


Chapter 10

Postface
 

In the twenty years leading up to the first edition, we were part
of the evolution of the computer from a peripheral curiosity to a
modern imperative for businesses. In the twenty years since
then, software has grown beyond mere business machines and
has truly taken over the world. But what does that really mean
for us?

In The Mythical Man-Month: Essays on Software
Engineering [Bro96], Fred Brooks said “The programmer, like
the poet, works only slightly removed from pure thought-stuff.
He builds his castles in the air, from air, creating by exertion of
the imagination.” We start with a blank page, and we can create
pretty much anything we can imagine. And the things we create
can change the world.

From Twitter helping people plan revolutions, to the processor
in your car working to stop you skidding, to the smartphone
which means we no longer have to remember pesky daily
details, our programs are everywhere. Our imagination is
everywhere.

We developers are incredibly privileged. We are truly building
the future. It’s an extraordinary amount of power. And with that



power comes an extraordinary responsibility.

How often do we stop to think about that? How often do we
discuss, both among ourselves and with a more general
audience, what this means?

Embedded devices use an order of magnitude more computers
than those used in laptops, desktops, and data centers. These
embedded computers often control life-critical systems, from
power plants to cars to medical equipment. Even a simple
central heating control system or home appliance can kill
someone if it is poorly designed or implemented. When you
develop for these devices, you take on a staggering
responsibility.

Many nonembedded systems can also do both great good and
great harm. Social media can promote peaceful revolution or
foment ugly hate. Big data can make shopping easier, and it can
destroy any vestige of privacy you might think you have.
Banking systems make loan decisions that change people’s lives.
And just about any system can be used to snoop on its users.

We’ve seen hints of the possibilities of a utopian future, and
examples of unintended consequences leading to nightmare
dystopias. The difference between the two outcomes might be
more subtle than you think. And it’s all in your hands.



The Moral Compass
The price of this unexpected power is vigilance. Our actions
directly affect people. No longer the hobby program on the 8-bit
CPU in the garage, the isolated batch business process on the
mainframe in the data center, or even just the desktop PC; our
software weaves the very fabric of daily modern life.

We have a duty to ask ourselves two questions about every piece
of code we deliver:

1. Have I protected the user?
2. Would I use this myself?

First, you should ask “Have I done my best to protect the users
of this code from harm?” Have I made provisions to apply
ongoing security patches to that simple baby monitor? Have I
ensured that however the automatic central heating thermostat
fails the customer will still have manual control? Am I storing
only the data I need, and encrypting anything personal?

No one is perfect; everyone misses things now and then. But if
you can’t truthfully say that you tried to list all the
consequences, and made sure to protect the users from them,
then you bear some responsibility when things go bad.

Tip 98 First, Do No Harm

Second, there’s a judgment related to the Golden Rule: would I
be happy to be a user of this software? Do I want my details



shared? Do I want my movements to be given to retail outlets?
Would I be happy to be driven by this autonomous vehicle? Am
I comfortable doing this?

Some inventive ideas begin to skirt the bounds of ethical
behavior, and if you’re involved in that project, you are just as
responsible as the sponsors. No matter how many degrees of
separation you might rationalize, one rule remains true:

Tip 99 Don’t Enable Scumbags



Imagine the Future you Want
It’s up to you. It’s your imagination, your hopes, your concerns
that provide the pure thought-stuff that builds the next twenty
years and beyond.

You are building the future, for yourselves and for your
descendants. Your duty is to make it a future that we’d all want
to inhabit. Recognize when you’re doing something against this
ideal, and have the courage to say “no!” Envision the future we
could have, and have the courage to create it. Build castles in
the air every day.

We all have an amazing life.

Tip 100

It’s Your Life. 
Share it. Celebrate it. Build it.
 AND HAVE FUN!
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