain
processes, rather than on user interfaces.

�� To allow separate development of the model and user interface
layers.

�� To minimize the impact of requirements changes in the interface
upon the domain layer.

�� To allow new views to be easily connected to an existing domain
layer, without affecting the domain layer.

�� To allow multiple simultaneous views on the same model
object, such as both a tabular and business chart view of sales
information.

�� To allow execution of the model layer independent of the user
interface layer, such as in a message-processing or batch-mode
system.

�� To allow easy porting of the model layer to another user
interface framework.

472

4. This is a key principle in the pattern Model-View-Controller (MVC). MVC was
originally a small-scale Smalltalk-80 pattern, and related data objects (models), GUI
widgets (views), and mouse and keyboard event handlers (controllers). More recently,
the term "MVC" has been coopted by the distributed design community to also apply
on a large-scale architectural level. The Model is the Domain Layer, the View is the
Presentation Layer, and the Controllers are the workflow objects in the Application
layer.

THE MODEL-VIEW SEPARATION PRINCIPLE

Model-View Separation and "Upward" Communication

How can windows obtain information to display? Usually, it is sufficient for
them to send messages to domain objects, querying for information which they
then display in widgets—a polling or pull-from-above model of display
updates.

Figure 30.16 A Presentation layer UIFacade is occasionally used for
push-from-below designs.

However, a polling model is sometimes insufficient. For example, polling every
second across thousands of objects to discover only one or two changes, which
are then used to refresh a GUI display, is not efficient. In this case it is more effi-
cient for the few changing domain objects to communicate with windows to
cause a display update as the state of domain objects changes. Typical situations
of this case include:
�� Monitoring applications, such as telecommunications network management.
�� Simulation applications which require visualization, such as aerodynamics

modeling.
In these situations, a push-from-below model of display update is required.
Because of the restriction of the Model-View Separation pattern, this leads to
the need for "indirect" communication from lower objects up to windows—push-
ing up notification to update from below.
There are two common solutions:
1. The Observer pattern, via making the GUI object simply appear as an object

that implements an interface such as PropertyListener.
2. A Presentation facade object. That is, adding a facade within the Presenta

tion layer that receives requests from below. This is an example of adding
Indirection to provide Protected Variation if the GUI changes. For example,
see Figure 30.16.

473

Domain

Presentation

Register Sale

ProcessSale
Frame

UIFacade

UIFacades are
occasionally used when
a push-from-below
communication model
is required.

Not a Swing or GUI class.
Just a plain object which
adds a level of indirection to
the GUI objects

	Applying UML and Patterns
	TABLE OF CONTENTS
	FOREWORD
	PREFACE
	PART 1 INTRODUCTION
	Chapter 1 OBJECT-ORIENTED ANALYSIS AND

DESIGN
	Chapter 2 ITERATIVE DEVELOPMENT AND

THE UNIFIED PROCESS
	Chapter 3 CASE STUDY: THE NEXTGEN

POS SYSTEM

	PART 2 INCEPTION
	Chapter 4 INCEPTION
	Chapter 5 UNDERSTANDING

REQUIREMENTS
	Chapter 6 USE-CASE MODEL: WRITING

REQUIREMENTS IN CONTEXT
	Chapter 7
	Chapter 8

	PART 3 ELABORATION ITERATION 1
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20

	PART 4 ELABORATION ITERATION 2
	Chapter 21
	Chapter 22
	Chapter 23

	PART 5 ELABORATION ITERATION 3
	Chapter 24
	Chapter 25
	Chapter 26
	Chapter 27
	Chapter 28
	Chapter 29
	Chapter 30
	Chapter 31
	Chapter 32
	Chapter 33
	Chapter 34

	PART 6 SPECIAL TOPICS
	Chapter 35
	Chapter 36
	Chapter 37
	Chapter 38

	BIBLIOGRAPHY
	GLOSSARY
	INDEX

