Game
i Programming
Gems

Edited by Mark A. DelLoura

CHARLES RIVER MEDIA, INC.

Rockland, Massachusetts

4
=
g
2

¥

n

‘l.‘-';f?‘ﬁ 5.5

o
g

it

Copyright 2000 by CHARLES RIVER MEDIA, INC.

All rights reserved.
g

No part of this publication may be reproduced in any way, stored in a retrieval system of any
type, or transmitred by any means or media, electronic or mechanical, including, but not limited

o, pho[t_mnp)'. rccording. or scanning, without /)J'im' permission in writing from the publisher.

Publisher: Jenifer Niles

Production: Publishers” Design and Production Services, Inc.
Cover Design: The Printed Image

Cover Image: Mark Peasley

Printer: InterCiry Press, Rockland, MA.

CHARLES RIVER MEDIA, INC.
P.O. Box 417

403 VFW Drive

Rockland, Massachuserts 02370
781-871-4184

781-871-4376 (FAX)

chrivmedia@aol.com
This book is printed on acid-free paper.

Game Programming Gems
edited by Mark Deloura
[SBN: 1-58450-049-2
Printed in the United Scates

All brand names and product names mentioned in this book are crademarks or service marks of
their respective companies. Any omission or misuse (of any kind) of service marks or trademarks
should nor be regarded as intent to infringe on the property of others. The publisher recognizes

and respects all marks used by companies, manufacturers, and developers as a means to

distinguish their products.
L

Printed in the United States of America
0001543

CHARLES RIVER MEDIA titles are available for site license ar bulk purchase by institutions,
user groups, corporations, etc. For addicional information, please contact the Special Sales
Department at 781-871-4184.

Requests for replacement of a defective book must be accompanied by the original book, your

mailing address, telephone number, date of purchase and purchase price. Please state the nature
of the problem, and send the informartion ro CHARLES RIVER MEDIA, INC., P.O. Box 417,
403 VFW Drive, Rockland, Massachuserts 02370. CRM's sole obligation to the purchaser is to

replace the book, based on defective materials or fauley workmanship, but not on the operation

or funedonality of the product.

1.0

The Magic of Data-Driven
Design

Steve Rabin

Games are made up of two things: logic and data. This is a powerful distinction. Sep-
arate, they are useless, but together, they make your game come alive. The logic
defines the core rules and algorithms of the game engine, while the data provides the
details of content and behavior. The magic happens when logic and data are decou-
pled from each other and allowed to blossom independently.

Obviously, game data should be loaded from files, not embedded inside the code
base. The genius comes from knowing how far to run with this concept. This article
gives seven ideas that will revolutionize the way you make your games, or art least con-
firm your suspicions.

idea #1: The Basics

Create a system that can parse text files on demand (not just at startup). This is essen-
tial to putting data-driven design to work. Every game needs a clean way to read in
general-purpose data. The game should eventually be read in binary files, but the abil-
ity to read in text files during development is crucial. Text files are dead simple for
editing and making changes. Without altering a single line of code, your whole team,
including testers and game designers, can try out new things and experiment with dif-
ferent variations. Thus, something that is trivial to implement can quickly become an
indispensable tool.

Idea #2: The Bare Minimum

Don’t hard-code constants. Put constants in text files so that they can be easily
changed without recompiling code. For example, basic functionality such as camera
behavior should be exposed completely. If this is done properly, the game designer,
the producer, and the kid down the street will all be able to alter the behavior of the
camera with nothing more than Notepad. Game designers and producers are often at
the mercy of programmers. By exposing algorithm constants, non-programmers can

3

4 Section 1 Programming Techniques

tune and plav with the values to get the exace behavior they desire—without bocher-

ing a single programmer.

Idea #3: Hard-Code Nothing

Assume that anything can change. and probably will. Tt che game calls for a split

screen, don't hard-code it! Write your game to support anv number of viewports, each
with its own camera logic. It isn't even any more work if it’s designed right. Through

the magic of text files, you could define whether the game is single-screen, split-

I R RN |

screen, or quad-screen. The files would also define all the starting camera values, such

as position, direction, field of view, and tilt. The besc part is that your game designers

have direct access to all elements within the text Hles.

Ay

When core design decisions are flexible, the game is allowed to evolve to its full
potential. In fact, the process of abstracting a game to its core helps tremendously in
the design. [nstead of designing to a single purpose, you can design each component
to its general functionality. In effect, designing Hlexibly forces you to recognize what
you should really be building instead of the limited behavior oudlined in the design
document.

For example, if che game calls for only four types of weapons, you could program

a perfectly good system that encompasses all of them. However, it you abstract away

4
b
g
i
£
B
i
gs

the functionality of each weapon, using data to define its behavior, you'll allow for the
possibility of countless weapons that have very distinct personalities. All it takes is a
few changes in a text file in order to experiment with new ideas and game-play
dynamics. This mindser allows the game to evolve and ultimarely become a much

better game.,

Did You Belisve Me When 1 Said “Nething”?

The truth is that games need co be tuned, and great games evolve dramatically trom

i’i!f l)i'lt_{lilﬂ vIision. \{UUI came .\}‘,Uiild be '.LUIL" O d'..'Lli with al\.mgmg I'LllCS, C!‘l.ll’%C!,L‘!'&
- c o C

races, weapons, levels, control schemes, and objects. Wichout this flexibility, change is
costly, and every change involves a programmer—which is simply a waste of
resources. If change is difficult, it promotes far fewer improvements to the origina

design. The game will simply not live up to its tull potential.

idea #4: Script Your Control Flow

R AR o LTI AR o BT

A scripr is simply a way o define behavior outside of the code. Seripes are grear tor
defining sequential steps that need to occur in a game or game events that need o be
triggered. For example, an in-game cut-scene should be scripted. Simple cause-and-
effect logic should also be scripted, such as the completion conditions of a quest or

environment triggers. These are all grear examples of the data-driven philosophy at

worlk.

1.0 The Magic of Data-Driven Design 5

When designing a scripting language, branching instructions require some
thought. There are two ways to branch. The first is to keep variables inside the script-
ing language and compare them using mathematical operators such as equals (=) or
less than (<). The second is to directly call evaluation functions that compare vari-
ables that exist solely inside the code, such as IsLifeBelowPercentage(50). You could
always use a mix of these techniques, but keeping your scripts simple will pay off. A
game designer will have a much easier time dealing with evaluation functions than
declaring variables, updating them, and then comparing them. It also will be easier to
debug.

Unfortunately, scripts require a scripting language. This means that you need to
create an entirely new syntax for defining your behavior. A scripting language also
involves creating a script parser and possibly a compiler to convert the script to a
binary file for faster execution. The other choice is to use an existing language such as
Java, but that requires a large amount of peripheral support as well. In order not to
sink too much time into this, it pays off to design a simple system. Overall, the ten-
dency is to make the scripring language too powerful. The next idea explains some
pitfalls of a complicated scripting language.

ildea #5: When Good Scripts Go Bad

Using scripts to data-drive behavior is a natural consequence of the data-driven
methodology. However, you need to practice good common sense. The key is remem-
bering the core philosophy: Separate logic and data. Complicated logic goes in the
code; data stays outside.

The problem arises when the desire to data-drive the game goes too far. At some
point, you'll be tempted to put complicated logic inside scripts. When a script starts
holding state information and needs to branch, it becomes a [finite state machine.
When the number of states increases, the innocent scriptwriter (some poor game
designer) has the job of programming. If the scripting becomes sufficiently complex,
the job reverts to the programmer who must program in a fictional language that’s
severely limiting. Scripts are supposed to make people’s jobs easier, not more difficul.

Why is it so important to keep complicated logic inside the code? It's simply a
macter of functionality and debugging. Since scripts are not directly in the code, they
need to duplicate many of the concepts that exist in programming languages. The
natural tendency is to expose more and more functionality undil it rivals a real lan-
guage. The more complicared scripts become, the more debugging information is
needed to figure out why the scripts are failing. This additional information results in
more and more effort devoted to monitoring every aspect of the script as it runs.

As you probably guessed, non-trivial logic in scripts can ger very involved.
Months of work can be wasted writing script parsers, compilers, and debuggers. I¢’s as
though programmers didn' realize they had a perfectly good compiler already in fronc

of them.

6 Section 1 Programming Techniques

The Fuzzy Line

There is no doubt that the line between code and scripts is fuzzy. Generally, it’s a bad
idea to pur artificial intelligence (AI) behavior in scripts, whereas it's generally a good
idea to have a scripted trigger system for making the world interactive. The rule
should be: If the logic is too complicated, it belongs in the code. Scripting languages
need to be kept simple, so they don’t consume your game (and all of your program-
ming resources).

However, some games are designed to let players write their own AL Most com-
monly, these games are first-person shooters that allow the creation of bots. When this
is the goal, it’s inevitable thar the scripting language will resemble a real programming
language. An example of this situation is Quake C. Since bot creation was a require-
ment of the design, resources and energy had to be put into making the scripting lan-
guage as useful as C. A scripting language of this magnitude is a huge commitment
and shouldn’t be taken lightly.

Above all, remember that you don't want your game designers or scriptwriters
programming the game. Sometimes programmers are trying to shirk responsibility
when they create scripting languages. Ic’s all too easy to lure game designers into pro-
gramming the game. Ideally, programmers should be boiling down the problem and
exposing the essential controls in order to manipulate the logic. That’s why program-
mers get paid the big bucks!

Idea #6: Avoiding Duplicate Data Syndrome

It's standard programming practice to never duplicate code. If you need the same
behavior (for example, a common function) in two different spots, it needs to exist in
only one place. This idea can be applied to dara by using references to global chunks
of data. Furchermore, by taking a reference to a chunk of data and modifying some of
its values, you end up with a concept very close to inheritance.

[nheritance is a great idea that should be applied to your dara. Imagine that your
game has goblins thar live inside dungeons. In any particular dungeon, your data
defines where each goblin stands, along with its properties. The right way to encapsu-
late this data is to have a global definition of a goblin. Each dungeon’s data simply has
a reference to thar global definition for every instance of a goblin. In order to make
each goblin unique, the reference can be accompanied by a list of properties to over-
ride. This technique allows every goblin to be different while eliminating duplicate
data.

This idea can be taken to multiple levels by allowing each chunk of data to have a
reference. Using this technique, you can have a global definition of a goblin along
with another global definition of a fast goblin that inherits from the basic goblin.
Then inside each dungeon definition, regular goblins or fast goblins can be instanced
trivially. Figure 1.0.1 shows this inheritance concept using referencing and overriding

of values.

1.0 The Magic of Data-Driven Design 7
Goblin Fast Goblin Goblin Instance
Speed = 10 Relerence = Goblin Relerence = Fast Gobln
Lite = 20 Speed = 20 Position = (3. 0, 0)
Attack = 15 Facing = (1, 0, 0)

FIGURE 1.0.1. Data inheritance.

Idea #7: Make the Tool That Makes the Data

With any large game, texc files eventually become unruly and hard to work with. The
real solution is to make a tool chat writes the text files. Call chis tool a game editor, a
level editor, or a script editor, but you'll speed up the game development process by
building the right tools. Having a tool doesn’t change the data-driven methodology; it
merely makes it more robust and efficient. The time you save always makes the extra
tool development time worth it.

Conclusion

It’s easy to buy into the data-driven methodology, but it’s harder to visualize the dra-
matic results. When everything is data driven, amazing possibilities unfold.

An example of this rule is the game Total Annihilation. The designer, Chris Tay-
lor, pushed daca-driven design to the limit. Total Annihilation was an RTS that fea-
tured two distinct races, the Arm and the Core. Although the entire game was
centered on these two factions, they were never hard-coded into the game. Theoreti-
cally, data could have been added to the game to support three races, even after the
game shipped. Although this possibility was never exploited, Total Annihilation took
full advantage of its flexibility. Since all units were completely defined by data, new
units were released on a weekly basis over che games Web site. In fact, many people
created their own units with functionality that shocked even the game’s developers.

The data-driven design helped Total Annihilation maintain a committed follow-
ing in a crowded genre. Since Total Annihiladion, other games, such as The Sims, have
employed the same idea by providing new darta content over their Web sites. Without
developers serious commitment to the data-driven philosophy, this unprecedented
expandability wouldn't be possible.

