


Chapter 10

Postface
 

In the twenty years leading up to the first edition, we were part
of the evolution of the computer from a peripheral curiosity to a
modern imperative for businesses. In the twenty years since
then, software has grown beyond mere business machines and
has truly taken over the world. But what does that really mean
for us?

In The Mythical Man-Month: Essays on Software
Engineering [Bro96], Fred Brooks said “The programmer, like
the poet, works only slightly removed from pure thought-stuff.
He builds his castles in the air, from air, creating by exertion of
the imagination.” We start with a blank page, and we can create
pretty much anything we can imagine. And the things we create
can change the world.

From Twitter helping people plan revolutions, to the processor
in your car working to stop you skidding, to the smartphone
which means we no longer have to remember pesky daily
details, our programs are everywhere. Our imagination is
everywhere.

We developers are incredibly privileged. We are truly building
the future. It’s an extraordinary amount of power. And with that



power comes an extraordinary responsibility.

How often do we stop to think about that? How often do we
discuss, both among ourselves and with a more general
audience, what this means?

Embedded devices use an order of magnitude more computers
than those used in laptops, desktops, and data centers. These
embedded computers often control life-critical systems, from
power plants to cars to medical equipment. Even a simple
central heating control system or home appliance can kill
someone if it is poorly designed or implemented. When you
develop for these devices, you take on a staggering
responsibility.

Many nonembedded systems can also do both great good and
great harm. Social media can promote peaceful revolution or
foment ugly hate. Big data can make shopping easier, and it can
destroy any vestige of privacy you might think you have.
Banking systems make loan decisions that change people’s lives.
And just about any system can be used to snoop on its users.

We’ve seen hints of the possibilities of a utopian future, and
examples of unintended consequences leading to nightmare
dystopias. The difference between the two outcomes might be
more subtle than you think. And it’s all in your hands.



The Moral Compass
The price of this unexpected power is vigilance. Our actions
directly affect people. No longer the hobby program on the 8-bit
CPU in the garage, the isolated batch business process on the
mainframe in the data center, or even just the desktop PC; our
software weaves the very fabric of daily modern life.

We have a duty to ask ourselves two questions about every piece
of code we deliver:

1. Have I protected the user?
2. Would I use this myself?

First, you should ask “Have I done my best to protect the users
of this code from harm?” Have I made provisions to apply
ongoing security patches to that simple baby monitor? Have I
ensured that however the automatic central heating thermostat
fails the customer will still have manual control? Am I storing
only the data I need, and encrypting anything personal?

No one is perfect; everyone misses things now and then. But if
you can’t truthfully say that you tried to list all the
consequences, and made sure to protect the users from them,
then you bear some responsibility when things go bad.

Tip 98 First, Do No Harm

Second, there’s a judgment related to the Golden Rule: would I
be happy to be a user of this software? Do I want my details



shared? Do I want my movements to be given to retail outlets?
Would I be happy to be driven by this autonomous vehicle? Am
I comfortable doing this?

Some inventive ideas begin to skirt the bounds of ethical
behavior, and if you’re involved in that project, you are just as
responsible as the sponsors. No matter how many degrees of
separation you might rationalize, one rule remains true:

Tip 99 Don’t Enable Scumbags



Imagine the Future you Want
It’s up to you. It’s your imagination, your hopes, your concerns
that provide the pure thought-stuff that builds the next twenty
years and beyond.

You are building the future, for yourselves and for your
descendants. Your duty is to make it a future that we’d all want
to inhabit. Recognize when you’re doing something against this
ideal, and have the courage to say “no!” Envision the future we
could have, and have the courage to create it. Build castles in
the air every day.

We all have an amazing life.

Tip 100

It’s Your Life. 
Share it. Celebrate it. Build it.
 AND HAVE FUN!

Copyright © 2020 Pearson Education, Inc.


	&#160;Foreword
	&#160;Preface to the Second Edition
	How the Book Is Organized
	What’s in a Name?
	Source Code and Other Resources
	Send Us Feedback
	Second Edition Acknowledgments

	&#160;From the Preface to the First Edition
	Who Should Read This Book?
	What Makes a Pragmatic Programmer?
	Individual Pragmatists, Large Teams
	It’s a Continuous Process

	1. A Pragmatic Philosophy
	Topic 1. It&#8217;s Your LifeIt’s Your Life
	Topic 2. The Cat Ate My Source Code
	Topic 3. Software Entropy
	Topic 4. Stone Soup and Boiled Frogs
	Topic 5. Good-Enough Software
	Topic 6. Your Knowledge Portfolio
	Topic 7. Communicate!

	2. A Pragmatic Approach
	Topic 8. The Essence of Good Design
	Topic 9. DRY&#8212;The Evils of DuplicationDRY—The Evils of Duplication
	Topic 10. Orthogonality
	Topic 11. Reversibility
	Topic 12. Tracer Bullets
	Topic 13. Prototypes and Post-it Notes
	Topic 14. Domain Languages
	Topic 15. Estimating

	3. The Basic Tools
	Topic 16. The Power of Plain Text
	Topic 17. Shell Games
	Topic 18. Power Editing
	Topic 19. Version Control
	Topic 20. Debugging
	Topic 21. Text Manipulation
	Topic 22. Engineering Daybooks

	4. Pragmatic Paranoia
	Topic 23. Design by Contract
	Topic 24. Dead Programs Tell No Lies
	Topic 25. Assertive Programming
	Topic 26. How to Balance Resources
	Topic 27. Don&#8217;t Outrun Your HeadlightsDon’t Outrun Your Headlights

	5. Bend, or Break
	Topic 28. Decoupling
	Topic 29. Juggling the Real World
	Topic 30. Transforming Programming
	Topic 31. Inheritance Tax
	Topic 32. Configuration

	6. Concurrency
	Topic 33. Breaking Temporal Coupling
	Topic 34. Shared State Is Incorrect State
	Topic 35. Actors and Processes
	Topic 36. Blackboards

	7. While You Are Coding
	Topic 37. Listen to Your Lizard Brain
	Topic 38. Programming by Coincidence
	Topic 39. Algorithm Speed
	Topic 40. Refactoring
	Topic 41. Test to Code
	Topic 42. Property-Based Testing
	Topic 43. Stay Safe Out There
	Topic 44. Naming Things

	8. Before the Project
	Topic 45. The Requirements Pit
	Topic 46. Solving Impossible Puzzles
	Topic 47. Working Together
	Topic 48. The Essence of Agility

	9. Pragmatic Projects
	Topic 49. Pragmatic Teams
	Topic 50. Coconuts Don&#8217;t Cut ItCoconuts Don’t Cut It
	Topic 51. Pragmatic Starter Kit
	Topic 52. Delight Your Users
	Topic 53. Pride and Prejudice

	10. Postface
	A1. Bibliography
	A2. Possible Answers to the Exercises

