
Prepared exclusively for Robert Duvall



Challenges
• Knowing you can roll back to any previous state using the VCS is one

thing, but can you actually do it? Do you know the commands to do it
properly? Learn them now, not when disaster strikes and you’re under
pressure.

• Spend some time thinking about recovering your own laptop environment
in case of a disaster. What would you need to recover? Many of the things
you need are just text files. If they’re not in a VCS (hosted off your laptop),
find a way to add them. Then think about the other stuff: installed
applications, system configuration, and so on. How can you express all
that stuff in text files so it, too, can be saved?

An interesting experiment, once you’ve made some progress, is to find an
old computer you no longer use and see if your new system can be used
to set it up.

• Consciously explore the features of your current VCS and hosting provider
that you’re not using. If your team isn’t using feature branches, experiment
with introducing them. The same with pull/merge requests. Continuous
integration. Build pipelines. Even continuous deployment. Look into the
team communication tools, too: wikis, Kanban boards, and the like.

You don’t have to use any of it. But you do need to know what it does so
you can make that decision.

• Use version control for nonproject things, too.

20 Debugging
It is a painful thing
To look at your own trouble and know
That you yourself and no one else has made it

  ➤ Sophocles, Ajax

The word bug has been used to describe an “object of terror’’ ever since the
fourteenth century. Rear Admiral Dr. Grace Hopper, the inventor of COBOL,
is credited with observing the first computer bug—literally, a moth caught in
a relay in an early computer system. When asked to explain why the machine
wasn’t behaving as intended, a technician reported that there was “a bug in
the system,” and dutifully taped it—wings and all—into the log book.

Chapter 3. The Basic Tools • 88

report erratum  •  discussPrepared exclusively for Robert Duvall

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20


Regrettably, we still have bugs in the system, albeit not the flying kind. But
the fourteenth century meaning—a bogeyman—is perhaps even more appli-
cable now than it was then. Software defects manifest themselves in a variety
of ways, from misunderstood requirements to coding errors. Unfortunately,
modern computer systems are still limited to doing what you tell them to do,
not necessarily what you want them to do.

No one writes perfect software, so it’s a given that debugging will take up a
major portion of your day. Let’s look at some of the issues involved in
debugging and some general strategies for finding elusive bugs.

Psychology of Debugging
Debugging is a sensitive, emotional subject for many developers. Instead of
attacking it as a puzzle to be solved, you may encounter denial, finger pointing,
lame excuses, or just plain apathy.

Embrace the fact that debugging is just problem solving, and attack it as
such.

Having found someone else’s bug, you can spend time and energy laying
blame on the filthy culprit who created it. In some workplaces this is part of
the culture, and may be cathartic. However, in the technical arena, you want
to concentrate on fixing the problem, not the blame.

Fix the Problem, Not the BlameTip 29

It doesn’t really matter whether the bug is your fault or someone else’s. It is
still your problem.

A Debugging Mindset
The easiest person to deceive is one’s self.

  ➤ Edward Bulwer-Lytton, The Disowned

Before you start debugging, it’s important to adopt the right mindset. You
need to turn off many of the defenses you use each day to protect your ego,
tune out any project pressures you may be under, and get yourself comfort-
able. Above all, remember the first rule of debugging:

Don’t PanicTip 30

report erratum  •  discuss

Debugging • 89

Prepared exclusively for Robert Duvall

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20


It’s easy to get into a panic, especially if you are facing a deadline, or have a
nervous boss or client breathing down your neck while you are trying to find
the cause of the bug. But it is very important to step back a pace, and actu-
ally think about what could be causing the symptoms that you believe indicate
a bug.

If your first reaction on witnessing a bug or seeing a bug report is “that’s
impossible,” you are plainly wrong. Don’t waste a single neuron on the train
of thought that begins “but that can’t happen” because quite clearly it can,
and has.

Beware of myopia when debugging. Resist the urge to fix just the symptoms
you see: it is more likely that the actual fault may be several steps removed
from what you are observing, and may involve a number of other related
things. Always try to discover the root cause of a problem, not just this par-
ticular appearance of it.

Where to Start
Before you start to look at the bug, make sure that you are working on code
that built cleanly—without warnings. We routinely set compiler warning levels
as high as possible. It doesn’t make sense to waste time trying to find a
problem that the computer could find for you! We need to concentrate on the
harder problems at hand.

When trying to solve any problem, you need to gather all the relevant data.
Unfortunately, bug reporting isn’t an exact science. It’s easy to be misled by
coincidences, and you can’t afford to waste time debugging coincidences. You
first need to be accurate in your observations.

Accuracy in bug reports is further diminished when they come through a
third party—you may actually need to watch the user who reported the bug
in action to get a sufficient level of detail.

Andy once worked on a large graphics application. Nearing release, the testers
reported that the application crashed every time they painted a stroke with
a particular brush. The programmer responsible argued that there was
nothing wrong with it; he had tried painting with it, and it worked just fine.
This dialog went back and forth for several days, with tempers rapidly rising.

Finally, we got them together in the same room. The tester selected the brush
tool and painted a stroke from the upper right corner to the lower left corner.
The application exploded. “Oh,” said the programmer, in a small voice, who

Chapter 3. The Basic Tools • 90

report erratum  •  discussPrepared exclusively for Robert Duvall

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20


then sheepishly admitted that he had made test strokes only from the lower
left to the upper right, which did not expose the bug.

There are two points to this story:

• You may need to interview the user who reported the bug in order to
gather more data than you were initially given.

• Artificial tests (such as the programmer’s single brush stroke from bottom
to top) don’t exercise enough of an application. You must brutally test
both boundary conditions and realistic end-user usage patterns. You
need to do this systematically (see Ruthless and Continuous Testing, on
page 275).

Debugging Strategies
Once you think you know what is going on, it’s time to find out what the
program thinks is going on.

Reproducing Bugs

No, our bugs aren’t really multiplying (although some of them are probably
old enough to do it legally). We’re talking about a different kind of reproduc-
tion.

The best way to start fixing a bug is to make it reproducible. After all, if you
can’t reproduce it, how will you know if it is ever fixed?

But we want more than a bug that can be reproduced by following some long
series of steps; we want a bug that can be reproduced with a single command.
It’s a lot harder to fix a bug if you have to go through 15 steps to get to the
point where the bug shows up.

So here’s the most important rule of debugging:

Failing Test Before Fixing CodeTip 31

Sometimes by forcing yourself to isolate the circumstances that display the
bug, you’ll even gain an insight on how to fix it. The act of writing the test
informs the solution.

Coder in a Strange Land
All this talk about isolating the bug is fine, when faced with 50,000 lines of
code and a ticking clock, what’s a poor coder to do?

report erratum  •  discuss

Debugging • 91

Prepared exclusively for Robert Duvall

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20


First, look at the problem. Is it a crash? It’s always surprising when we teach
courses that involve programming how many developers see an exception pop
up in red and immediately tab across to the code.

Read the Damn Error MessageTip 32

’nuf said.

Bad Results

What if it’s not a crash? What if it’s just a bad result?

Get in there with a debugger and use your failing test to trigger the problem.

Before anything else, make sure that you’re also seeing the incorrect value
in the debugger. We’ve both wasted hours trying to track down a bug only to
discover that this particular run of the code worked fine.

Sometimes the problem is obvious: interest_rate is 4.5 and should be 0.045. More
often you have to look deeper to find out why the value is wrong in the first
place. Make sure you know how to move up and down the call stack and
examine the local stack environment.

We find it often helps to keep pen and paper nearby so we can jot down notes.
In particular we often come across a clue and chase it down, only to find it
didn’t pan out. If we didn’t jot down where we were when we started the chase,
we could lose a lot of time getting back there.

Sometimes you’re looking at a stack trace that seems to scroll on forever. In
this case, there’s often a quicker way to find the problem than examining
each and every stack frame: use a binary chop. But before we discuss that,
let’s look at two other common bug scenarios.

Sensitivity to Input Values

You’ve been there. Your program works fine with all the test data, and survives
its first week in production with honor. Then it suddenly crashes when fed a
particular dataset.

You can try looking at the place it crashes and work backwards. But some-
times it’s easier to start with the data. Get a copy of the dataset and feed it
through a locally running copy of the app, making sure it still crashes. Then
binary chop the data until you isolate exactly which input values are leading
to the crash.

Chapter 3. The Basic Tools • 92

report erratum  •  discussPrepared exclusively for Robert Duvall

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20


Regressions Across Releases

You’re on a good team, and you release your software into production. At
some point a bug pops up in code that worked OK a week ago. Wouldn’t it be
nice if you could identify the specific change that introduced it? Guess what?
Binary chop time.

The Binary Chop
Every CS undergraduate has been forced to code a binary chop (sometimes
called a binary search). The idea is simple. You’re looking for a particular
value in a sorted array. You could just look at each value in turn, but you’d
end up looking at roughly half the entries on average until you either found
the value you wanted, or you found a value greater than it, which would mean
the value’s not in the array.

But it’s faster to use a divide and conquer approach. Choose a value in the
middle of the array. If it’s the one you’re looking for, stop. Otherwise you can
chop the array in two. If the value you find is greater than the target then
you know it must be in the first half of the array, otherwise it’s in the second
half. Repeat the procedure in the appropriate subarray, and in no time you’ll
have a result. (As we’ll see when we talk about Big-O Notation, on page 204, a
linear search is O(n), and a binary chop is O(logn)).

So, the binary chop is way, way faster on any decent sized problem. Let’s see
how to apply it to debugging.

When you’re facing a massive stacktrace and you’re trying to find out exactly
which function mangled the value in error, you do a chop by choosing a stack
frame somewhere in the middle and seeing if the error is manifest there. If it
is, then you know to focus on the frames before, otherwise the problem is in
the frames after. Chop again. Even if you have 64 frames in the stacktrace,
this approach will give you an answer after at most six attempts.

If you find bugs that appear on certain datasets, you might be able to do the
same thing. Split the dataset into two, and see if the problem occurs if you
feed one or the other through the app. Keep dividing the data until you get a
minimum set of values that exhibit the problem.

If your team has introduced a bug during a set of releases, you can use the
same type of technique. Create a test that causes the current release to fail.
Then choose a half-way release between now and the last known working
version. Run the test again, and decide how to narrow your search. Being
able to do this is just one of the many benefits of having good version control
in your projects. Indeed, many version control systems will take this further

report erratum  •  discuss

Debugging • 93

Prepared exclusively for Robert Duvall

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20


and will automate the process, picking releases for you depending on the
result of the test.

Logging and/or Tracing

Debuggers generally focus on the state of the program now. Sometimes you
need more—you need to watch the state of a program or a data structure over
time. Seeing a stack trace can only tell you how you got here directly. It typi-
cally can’t tell you what you were doing prior to this call chain, especially in
event-based systems.2

Tracing statements are those little diagnostic messages you print to the screen
or to a file that say things such as “got here” and “value of x = 2.” It’s a
primitive technique compared with IDE-style debuggers, but it is peculiarly
effective at diagnosing several classes of errors that debuggers can’t. Tracing
is invaluable in any system where time itself is a factor: concurrent processes,
real-time systems, and event-based applications.

You can use tracing statements to drill down into the code. That is, you can
add tracing statements as you descend the call tree.

Trace messages should be in a regular, consistent format as you may want
to parse them automatically. For instance, if you needed to track down a
resource leak (such as unbalanced file opens/closes), you could trace each
open and each close in a log file. By processing the log file with text processing
tools or shell commands, you can easily identify where the offending open was
occurring.

Rubber Ducking

A very simple but particularly useful technique for finding the cause of a
problem is simply to explain it to someone else. The other person should look
over your shoulder at the screen, and nod his or her head constantly (like a
rubber duck bobbing up and down in a bathtub). They do not need to say a
word; the simple act of explaining, step by step, what the code is supposed
to do often causes the problem to leap off the screen and announce itself.3

It sounds simple, but in explaining the problem to another person you must
explicitly state things that you may take for granted when going through the

2. Although the Elm language does have a time-traveling debugger.
3. Why “rubber ducking’’? While an undergraduate at Imperial College in London, Dave

did a lot of work with a research assistant named Greg Pugh, one of the best developers
Dave has known. For several months Greg carried around a small yellow rubber duck,
which he’d place on his terminal while coding. It was a while before Dave had the
courage to ask….

Chapter 3. The Basic Tools • 94

report erratum  •  discussPrepared exclusively for Robert Duvall

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20


code yourself. By having to verbalize some of these assumptions, you may
suddenly gain new insight into the problem. And if you don’t have a person,
a rubber duck, or teddy bear, or potted plant will do.4

Process of Elimination

In most projects, the code you are debugging may be a mixture of application
code written by you and others on your project team, third-party products
(database, connectivity, web framework, specialized communications or
algorithms, and so on) and the platform environment (operating system,
system libraries, and compilers).

It is possible that a bug exists in the OS, the compiler, or a third-party prod-
uct—but this should not be your first thought. It is much more likely that
the bug exists in the application code under development. It is generally more
profitable to assume that the application code is incorrectly calling into a
library than to assume that the library itself is broken. Even if the problem
does lie with a third party, you’ll still have to eliminate your code before
submitting the bug report.

We worked on a project where a senior engineer was convinced that the select
system call was broken on a Unix system. No amount of persuasion or logic
could change his mind (the fact that every other networking application on
the box worked fine was irrelevant). He spent weeks writing workarounds,
which, for some odd reason, didn’t seem to fix the problem. When finally
forced to sit down and read the documentation on select, he discovered the
problem and corrected it in a matter of minutes. We now use the phrase
“select is broken’’ as a gentle reminder whenever one of us starts blaming the
system for a fault that is likely to be our own.

“select” Isn’t BrokenTip 33

Remember, if you see hoof prints, think horses—not zebras. The OS is prob-
ably not broken. And select is probably just fine.

If you “changed only one thing’’ and the system stopped working, that one
thing was likely to be responsible, directly or indirectly, no matter how far-
fetched it seems. Sometimes the thing that changed is outside of your control:
new versions of the OS, compiler, database, or other third-party software can
wreak havoc with previously correct code. New bugs might show up. Bugs

4. Earlier versions of the book talked about talking to your pot plant. It was a typo.
Honest.

report erratum  •  discuss

Debugging • 95

Prepared exclusively for Robert Duvall

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20


for which you had a workaround get fixed, breaking the workaround. APIs
change, functionality changes; in short, it’s a whole new ball game, and you
must retest the system under these new conditions. So keep a close eye on
the schedule when considering an upgrade; you may want to wait until after
the next release.

The Element of Surprise
When you find yourself surprised by a bug (perhaps even muttering “that’s
impossible” under your breath where we can’t hear you), you must reevaluate
truths you hold dear. In that discount calculation algorithm—the one you
knew was bulletproof and couldn’t possibly be the cause of this bug—did you
test all the boundary conditions? That other piece of code you’ve been using
for years—it couldn’t possibly still have a bug in it. Could it?

Of course it can. The amount of surprise you feel when something goes wrong
is proportional to the amount of trust and faith you have in the code being
run. That’s why, when faced with a “surprising’’ failure, you must accept that
one or more of your assumptions is wrong. Don’t gloss over a routine or piece
of code involved in the bug because you “know” it works. Prove it. Prove it in
this context, with this data, with these boundary conditions.

Don’t Assume It—Prove ItTip 34

When you come across a surprise bug, beyond merely fixing it, you need to
determine why this failure wasn’t caught earlier. Consider whether you need
to amend the unit or other tests so that they would have caught it.

Also, if the bug is the result of bad data that was propagated through a couple
of levels before causing the explosion, see if better parameter checking in
those routines would have isolated it earlier (see the discussions on crashing
early and assertions on page 113 and on page 115, respectively).

While you’re at it, are there any other places in the code that may be suscep-
tible to this same bug? Now is the time to find and fix them. Make sure that
whatever happened, you’ll know if it happens again.

If it took a long time to fix this bug, ask yourself why. Is there anything you
can do to make fixing this bug easier the next time around? Perhaps you
could build in better testing hooks, or write a log file analyzer.

Chapter 3. The Basic Tools • 96

report erratum  •  discussPrepared exclusively for Robert Duvall

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20


Finally, if the bug is the result of someone’s wrong assumption, discuss the
problem with the whole team: if one person misunderstands, then it’s possible
many people do.

Do all this, and hopefully you won’t be surprised next time.

Debugging Checklist
• Is the problem being reported a direct result of the underlying bug, or

merely a symptom?

• Is the bug really in the framework you’re using? Is it in the OS? Or is it
in your code?

• If you explained this problem in detail to a coworker, what would you
say?

• If the suspect code passes its unit tests, are the tests complete enough?
What happens if you run the tests with this data?

• Do the conditions that caused this bug exist anywhere else in the system?
Are there other bugs still in the larval stage, just waiting to hatch?

Related Sections Include
• Topic 24, Dead Programs Tell No Lies, on page 112

Challenges
• Debugging is challenge enough.

21 Text Manipulation
Pragmatic Programmers manipulate text the same way woodworkers shape
wood. In previous sections we discussed some specific tools—shells, editors,
debuggers—that we use. These are similar to a woodworker’s chisels, saws,
and planes—tools specialized to do one or two jobs well. However, every now
and then we need to perform some transformation not readily handled by the
basic tool set. We need a general-purpose text manipulation tool.

Text manipulation languages are to programming what routers5 are to wood-
working. They are noisy, messy, and somewhat brute force. Make mistakes

5. Here router means the tool that spins cutting blades very, very fast, not a device for
interconnecting networks.

report erratum  •  discuss

Text Manipulation • 97

Prepared exclusively for Robert Duvall

http://pragprog.com/titles/tpp20/errata/add
http://forums.pragprog.com/forums/tpp20

	Cover
	Table of Contents
	Foreword
	Preface to the Second Edition
	How the Book Is Organized
	What’s in a Name?
	Source Code and Other Resources
	Send Us Feedback
	Second Edition Acknowledgments

	From the Preface to the First Edition
	Who Should Read This Book?
	What Makes a Pragmatic Programmer?
	Individual Pragmatists, Large Teams
	It’s a Continuous Process

	1. A Pragmatic Philosophy
	Topic 1. It's Your Life
	Topic 2. The Cat Ate My Source Code
	Topic 3. Software Entropy
	Topic 4. Stone Soup and Boiled Frogs
	Topic 5. Good-Enough Software
	Topic 6. Your Knowledge Portfolio
	Topic 7. Communicate!

	2. A Pragmatic Approach
	Topic 8. The Essence of Good Design
	Topic 9. DRY—The Evils of Duplication
	Topic 10. Orthogonality
	Topic 11. Reversibility
	Topic 12. Tracer Bullets
	Topic 13. Prototypes and Post-it Notes
	Topic 14. Domain Languages
	Topic 15. Estimating

	3. The Basic Tools
	Topic 16. The Power of Plain Text
	Topic 17. Shell Games
	Topic 18. Power Editing
	Topic 19. Version Control
	Topic 20. Debugging
	Topic 21. Text Manipulation
	Topic 22. Engineering Daybooks

	4. Pragmatic Paranoia
	Topic 23. Design by Contract
	Topic 24. Dead Programs Tell No Lies
	Topic 25. Assertive Programming
	Topic 26. How to Balance Resources
	Topic 27. Don't Outrun Your Headlights

	5. Bend, or Break
	Topic 28. Decoupling
	Topic 29. Juggling the Real World
	Topic 30. Transforming Programming
	Topic 31. Inheritance Tax
	Topic 32. Configuration

	6. Concurrency
	Topic 33. Breaking Temporal Coupling
	Topic 34. Shared State Is Incorrect State
	Topic 35. Actors and Processes
	Topic 36. Blackboards

	7. While You Are Coding
	Topic 37. Listen to Your Lizard Brain
	Topic 38. Programming by Coincidence
	Topic 39. Algorithm Speed
	Topic 40. Refactoring
	Topic 41. Test to Code
	Topic 42. Property-Based Testing
	Topic 43. Stay Safe Out There
	Topic 44. Naming Things

	8. Before the Project
	Topic 45. The Requirements Pit
	Topic 46. Solving Impossible Puzzles
	Topic 47. Working Together
	Topic 48. The Essence of Agility

	9. Pragmatic Projects
	Topic 49. Pragmatic Teams
	Topic 50. Coconuts Don't Cut It
	Topic 51. Pragmatic Starter Kit
	Topic 52. Delight Your Users
	Topic 53. Pride and Prejudice

	10. Postface
	A1. Bibliography
	A2. Possible Answers to the Exercises
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –


