

TABLE OF CONTENTS

Introducing Object-Oriented Frameworks

Understanding Frameworks
Understanding Framework Development
Describing Frameworks

Maximising Framework Benefits
Managing Dependencies
Delivering Your Framework As A Product

Developing Frameworks
Designing the Framework
Designing Client Framework Interactions
Refining the Framework

Summarizing the Framework Development Process

Recommended Reading

INTRODUCING OBJECT-ORIENTED FRAMEWORKS

Through its use of frameworks, Taligent, Inc. is realizing the full
promise of object technology. A framework defines the behavior of a
collection of objects, providing an innovative way to reuse both software
designs and code.

A framework is a set of prefabricated software building
blocks that programmers can use, extend, or customize for
specific computing solutions. Taligent has designed
frameworks for system software functions, such as
networking, multimedia and database access. With
frameworks, software developers don’t have to start from
scratch each time they write an application. Frameworks are
built from a collection of objects, so both the design and code
of a framework may be reused.

- Taligent Glossary

Presenting a process for developing frameworks, this paper highlights
four important guidelines:

Derive frameworks from existing problems and solutions
Develop small, focused frameworks
Build frameworks using an iterative process driven by client
participation and prototyping
Treat frameworks as products by providing documentation and
support, and by planning for distribution and maintenance

The information is organized into three sections. "Understanding
Frameworks" describes different types of frameworks and how they are
used. "Maximizing Framework Benefits" addresses organizational
concerns that impact framework development. "Developing
Frameworks" outlines a process for identifying and designing
frameworks. Each section also includes examples of how frameworks are
currently being developed and deployed. At the end of this paper, you’ll
find a brief summary, some tips for starting to build your own
frameworks, and a reading list.

While the process and techniques discussed here are ideal for developing
in the Taligent® Application Environment, you’ll find that they can also
be applied to other object-oriented programming projects.

Building Object-Oriented Frameworks is intended primarily for software
developers and designers in commercial, corporate, and higher education
software development organizations. However, hardware designers,
strategic technology planners, and technical managers might also find it
useful. Two earlier Taligent white papers, The Intelligent Use of Objects
and Leveraging Object-Oriented Frameworks, provide an introduction
to object-oriented design and frameworks for those who are new to the
technology.

UNDERSTANDING FRAMEWORKS

A framework captures the programming expertise necessary to solve a
particular class of problems. Programmers purchase or reuse frameworks
to obtain such problem-solving expertise without having to develop it
independently.

A framework helps developers provide solutions for problem
domains and better maintain those solutions. It provides a
well-designed and thought out infrastructure so that when
new pieces are created, they can be substituted with minimal

impact on the other pieces in the framework.

- Nelson, IEEE Computer, 1994

Understanding Framework Development

Developing a framework differs from developing a standalone
application. A successful framework solves problems that, on the
surface, are quite different from the problem that justified its creation.

The problem-solving expertise must be captured so that it is independent
of both the original problem and the future solutions in which it is used;
however, each program that uses the framework should appear to be the
one for which it was designed.

You have to clearly identify the class of problem a framework addresses.
For your clients to adapt the framework to new problems, they must
understand the solution the framework provides and how to incorporate
it into their programs. Because others have to understand how to use
your frameworks, it is critical that you follow good software design
practices.

Describing Frameworks

While clear differences exist between class libraries and frameworks,
some libraries exhibit framework-like behavior, and some frameworks
can be used like class libraries. You can view this as a continuum, with
traditional class libraries at one end and sophisticated frameworks at the
other:

Frameworks can be characterized by the problem domains that they
address, as well as by their internal structure.

Framework Domains

The problem domain that a framework addresses can encompass
application functions, domain functions, or support functions:

Application frameworks encapsulate expertise applicable to a wide
variety of programs. These frameworks encompass a horizontal slice of
functionality that can be applied across client domains. Current
commercial graphical user interface (GUI) application frameworks,
which support the standard functionality required by all GUI
applications, are one type of application framework. (The Apple
MacApp system and Borland’s OWL system are two such frameworks.)

Domain frameworks encapsulate expertise in a particular problem
domain. These frameworks encompass a vertical slice of functionality
for a particular client domain. Examples of domain frameworks include:
a control systems framework for developing control applications for
manu-facturing, securities trading framework, multimedia framework, or
data access framework.

Support frameworks provide system-level services, such as file access,
distributed computing support, or device drivers. Application developers
typically use support frameworks directly or use modifications produced
by systems providers. However, even support frameworks can be
customized--for example when developing a new file system or device
driver.

The Taligent Application Environment frameworks extend across all
three categories. These frameworks reduce the amount of code
developers have to write and maintain.

Similarly, you can create frameworks that capture your own
problem-domain expertise. Whether you are developing custom
applications in a corporate setting or developing a suite of commercial
applications as an independent software vendor, building and using
frameworks can increase productivity. The frameworks you build will
usually be domain or application frameworks.

Framework Structures

Identifying the high-level structure of a framework can make it easier to
describe the behavior of the framework and provides a starting point for
designing framework interactions.

For example, some frameworks can be described as manager-driven--a
single controlling function triggers most of the framework actions. You
call the controlling function to start the framework and the framework
creates the necessary objects and calls the appropriate functions to
perform a specific task.

An application framework, for example, generally uses a manager object
to take input events from the user and distribute them to the other objects
in the framework.

Another categorization is based on how a framework is used--whether
you derive new classes or instantiate and combine existing classes. This
distinction is sometimes referred to as architecture-driven versus
data-driven, or inheritance-focused versus composition-focused.

Architecture-driven frameworks rely on inheritance for customization.
Clients customize the behavior of the framework by deriving new classes
from the framework and overriding member functions.

Data-driven frameworks rely primarily on object composition for
customization. Clients customize the behavior of the framework by using
different combinations of objects. The objects that clients pass into the
framework affect what the framework does, but the framework defines
how the objects can be combined.

Frameworks that are heavily architecture-driven can be difficult to use
because they require clients to write a substantial amount of code to
produce interesting behavior. Purely data-driven frameworks are
generally easy to use, but they can be limiting.

One approach for building frameworks that are both easy to use and
extensible is to provide an architecture-driven base with a data-driven
layer. Most frameworks provide ways for clients to both use the built-in
functionality and modify or extend that functionality.

Typically, clients use a framework’s built-in functionality by
instantiating classes and calling their member functions. Clients extend
and modify a framework’s functionality by deriving new classes and
overriding member functions.

Take a simple framework that supports, among other things, drawing
shapes. Clients might use it to draw a check box or extend it to draw
other types of boxes. (See "Using and Extending a Framework" below.)

Using and Extending a
Framework
Using the Framework
* Set box color
* Give box contents
* Draw box and contents

Drawing a default check box

TBox box;
box.SetColor(TRGBColor(0,1,0);

Extending the Framework
* Derive from contents class
and override DrawContents

Extending the framework to draw
an X instead of the default check
class TXMarkContent :
public TboxContent{
public:
virtual void
DrawContents(TGrafPort&port)
};

TCheckContents check;
box.SetContents(check);
box.Draw();

}
void
TxMarkContent::DrawContents
(TGrafPort&port
{
TLine line1(TGPoint(0,0),
TGPoint(10,10)
TLine line2(TGPoint(10,0),
TGPoint(0,10)
line1.Draw(port);
line2.Draw(port);

MAXIMIZING FRAMEWORK BENEFITS

The key to maximizing the benefits of writing frameworks is to get as
many developers as possible using them. Frameworks are a long-term
investment; the benefits gained from developing frameworks are not
necessarily immediate:

Framework designers need more time to create a framework than a
procedural library.
Clients need more time to learn a framework than a procedural
library.

For framework development to be successful, it must be supported by
your team’s processes and organization.

The most profoundly elegant framework will never be reused
unless the cost of understanding it and then using its
abstractions is lower than the programmer’s perceived cost of
writing them from scratch.

-Booch, Dr. Dobb’s Journal, 1994

Combining Efforts

Under contract from SEMATECH, the U.S. chip manufacturing
consortium, Texas Instruments Corporation (TI) developed a
Computer-Integrated Manufacturing (CIM) framework based on their
CIM domain object model. The goal was to develop and implement an
industry standard software framework for CIM that could be leveraged to
increase U.S. competitiveness in semiconductor manufacturing.

This project was driven by the need to reduce cycle time and cost, and
increase flexibility in the production process. The long term goal is a
uniform production operation. Providing a framework that supports the
core business model for a fab will allow suppliers to provide custom plug
and play applications that extend the model.

After developing and deploying a prototype system in a limited
production mini-fab, the framework and applications were scaled up for
full production. In July ‘93, TI announced the commercial version, called
WORKS.

Sharing the cost and benefits of developing frameworks across
companies is becoming popular. As seen with the work sponsored by the
SEMATECH consortium, it can also be very successful. Cooperation
between organizations through trade groups, informal consortia, and
standards groups helps leverage existing experience.

In some cases, even competitors are pooling their resources. For
example, the Petrochemical Open Systems Consortium (POSC) was
formed by oil and gas companies who realized that their competitive
strengths lay in core business areas, not computing technology. As a
result, they are cooperatively developing a framework that will allow
third party vendors to build custom applications to a standard business
model.

Similarly, three Canadian natural gas utilities are working together to
build a next generation customer information system. The utilities see
savings in four areas: replacement of their legacy system, development
cost reduction, reduced maintenance, and cost recovery from the resale
of their applications and business framework.

EDGE: Work-Group Computing Report, no. 1003

Managing Dependencies

Projects can often be factored into a number of separate frameworks and

assigned to small teams. If it takes more than three or four programmers
to produce a framework, it can probably be split into a set of smaller
frameworks. Teams of two to four are usually more effective than teams
of one, unless the single programmer is both an experienced framework
developer and a domain expert.

Working with several small teams introduces additional challenges:

Programmers are focused on one aspect of a large project and
might not understand all of the interrelationships and client
implications.
Architectural consistency must be maintained across teams.
Dependencies between frameworks can create bottlenecks.

To alleviate these problems, you can:

Appoint a project architect who maintains the "big picture" and
ensures that the frameworks ultimately work together
Follow standard design and coding guidelines
Decouple the frameworks by isolating the dependencies in
intermediary classes

Often when one framework requires the services of another framework,
the connection can be implemented through an interface or server object.
Then, only one object is dependent on the other framework. Until the
other framework can support the necessary operations, the intermediary
class provides stub code that allows the rest of the framework to be
tested. Loosely-coupled frameworks are generally more flexible from the
client’s perspective as well.

This same approach can be used to isolate platform-dependent code, or
code that accesses a particular applications framework. To use different
platforms or application frameworks, only one piece of the framework
needs to be changed. Intermediaries can also be used to access legacy
data or nonframework services.

Designing Successful Frameworks

To be successful, you should design your frameworks to be:

Complete - frameworks support features needed by clients and
provide default implementations and built-in functionality where
possible. Provide concrete derivations for the abstract classes in
your frameworks and default member function implementations to
make it easier for your clients to understand the framework and
allow them to focus on the areas that they need to customize.

Flexible - abstractions can be used in different contexts.
Extensible - clients can easily add and modify functionality.
Provide hooks so your clients can customize the behavior of the
framework by deriving new classes.
Understandable - client interactions with the frameworks are clear,
and the frameworks are well-documented. Follow standard design
and coding guidelines and provide sample applications that
demonstrate the use of each framework. If the developers who
build frameworks and those who use them follow the same
guidelines, it facilitates reuse in both directions.

The most important consideration when you’re designing frameworks is
ease of use for the client programmer. From the client’s perspective, an
easy-to-use framework performs useful functions with no effort. The
framework works with little or no client code, even if the default
implementations are simply placeholders, and it supports small,
incremental steps to get from the default behavior to sophisticated
solutions. However, it’s harder for clients to work around bad
abstractions than invent their own. If you don’t know how to solve a
problem in a reusable way inside your framework, leave it out.

A framework doesn’t necessarily have to meet all of these requirements
to be successful, but if it does, it will be easier to convince other
programmers to use the framework.

When you design a framework, you should also look for ways to
minimize the potential for client errors and enhance portability:

Simplify clients’ interactions with the framework to help prevent
client errors. Make it as clear as possible in both your interfaces
and documentation what’s required of your clients.
Isolate platform-dependent code to make it easier to port your
framework. Designing for portability reduces the impact porting
has on your clients.

Delivering Your Framework as a Product

Even if your framework will only be used internally, you must treat it
like a product. Documenting your framework is an important step in the
development cycle, but you must also plan how the finished product will
be distributed and supported.

Distributing and Promoting Frameworks

To use your frameworks, other developers need to know that they exist
and know how to access them. Unless a process is established for

providing and distributing frameworks, it is difficult to get developers to
use them. Reuse doesn’t just happen, your organization has to actively
support and encourage it. One way to do this is to adjust the reward
structures - reward programmers for writing and distributing frameworks
that others can use. Even more important, reward the programmers who
use them.

Ideally, all frameworks are kept in a central repository and a repository
manager is responsible for notifying clients about new frameworks and
updates to old ones. With a large enough repository, selecting the
appropriate frameworks becomes an integral part of developing new
program solutions.

Supporting Frameworks

To realize the benefits frameworks can provide, your organization has to
commit resources to support them. You must be able to assist your
clients and respond to their problems and requests.

Over the lifetime of a framework, the cost of supporting it actually
becomes a benefit--the support cost of one framework with three
dependent applications will be less than the cost of supporting three
independent applications with duplicate code. The more applications that
use a framework, the bigger the savings. Long term, using frameworks
can reduce support and maintenance costs.

Early in its life, a framework will probably require routine maintenance
to fix bugs and respond to client requests. Over time, even the best
framework will probably need to be updated to support changing
requirements.

Taligent Standards

Early on, Taligent realized the need for common coding
standards throughout the company. The chief architect began
compiling a list of do’s and don’ts that were required reading
for all new engineers. This compilation has evolved into
Taligent‘s Guide to Designing Programs: Well-Mannered
Object-Oriented Design in C++, published by
Addison-Wesley. This book, which contains the guidelines
followed by the Taligent engineers in the development of the
Taligent Application Environment, provides an excellent
basis for your own coding standards.

DEVELOPING FRAMEWORKS

The first step in developing a framework is to analyze your problem
domain and identify the frameworks you need. For each framework, you:

Identify the primary abstractions
Design how clients interact with the framework
Implement, test, and refine the design

To illustrate these steps, this section describes a small program and one
of the frameworks that could be used to build it. The program is a
data-visualization tool called StockBrowser that allows users to browse
stock histories and display the information graphically. This program,
allows users to select different stocks and view the price trading volume
graphically. The stock information can be displayed as daily, weekly, or
monthly values, showing users information such as how a stock’s price
ranged on a particular day or what month had the heaviest volume of
trading:

Analyzing the Problem Domain

Once you’ve identified the problem domain, break the problem down
into a collection of frameworks that can be used to build a solution.

If the problem maps to a process, describe the process from the user’s
perspective. For each framework, identify the process it models. Once
you’ve outlined the process, you should be able to identify the necessary
abstractions.

Identifying Frameworks

Frameworks can be thought of as abstractions of possible solutions to
problems. You can often identify opportunities for new frameworks by
analyzing existing solutions.

To determine what frameworks you need, think in terms of families of

applications rather than individual programs:

Look for software solutions that you build repeatedly, particularly
in key business areas
Identify what the solutions have in common and what is unique to
each program

The common pieces--the parts that are constant across
programs--become the foundation for your frameworks. Factor these
pieces into small, focused frameworks.

Where there’s a suite of applications that solve similar
problems, there’s an opportunity for developing a
framework. Look for potential frameworks in:

Real-world models
Processes performed by end users
Source code for current software solutions

One of the frameworks that could be used to build this program is a 2-D
graphing framework. The graphing framework would provide support
for drawing and labeling the axes and for plotting the data.

Such a framework could be used in a wide variety of data-visualization
applications--from executive information systems to scientific
visualization programs. For example, you might need to build another
program that charts sales volume information:

Identifying Abstractions

Identify the abstractions your clients need to describe their problems and

then provide the logic for producing a valid solution with those
abstractions.

The easiest way to identify the abstractions is with a bottom-up
approach--start by examining existing solutions. Analyze the data
structures and algorithms and then organize the abstractions. Always
identify the objects before you map out the class hierarchy and
dependencies.

If you are familiar with the problem domain, you can draw from your
past experience and former designs to identify abstractions and begin
designing your framework.

If you’re not an expert in the problem domain, or haven’t developed any
applications for it, examine applications written by others and consider
writing an application in the domain. Then factor out the common pieces
and identify the abstractions.

For the graphing framework, there are two primary abstractions: the
graph itself and drawers for the graph. Separating the drawing
information from the graph is what makes it possible to extend this
simple framework. New graph elements can be added by providing new
types of drawers.

Graphing Framework Abstractions

 GRAPH DRAWERS

-Standard Graph - Axis Drawer
 - Mark Drawer
 - Label Drawer
 - Bar Drawer

Embodies the graph Embodies individual
as a whole; graph elements;
provides the point controls drawing
of control. and characteristics
 of each element.

Design Patterns

Design patterns identify, name, and abstract common themes in
object-oriented design. They capture the intent behind a design by
identifying objects, how objects interact, and how responsibilities are
distributed among them. They constitute a base of experience for

building reusable software, and they act as building blocks from which
more complex designs can be built.

Architect Christopher Alexander first introduced the concept of patterns
as a tool to encode the knowledge of the design and construction of
communities and buildings. Alexander¹s patterns describe recurring
elements and rules for how and when to create the patterns. Designers of
object-oriented software have begun to embrace this concept of patterns
and use it as a language for planning, discussing, and documenting
designs.

Just as you perform object decomposition to get from a high level design
to an object-oriented implementation, you can decompose a framework
into recurring patterns. Some patterns are generic, and some are specific
to a problem domain. Each pattern can be characterized by its:

Preconditions - the patterns that must be satisfied for this pattern to
be valid.
Problem - the problem addressed by the pattern.
Constraints - the conflicting forces acting on any solution to the
problem and the priorities of those constraints.
Solution - the solution to the problem.

By describing the design of a framework in terms of patterns, you
describe both the design and the rationale behind the design.

Reusing common patterns opens up an additional level of design reuse,
where the implementations vary, but the micro-architectures represented
by the patterns still apply.

- Gamma, Helm, Johnson, and Vlissades, European Conference on
Object-Oriented Programming, 1993

Designing the Framework

If the framework models a process, determine which steps in the process
the framework performs, and which steps the client performs.

As you begin to design how the framework will work, you might also
discover that you can break the framework down into a collection of
recurring design patterns, much the way you decompose the initial
problem into a set of frameworks.

Each design pattern is a micro-architecture for a recurring element.
Patterns can represent generic software elements, or elements that are
particular to a problem domain. When you design a framework, look for
recurring patterns that can be applied to other problems.

Good designers know many design patterns and techniques
that they know lead to good designs. Applying recurring
patterns to the design of a framework is one form of reuse.
Using formalized "design patterns" also helps to document
the framework, making it easier for clients to understand,
use, and extend the framework.

-Johnson, OOPSLA ‘93 Conference Proceedings, 1993

The graphing framework supports a simple process--drawing a 2-D
graph. The client provides the data for the graph and tells the graph to
draw. The graph then tells each of its elements to draw. The final
appearance of the graph is determined by the data that the client provides
and the characteristics of the drawers.

On one level, the graphing framework could be described as a
manager-driven framework, where the graph functions as the manger.
Most of the framework actions are triggered by telling the graph to draw.

Designing the Client-Framework Interactions

In your framework design, focus on how the client interacts with the
framework--what classes and member functions does the client use?
Look for ways to reduce the amount of code that clients must write:

Provide concrete implementations that can be used directly
Minimize the number of classes that must be derived
Minimize the number of member functions that must be overridden

One of the things to consider is how to support customization.
Customization is a two-edged sword--you want to provide as flexible a
framework as possible, but you also want to maintain the focus of the
framework and minimize the complexity for the client. If you provide a
completely flexible framework, it will be difficult for your clients to
learn, and difficult for you to support.

One approach is to build a very flexible, general framework from which
you derive additional frameworks for narrower problem domains. These
additional frameworks provide the default behavior and built-in
functionality, while the general framework provides the flexibility.

As you design the framework, also consider how the design can help
communicate how to use the framework. Class names, functions names,
and how you use pure virtual functions can all provide cues for using the
framework.

You also need to determine how the framework classes and member
functions interact with client code:

What objects are created when the client calls framework
functions?
When are client overrides called by the framework?

As with most frameworks, the graphing framework provides both
features that the client can use directly and an underlying structure that
can be extended by deriving new classes--in other words, even this
simple framework has both data-driven characteristics and
architecture-driven characteristics.

To use the framework, a client constructs the necessary drawers and a
standard graph. When the client calls TStandardGraph::Draw,
DrawIntoGraph is called for each drawer and the graph and all its
elements are drawn. To change the appearance of the graph, clients can
call functions such as TAxisDrawer::SetAxisColor.

To extend the framework, clients derive new drawers from
TGraphDrawer or one of its subclasses. It’s also possible to derive new
graph types from TStandardGraph -for example, a new type of graph that
supports buffered drawing.

For the StockBrowser program, two new drawers were added:
TPriceDrawer and TVolumeDrawer. (See "StockBrowser Extensions"
below.)

TPriceDrawer charts stock prices, displaying high, low, and close prices
for a particular stock. This class is derived directly from TGraphDrawer
and from MStockHolder, which holds a collection of daily stock data.
TPriceDrawer overrides TGraphDrawer::DrawIntoGraph, and provides
functions for manipulating the data points and attributes.

TVolumeDrawer charts stock trading volumes in a bar chart format. This
class is derived from TBarDrawer, a generic 2-D bar chart element, and
MStockHolder. TVolumeDrawer adds the function
SetVolumeInformation to get the stock volume information to display.

To display the stock data, StockBrowser creates drawers for the graph
elements, specifies attributes for the elements, and calls
TStandardGraph::Draw. The graphing framework does the rest.

TGraphRange xAxisRange (0, 53); TGraphRange yAxisRange (0,
100); TGPoint axisLengths (530, 100);

TStandardGraph graph(xAxisRange, yAxisRange, axisLengths);
. . GraphValue dataPointWidth = 6; GraphValue
dataPointInterval = 1;

TPriceDrawer* priceDrawer = new
TPriceDrawer(dataPointWidth, dataPointInterval, *data);
priceDrawer->SetLineColor(TRGBColor(.75, .2, .75));
priceDrawer->SetBoxColor(TRGBColor(0, 0, 0));
graph.AdoptDrawer(priceDrawer); . . graph.Draw(*port);

Experiences from the ET++ SwapsManager Project

One example of a domain specific framework is the ET++
SwapsManager developed by the Union Bank of Switzerland. This
framework was developed as a calculation engine for financial trading
software. The ET++ SwapsManager provides a model for swaps trading
that demonstrates the advantages of applying framework technology to
financial engineering. The developers first analyzed how financial
instruments and valuation procedures could be abstracted and then
identified their commonalities and interrelationships. Though they had in
mind a general framework for financial engineering, for their initial
project, they focused on a subset of their problem domain - swaps
trading. Their goal was to develop a specific solution that they could
expand on. The developers believe that the development of a framework
starts with the implementation of a specific solution in a particular
domain. You then successively rework the solution to cover a family of
applications. Guidelines for generalizing a design:

Consolidate similar functionality across the system and implement
it through a common abstraction.
Divide large abstractions into several smaller abstractions. Each of
the smaller abstractions should have a small, focused set of
responsibilities.
Implement each variation of an abstraction as an object. This
increases the flexibility of the design.
Use composition instead of inheritance where possible. This
reduces the number of classes and reduces the complexity for the
framework client.

- Birrer and Eggenschwiler, European Conference on
Object-Oriented Programming, 1993

Refining the Framework

As your framework takes shape, continually look for ways to refine it by
adding more default behavior, and additional ways for users to view and
interact with the data.

Building a framework is an iterative process. Beginning with your initial
design, you should work with your clients to determine how the
framework can be improved--implement features, test them, and verify
them with your clients.

During this process, you’ll go back and reanalyze the problem domain
and refine your design based on testing, client feedback, and your own
insights.

As your framework matures, you’ll probably find more features to add
and identify oppor-tunities for additional frameworks. These might be
entirely new frameworks, or frame-works that support a particular subset
of the problem domain.

For example, additional features could be added to the graphing
framework to make it more flexible. In the current implementation, the
label drawer draws only numeric labels, but many graphs use text labels.
A better implementation might provide a generic label drawer, with
specific derived classes for drawing text labels and numeric labels. It
could also be useful to add drawers for other types of graphs, such as line
graphs and pie charts. Or perhaps a new framework to support 3-D
graphs would be useful.

Also, look for additional ways to make your clients’ tasks easier. In some
cases, it makes sense to provide special tools with your frameworks.
Code generators, CASE tools, and GUI builders can all make
programming with frameworks easier, just as they do for traditional
software development.

Don’t let your frameworks get too big--keep looking for ways to break
them down into small, focused frameworks. If they’re designed to
interoperate, small frameworks are more flexible and can be reused more
often.

For example, if you needed support for creating distributed workflow
applications, you might initially design a workflow framework with
these features:

Document management
Rule-based agents
Store and forward servers
Networking

A better solution would be to develop separate frameworks for each
major function--for example, a document management framework, an
agent framework, a client/server framework, and a networking
framework. By breaking down the original workflow framework into a
set of small frameworks, the resulting frameworks can be used in other
contexts.

It can be difficult to determine when a framework is finished--that’s the
nature of

an iterative process. A simple framework requires fewer iterations than
more complex frameworks--another advantage of deve-loping smaller,
focused frameworks. Until you actually release your framework, you
won’t gain any of the benefits.

Generalizing the Design

The concept of prototyping is not unique to framework development, but
it is very useful. A common approach is to implement a framework that
applies to a specific subset of a larger problem domain, and then rework
it to support more general cases. The ET++ SwapsManager project is one
example of this approach.

Deriving Frameworks

Once you’ve developed a general framework that provides a strong
architectural base, you can derive additional frameworks that apply to
particular problem sets. The overall framework provides generalized
components and con-straints to which the derived frameworks conform.
Derived frameworks introduce additional components and constraints
that support more specific solutions.

Derived frameworks are another method of providing default behavior
for your clients. If your framework is made up of a number of abstract
classes, you might want to create one or more derived frameworks that
provide concrete implementations and additional built-in functionality.

For example, in the Taligent system, the document framework
architecture supports the creation of almost all components and
documents that will be seen by end users.

This set of frameworks was designed to be very flexible and allow the
construction of a wide range of programs. Derived frameworks support a
narrower set of applications. For example, a graphical editing framework
simplifies the creation of programs that manipulate graphical data. Many
standard graphics editing functions such as move, scale, rotate, and
group are built into this derived framework.

Documenting the Framework

Code comments and documentation are a necessary part of any
programming project, but they are especially important when you’re
developing frameworks. If other developers don’t understand your
framework, they won’t use it.

Learning how to use someone else’s framework can be difficult. As a
framework developer, you have to provide enough information so that
your clients understand how to use the framework to produce the
solution they want.

Make it clear what classes can be used directly, what classes must be
instantiated, and what classes must be overridden. Clients are interested
in solving particular problems - the details of the framework

implementation are not important.

It is best to provide a variety of documentation:

Sample programs
Diagrams of the framework architecture
Descriptions of the framework
Descriptions of how to use the framework

Examples make frameworks more concrete and make it
easier to understand the flow of control.

- Johnson, OOPSLA ‘92 Conference Proceedings, 1992

At a minimum, provide sample programs. In the process of developing
and testing your framework, you have to develop applications that use
your framework--often these can provide a foundation set of samples.
Try to provide a variety of samples that demonstrate how to use the
framework in different contexts--a well-rounded set of sample programs
is invaluable to clients learning your framework. Consider designing the
sample programs so that they show a progression of the architectural
features of the framework.

Managing Change

Frameworks evolve--especially as your understanding of the problem
domain and number of clients grow. However, once you release a
framework for client use, you need to limit the changes--a constantly
changing framework is difficult, if not impossible, to use.

As a general rule, you should:

Fix bugs immediately
Add new features occasionally
Change interfaces as infrequently as possible

During the development of a framework, changes happen much more
frequently. Once clients have been using a framework for awhile, you
might still need to make changes that impact their work.

When you do update a framework, minimize the impact on your clients.
It’s better to add new classes instead of changing the existing class
hierarchy, or to add new functions instead of changing or removing
existing functions.

Give your clients advance notice of framework updates and allow time
for them to adapt to the changes. One approach is to add the new and
changed classes in an interim release and flag the old ones with obsolete
warnings. This way, your clients are warned before their code is broken
that they are using classes that are going to change.

SUMMARIZING THE FRAMEWORK DEVELOPMENT
PROCESS

Developing frameworks allows you to solve a problem once and then
reuse that solution any time you face a similar problem. After you’ve
captured domain expertise in a framework, you and others can reuse that
framework, saving time and money both in program development and in
maintenance. To maximize this benefit, develop a collection of
frameworks that you can select from to construct each new program.

You can categorize frameworks by the types of problems the frameworks
solve or by the framework structure. The frameworks that you build will
likely be domain frameworks, or possibly application frameworks.

Maximizing Framework Benefits

For you and your clients to get the maximum benefit from a framework,
the framework should:

Provide as much built-in functionality as possible
Minimize the potential for client errors
Follow standard design and coding guidelines
Be extensible
Be portable

Your goal as a framework designer is to get other developers to use your
frameworks.

If they don’t understand how your framework works and how to use it,
they’ll develop their own solution. You must strike a balance between
the simplicity of the client interface and the power of the framework.

When in doubt, err on the side of making it simpler for your clients to
use the framework, even if it makes implementing the framework more
difficult.

Developing Frameworks

When you develop frameworks:

Derive frameworks from existing problems and solutions
Develop small focused frameworks
Build frameworks using an iterative process driven by client
participation and prototyping
Treat frameworks as products--provide documentation and support
and plan for distribution and maintenance

Following these guidelines can help you build frameworks that your
clients need, that they can use, and that you can support and maintain.

When you begin to develop a framework, you make many small
iterations on the design and initial implementation. As the framework
matures and your clients begin to rely on it, the changes become less
frequent and you move into a much larger maintenance cycle. You can
divide this process into four general tasks:

Identify and characterize the problem domain

Outline the process
Examine existing solutions
Identify key abstractions
Identify what parts of the process the framework will perform
Solicit input from clients and refine your approach

Define the architecture and design

Focus on how clients interact with the framework:
What classes does the client instantiate?
What classes does the client derive?
What functions does the client call?

Apply recurring design patterns
Solicit input from clients and refine your approach

Implement the framework

Implement the core classes
Test the framework
Ask your clients to test the framework
Iterate to refine the design and add features

Deploy the framework

Provide documentation in the form of diagrams, recipes, and
especially sample programs
Establish a process for distribution
Provide technical support for clients
Maintain and update the framework

Starting to Develop Your Own Frameworks

Now that you have an understanding of the overall process and
techniques, you can begin to develop your own frameworks. To get
started, you might:

Write a program with an existing framework.
Write a different type of program with the same framework. Write
a simple framework of your own and test it with small programs.
Write a program that combines your framework and an existing
framework by using features of both.
Develop a small domain-specific framework.
Use your framework in more than one project.
Try to get other developers to use your framework and develop
additional frameworks.

RECOMMENDED READING

The experiences of others are a great source of information and
inspiration--you are encouraged to read about what other groups are
doing, as well as publish articles about your own endeavors.

The following references include standard object-oriented design
references, new publications, and articles about frameworks from a
variety of periodicals. Many of the examples included in this paper are
based on information in the articles listed here.

Publications

Beck, Kent. "Patterns and Software Development." Dr. Dobb’s Journal
19, no.2 (February 1994): 18.

Beck, Kent and Johnson, Ralph. "Patterns Generate Architectures."
European Conference on Object-Oriented Programming (1994).

Birrer, Andreas and Eggenschwiler, Thomas. "Frameworks in the
Financial Engineering Domain: An Experience Report." European
Conference on Object-Oriented Programming (1993): 21-35.

Booch, Grady. "Designing an Application Framework." Dr. Dobb’s
Journal 19, no.2 (February 1994): 24.

Booch, Grady. Object-Oriented Analysis and Design With Applications.
Redwood City, CA: Benjamin/Cummings, 1994.

Campbell, Roy; Islam, Nayeem; Raila, David; and Madany, Peter.
"Designing and Implementing ’CHOICES’: an Object-Oriented System
in C++." Communications of the ACM 36, no.9 (September 1993): 117.

Coad, Peter. "Object-Oriented Patterns." Communications of the ACM
35, no.9 (1992): 152.

Eggenschwiler, Thomas and Gamma, Erich. "ET++ SwapsManager:
Using Object Technology in the Financial Engineering Domain."
OOPSLA ‘92 Conference Proceedings, ACM SIG Notices 27, no.10
(1992): 166.

Frameworks: The Journal of Software Development Using Object
Technology. Software Frameworks Association.

Gamma, Erich; Helm, Richard; Johnson, Ralph; and Vlissades, John.
"Design Patterns: Abstraction and Reuse of Object-Oriented Design."
European Conference on Object-Oriented Programming (1993):
406-431.

Gamma, Erich; Helm, Richard; Johnson, Ralph; and Vlissades, John.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, to be published October 1994.

Goldstein, Neal, and Jeff Alger. Developing Object-Oriented Software
for the Macintosh. Reading, MA: Addison-Wesley, 1992.

Mallory, Jim. "TI Software Speeds Semiconductor Production."
Newsbytes NEW07200011 (July 1993).

Nelson, Carl. "A Forum for Fitting the Task." IEEE Computer 27, no.3
(March 1994): 104.

"Semiconductor Industry: New Advanced CIM software from Texas
Instruments Expected to Revolutionize Semiconductor Manufacturing."
EDGE: Work-Group Computing Report 4, no.166 (July 1993): 22.

Shelton, Robert. "The Distributed Enterprise." The Distributed
Computing Monitor 8, no.10 (October 1993): 3.

Stroustrup, Bjarne. The C++ Programming Language. 2d ed. Reading,
MA: Addison-Wesley, 1991.

Taligent‘s Guide to Designing Programs: Well-Mannered
Object-Oriented Design in C++. Addison-Wesley, 1994.

Wong, William. Plug & Play Programming, An Object-Oriented
Construction Kit. M&T Books, 1993.

Seminars

Wilson, Dave. "Designing Object-Oriented Frameworks." Personal
Concepts, Palo Alto, CA 1994.

Johnson, Ralph. "How to Design Frameworks." OOPSLA ’93 Tutorial
Notes, 1993.

Taligent White Papers

A Study of America’s Top Corporate Innovators, Taligent, Inc., 1992.

Lessons Learned from Early Adopters of Object Technology, Taligent,
Inc., 1993.

Driving Innovation with Technology: The Intelligent Use of Objects,
Taligent, Inc., 1993.

Leveraging Object-Oriented Frameworks, Taligent, Inc., 1993.

Products Object
Resources

In the News Company Info Search

If you encounter problems with this service please contact
webmaster@taligent.com Copyright © 1996 Taligent, Inc. All rights reserved.
Taligent and the Taligent logo are registered trademarks of Taligent, Inc.

