
166   Scientific Debugging

– How do they know the load limit on bridges, Dad?
– They drive bigger and bigger trucks over the bridge until it breaks.

Then they weigh the last truck and rebuild the bridge.

— B W,
Calvin and Hobbes (1997)



C6
 

O      the problem, we must under-
stand how the failure came to be. The process of obtaining a theory that

explains some aspect of the universe is known as scientific method. It is also the
appropriate process for obtaining problem diagnostics. We introduce the basic
techniques for creating and verifying hypotheses, for making experiments, for
conducting the process in a systematic fashion, and for making the debugging
process explicit.

6.1      

Some people are true debugging gurus. They look at the code and point their
finger at the screen and tell you: “Did you try X?” You try X and, voilà!, the
failure is gone. Such intuition comes from experience with earlier errors — one’s
own errors or other people’s errors — and the more experience you have the
easier it is to identify potential error causes and set up accurate hypotheses.
Thus, the good news is that you too will eventually become a debugging guru —
if you live long enough to suffer through all of the failures it takes to gather this
experience.

We can speed up this process by training our reasoning. How can we sys-
tematically find out why a program fails? And how can we do so without vague
concepts of “intuition,” “sharp thinking,” and so on? What we want is a method
of finding an explanation for the failure — a method that:

• does not require a priori knowledge (that is, we need no experience from
earlier errors)

145



146   Scientific Debugging

• works in a systematic and reproducible fashion such that we can be sure to
eventually find the cause and reproduce it at will.

The key question for this chapter is thus:

H         ?

6.2   

If a program fails, this behavior is initially just as surprising and inexplicable as
any newly discovered aspect of the universe. Having a program fail also means
that our abstraction fails. We can no longer rely on our model of the program,
but rather must explore the program independently from the model. In other
words, we must approach the failing program as if it were a natural phenomenon.

In the natural sciences, there is an established method for developing or
examining a theory that explains (and eventually predicts) such an aspect. It is
called scientific method because it is supposed to summarize the way (natural)
scientists work when establishing some theory about the universe. In this very
general form, the scientific method proceeds roughly as follows.

1. Observe (or have someone else observe) some aspect of the universe.

2. Invent a tentative description, called a hypothesis, that is consistent with the
observation.

3. Use the hypothesis to make predictions.

4. Test those predictions by experiments or further observations and modify the
hypothesis in the light of your results.

5. Repeat steps 3 and 4 until there are no discrepancies between hypothesis
and experiment and/or observation.

When all discrepancies are gone, the hypothesis becomes a theory. In popular
usage, a theory is just a synonym for a vague guess. For an experimental scientist,
though, a theory is a conceptual framework that explains earlier observations
and predicts future observations — such as relativity theory or plate tectonics,
for instance.



6.3. Applying the Scientific Method 147

In our context, we do not need the scientific method in its full glory, nor
do we want to end up with grand unified theories for everything. We should be
perfectly happy if we have a specific instance for finding the causes of program
failures. In this debugging context, the scientific method operates as follows.

1. Observe a failure (i.e., as described in the problem description).

2. Invent a hypothesis as to the failure cause that is consistent with the observa-
tions.

3. Use the hypothesis to make predictions.

4. Test the hypothesis by experiments and further observations:

• If the experiment satisfies the predictions, refine the hypothesis.

• If the experiment does not satisfy the predictions, create an alternate
hypothesis.

5. Repeat steps 3 and 4 until the hypothesis can no longer be refined.

The entire process is illustrated in Figure 6.1. Again, what you eventually
get is a theory about how the failure came to be:

• It explains earlier observations (including the failure).

• It predicts future observations (for instance, that the failure no longer ap-
pears after applying a fix).

In our context, such a theory is called a diagnosis.

6.3    

How is the scientific method used in practice? As an example in this chapter,
consider the sample program as discussed in Chapter 1 “How Failures Come to
Be.” The sample program is supposed to sort its command-line arguments, but
some defect causes it to fail under certain circumstances:

$ sample 11 14

Output: 0 11

$ _



148   Scientific Debugging

 . The scientific method of debugging.



6.3. Applying the Scientific Method 149

In Section 1.4 we saw how to find the defect in the sample program — but
in a rather ad hoc or unsystematic way. Let’s now retell this debugging story
using the concepts of scientific method.

6.3.1 Debugging sample — Preparation

We start with writing down the problem: what happened in the failing run and
how it failed to meet our expectations. This easily fits within the scientific
method scheme by setting up an initial hypothesis “The program works,” which
is then rejected. This way, we have observed the failure, which is the first step in
the scientific method.

• Hypothesis: The sample program works.

• Prediction: The output of sample 11 14 is "11 14".

• Experiment: We run sample as previously.

• Observation: The output of sample 11 14 is "0 11".

• Conclusion: The hypothesis is rejected.

6.3.2 Debugging sample — Hypothesis 1

We begin with a little verification step: Is the zero value reported by sample

caused by a zero value in the program state? Looking at Example 1.1, lines 38
through 41, it should be obvious that the first value printed (the zero) should be
the value of a[0]. It is unlikely that this output code has a defect. Nonetheless,
if it does we can spend hours and hours on the wrong trail. Therefore, we set up
the hypothesis that a[0] is actually zero.

• Hypothesis: The execution causes a[0] to be zero.

• Prediction: a[0] = 0 should hold at line 37.

• Experiment: Using a debugger, observe a[0] at line 37.

• Observation: a[0] = 0 holds as predicted.

• Conclusion: The hypothesis is confirmed.

(What does “using a debugger” mean in practice? See Section 8.3.1 to find
out.)



150   Scientific Debugging

6.3.3 Debugging sample — Hypothesis 2

Now we must determine where the infection in a[0] comes from. We assume
that shell_sort() causes the infection.

• Hypothesis: The infection does not take place until shell_sort().

• Prediction: The state should be sane at the beginning of shell_sort()—
that is, a[] = [11, 14] and size = 2 should hold at line 6.

• Experiment: Observe a[] and size.

• Observation: We find that a[] = [11, 14, 0], size = 3 hold.

• Conclusion: The hypothesis is rejected.

6.3.4 Debugging sample — Hypothesis 3

Assuming we have only one infection site, the infection does not take place
within shell_sort(). Instead, shell_sort() gets bad arguments. We assume
that these arguments cause the failure.

• Hypothesis: Invocation of shell_sort() with size = 3 causes the failure.

• Prediction: If we correct size manually, the run should be successful — the
output should be "11 14".

• Experiment: Using a debugger, we:

1. Stop execution at shell_sort() (line 6).

2. Set size from 3 to 2.

3. Resume execution.

• Observation: As predicted.

• Conclusion: The hypothesis is confirmed.

6.3.5 Debugging sample — Hypothesis 4

The value of size can only come from the invocation of shell_sort() in
line 36 — that is, the argc argument. As argc is the size of the array plus 1,
we change the invocation.



6.4. Explicit Debugging 151

• Hypothesis: Invocation of shell_sort() with size = argc (instead of
size = argc - 1) causes the failure.

• Prediction: If we change argc to argc - 1, the “Changing argc to argc -1”
run should be successful. That is, the output should be "11 14".

• Experiment: In line 36, change argc to argc - 1 and recompile.

• Observation: As predicted.

• Conclusion: The hypothesis is confirmed.

After four iterations of the scientific method, we have finally refined our
hypothesis to a theory; the diagnosis “Invocation of shell_sort() with argc

causes the failure.” We have proven this by showing the two alternatives:

• With the invocation argc, the failure occurs.

• With the invocation argc - 1, the failure no longer occurs.

Hence, we have shown that the invocation with argc caused the failure. As a
side effect, we have generated a fix — namely, replacing argc with argc - 1 in
line 36.

Note that we have not yet shown that the change induces correctness — that
is, sample may still contain other defects. In particular, in programs more com-
plex than sample we would now have to validate that this fix does not introduce
new problems (Chapter 15 “Fixing the Defect” has more on this issue). In the
case of sample, though, you can do such a validation by referring to a higher
authority: Being the author of this book, I claim that with the fix applied there
is no way sample could ever sort incorrectly. Take my word.

6.4  

In Section 6.3 we saw how to use the scientific method to establish the fail-
ure cause. You may have noticed that the process steps were quite explicit: we
explicitly stated the hypotheses we were examining, and we explicitly set up ex-
periments that supported or rejected the hypotheses.

Being explicit is an important means toward understanding the problem at
hand, starting with the problem statement. Every time you encounter a prob-
lem, write it down or tell it to a friend. Just stating the problem in whatever



152   Scientific Debugging

way makes you rethink your assumptions — and often reveals the essential clues
to the solution. The following is an amusing implementation, as reported by
Kernighan and Pike (1999):

One university center kept a Teddy bear near the help desk. Students with mysterious bugs were
required to explain them to the bear before they could speak to a human counselor.

Unfortunately, most programmers are implicit about the problem state-
ment, and even more so within the debugging process (they keep everything
in their mind). But this is a dangerous thing to do. As an analogy, consider
a Mastermind game (Figure 6.2). Your opponent has chosen a secret code, and
you have a number of guesses. For each guess, your opponent tells you the num-
ber of tokens in your guess that had the right color or were in the right position.

 . A Mastermind game.



6.5. Keeping a Logbook 153

If you have ever played Mastermind and won, you have probably applied the
scientific method.

However, as you may recall from your Mastermind experiences, you must
remember all earlier experiments and their outcomes, in that this way you can
keep track of all confirmed and rejected hypotheses. In a Mastermind game, this
is easy, as the guesses and their outcomes are recorded on the board. In debug-
ging, though, many programmers do not explicitly keep track of experiments
and outcomes, which is equivalent to playing Mastermind in memory. In fact,
forcing yourself to remember all experiments and outcomes prevents you from
going to sleep until the bug is eventually fixed. Debugging this way, a “master
mind” is not enough — you also need a “master memory.”

6.5   

A straightforward way of making debugging explicit and relieving memory stress
is to write down all hypotheses and observations — that is, keep a logbook. Such
a logbook can be either on paper or in some electronic form. Keeping a logbook
may appear cumbersome at first, but with a well-kept logbook you do not have
to keep all experiments and outcomes in memory. You can always quit work and
resume next morning.

In Zen and the Art of Motorcycle Maintenance, Robert M. Pirsig writes about
the virtue of a logbook in cycle maintenance:

Everything gets written down, formally, so that you know at all times where you are, where you’ve
been, where you’re going, and where you want to get. In scientific work and electronics technology
this is necessary because otherwise the problems get so complex you get lost in them and confused
and forget what you know and what you don’t know and have to give up.

And beware — this quote applies to motorcycle maintenance. Real programs
are typically much more complex than motorcycles. For a motorcycle main-
tainer, it would probably appear amazing that people would debug programs
without keeping logbooks.

And how should a logbook be kept? Unless you want to share your logbook
with someone else, feel free to use any format you like. However, your notes
should include the following points, as applied in Section 6.3.

• Statement of the problem (a problem report, as in Chapter 2 “Tracking
Problems,” or, easier, a report identifier)

• Hypotheses as to the cause of the problem



154   Scientific Debugging

Hypothesis Prediction Experiment Observation Conclusion

Infection in
shell_sort()

At shell_sort()
(Line 6), expect
a[] = [11, 14]

and size = 2

Observe a[]

and size[]

a[] = [11,14,0]

and size = 3

rejected

Invocation of
shell_sort()

with size = 3

causes failure

Setting size = 2

should make
sample work

Set size = 2

using
debugger

As predicted confirmed

 . A debugging logbook (excerpt).

• Predictions of the hypotheses

• Experiments designed to test the predictions

• Observed results of the experiments

• Conclusions from the results of the experiments

An example of such a logbook is shown in Figure 6.3, recapitulating hy-
potheses 2 and 3 of Section 6.3. Again, quoting Robert Pirsig:

This is similar to the formal arrangement of many college and high-school lab notebooks, but the
purpose here is no longer just busywork. The purpose now is precise guidance of thoughts that
will fail if they are not accurate.

6.6  --

Not every problem needs the full strength of the scientific method or the formal
content of a logbook. Simple problems should be solved in a simple manner —
without going through the explicit process. If we find a problem we suppose to
be simple, the gambler in us will head for the lighter process. Why bother with
formalities? Just think hard and solve the problem.

The problem with such an implicit “quick-and-dirty” process is to know
when to use it. It is not always easy to tell in advance whether a problem is
simple or not. Therefore, it is useful to set up a time limit. If after 10 minutes
of quick-and-dirty debugging you still have not found the defect, go for the
scientific method instead and write down the problem statement in the logbook.



6.7. Algorithmic Debugging 155

Then, straighten out your head by making everything formal and exact — and
feel free to take a break whenever necessary.

6.7  

Another way of organizing the debugging process is to automate it — at least
partially. The idea of algorithmic debugging (also called declarative debugging) is
to have a tool that guides the user along the debugging process interactively. It
does so by asking the user about possible infection sources:

1. Assume an incorrect result R has the origins O1,O2, . . . ,On.

2. For each of the origins Oi, algorithmic debugging enquires whether the
origin Oi is correct or not.

3. If one of the origins Oi is incorrect, algorithmic debugging restarts at step 1
with R = Oi.

4. Otherwise, all origins Oi are correct. Then, the infection must have orig-
inated at the place where R was computed from the origins. The process
terminates.

Let’s illustrate algorithmic debugging via an example. Example 6.1 shows a
PYTHON sorting function: sort(L) is supposed to return a sorted copy of the
list L. Unfortunately, sort() does not work properly: sort([2, 1, 3]) returns
[3, 1, 2] rather than [1, 2, 3].

Our sort() function is based on insertion sort. It thus relies on a function
insert(X,L), which returns a list where X is inserted between the elements
of L: insert(2, [1, 3]) should return [1, 2, 3].

Figure 6.4 summarizes the execution of sort([2, 1, 3]) (a line stands for
functions being invoked). Each invocation of sort(L) first calls itself for the tail
of L and then calls insert() to insert the first element of L into the freshly
sorted list.

The execution tree shown in Figure 6.4 now becomes the base for the algo-
rithmic debugging process. Assume we have a tool that implements algorithmic
debugging for PYTHON , working on the console. Such a tool would first ask us
whether the end result is correct, which we decline:

sort([2, 1, 3]) = [3, 1, 2]? no



156   Scientific Debugging

def insert(elem, list):

"""Return a copy of LIST with ELEM sorted in"""

if len(list) == 0:

return [elem]

head = list[0]

tail = list[1:]

if elem <= head:

return list + [elem]

return [head] + insert(elem, tail)

def sort(list):

"""Return a sorted copy of LIST"""

if len(list) <= 1:

return list

head = list[0]

tail = list[1:]

return insert(head, sort(tail))

 . A buggy insertion sort program.

 . Execution tree of the sorting function in Example 6.1. Each computation of a
function (top) relies on further function calls (below).

The error can originate either from sort([1, 3]) or the subsequent
insert() call. Algorithmic debugging starts querying about the first origin:

sort([1, 3]) = [3, 1]? no



6.7. Algorithmic Debugging 157

Again, the error could originate from the earlier sort([3]) call. Is the result
correct?

sort([3]) = [3]? yes

Because the call sort([3]) = [3] was fine but sort([1, 3]) = [3, 1] is
wrong, the error could have originated in the insert() call. It actually does,
because insert(1, [3]) should return [1, 3], and not [3, 1]:

insert(1, [3]) = [3, 1]? no

As insert(1, [3]) invokes no further functions, we have isolated the de-
fect. The infection originates at the call insert(1, [3]) = [3, 1] (shown in
gray). Our algorithmic debugging tool reports:

An error has been localized in the body of insert().

We can even narrow down the infection to the code executing in the call
insert(1, [3]). This leaves us with the return statement:

if elem <= head:

return list + [elem]

This statement is wrong. If the element to be inserted is smaller than the
head of the list, it should be inserted at the beginning rather than at the end.
The statement thus must read:

if elem <= head:

return [elem] + list

This fixes the sort() function from Example 6.1. With this fix applied, it
sorts just fine.

The general idea of having an algorithm drive the debugging process is
applicable to arbitrary debugging techniques. Wherever we search an error —
and need to rely on human input to decide what is correct, right, or true —
algorithmic debugging can drive the search in a systematic way. Unfortunately,
algorithmic debugging has not been demonstrated to be effective for real-world
applications:

• The process does not scale. In a large imperative program, there are millions
and millions of functions being executed. Many of these functions commu-



158   Scientific Debugging

nicate via shared data structures, rather than simple arguments and returned
values. Worse yet, the data structures being accessed are far too huge to be
checked manually. Imagine debugging a compiler: “Are these 4 megabytes
of executable code correct? (yes/no)?”

For these reasons, algorithmic debugging works best for functional and
logical programming languages. Functional and logical programs have few
or no side effects — that is, there is no shared state that is updated, and the
user does not have to check the entire program state. For logical languages
such as PROLOG , an execution tree (Figure 6.4) becomes a proof tree, which
is part of every program execution.

• Programmers prefer driving to being driven. The algorithmic debugging
process, as implemented in early tools, is extremely rigid. Many program-
mers do not like being instrumented in such a mechanical way. Making the
process user friendly in the sense that it provides assistance to programmers
(rather than having the programmer assist the tool) is an open research is-
sue.

It is conceivable that future tools, combined with the analysis tech-
niques defined in this book, will provide guidance to the programmer by
asking the right questions. In particular, one can think of programmers pro-
viding specifications of particular function properties — specifications that
can then be reused for narrowing down the incorrect part.

All of these problems disappear if we replace the programmer being queried
by an oracle — an automatic device that tells correctness from noncorrectness.
To determine its result, such an oracle would use an external specification. In
this book, however, we assume that there is no such specification (except from
the final test outcome) — at least not in a form a mechanical device could make
use of it. Therefore, scientific method still needs human interaction.

6.8   

Scientific method gives us a general process for turning a hypothesis into a the-
ory — or, more specifically, an initial guess into a diagnosis. But still, within each
iteration of the scientific method we must come up with a new hypothesis. This
is the creative part of debugging: thinking about the many ways a failure could
have come to be. This creative part is more than just mechanically enumerating
possible origins, as in algorithmic debugging.



6.8. Deriving a Hypothesis 159

Unfortunately, being creative is not enough: we must also be effective. The
better our hypotheses the less iterations we need and the faster the diagnosis is
done. To be effective, we need to leverage as many knowledge sources as possible.
These are the ingredients of debugging, as shown in Figure 6.1.

• The description of the problem: Without a concise description of the problem,
you will not be able to tell whether the problem is solved or not. A simpli-
fied problem report also helps. In Chapter 2 “Tracking Problems” we saw
examples of such descriptions, and discussed the issues of tracking problems.
Chapter 5 “Simplifying Problems” provided details on the simplification of
problem reports.

• The program code: The program code is the common abstraction across all
possible program runs, including the failing run. It is the basis for almost all
debugging techniques.

Without knowledge about the internals of the program, you can only
observe concrete runs (if any) without ever referring to the common ab-
straction. Lack of program code makes understanding (and thus debugging)
much more difficult. As you cannot recreate the program from code, you
must work around defects, which is far less satisfactory than fixing the code
itself.

As an example, consider the sort() algorithmic debugging session in
Section 6.7. In principle, we (as users) could have run the session without
knowing the source code. To determine whether a result is correct or not, all
we need is a specification. However, the tool itself must have access to the
code (Example 6.1) in order to trace and instrument the individual function
calls. Chapter 7 “Deducing Errors” discusses techniques for reasoning from
the (abstract) program code to the (concrete) program run — including the
failing run.

• The failing run: The program code allows you to speculate about what may
be going on in a concrete failing run. If you actually execute the program
such that the problem is reproduced, you can observe actual facts about the
concrete run. Such facts include the code being executed and the program
state as it evolves. These observation techniques are the bread and butter of
debugging.

Again, debugging the sort() code in Example 6.1 becomes much easier
once one can talk about a concrete (failing) run. In principle, one could do
without observation. This is fine for proving abstract properties but bad for
debugging concrete problems.



160   Scientific Debugging

Chapter 8 “Observing Facts” discusses techniques with which program-
mers can observe concrete runs. Chapter 10 “Asserting Expectations” ex-
tends these techniques to have the computer detect violations automatically.

• Alternate runs: A single run of a nontrivial program contains a great deal of
information, and thus we need a means of focusing on specific aspects of
the execution. In debugging, we are most interested in anomalies — those
aspects of the failing run that differ from “normal” passing runs. For this
purpose, we must know which “normal” runs exist, what their common
features are, and how these differ in the failing run.

In the sort() example, algorithmic debugging has used alternate runs
of individual functions to narrow down the defect. From the fact that
sort([3]) worked, and sort([1, 3]) failed, algorithmic debugging could
deduce that the error must have originated in the insert() call taking place
between the two sort() calls.

In practice, we seldom have a specification available to tell us whether
some aspect of a run is correct or not. Yet, with a sufficient number of
alternate runs we can classify what is “normal” or not. Chapter 11 “Detect-
ing Anomalies” discusses automated techniques for detecting and expressing
commonalities and anomalies across multiple runs.

• Earlier hypotheses: Depending on the outcome of a scientific method ex-
periment, one must either refine or reject a hypothesis. In fact, every new
hypothesis must

– include all earlier hypotheses that passed (whose predictions were satis-
fied) and

– exclude all hypotheses that failed (whose predictions were not satisfied).

Any new hypothesis must also explain all earlier observations, regardless of
whether the experiment succeeded or failed — and it should be different
enough from earlier hypotheses to quickly advance toward the target. Again,
the algorithmic debugging session is a straightforward example of how the
results of earlier tests (i.e., answers given by the user) drive the scientific
method and thus the debugging process. The final diagnosis of insert()

having a defect fits all passed hypotheses and explains all earlier observa-
tions.

To automate the process, we would like to reuse earlier hypotheses with-
out asking the user for assistance. If a hypothesis is about a cause (such as
a failure cause), the search for the actual cause can be conducted systemat-
ically by narrowing the difference between a passing and a failing scenario.
These techniques can be automated and applied to program runs. Chap-



6.9. Reasoning About Programs 161

ter 13 “Isolating Failure Causes” discusses automating the search for failure-
inducing circumstances. Chapter 14 “Isolating Cause-Effect Chains” does
the same for program states.

6.9   

Depending on the ingredients that come into play, humans use different reason-
ing techniques to learn about programs. These techniques form a hierarchy, as
shown in Figure 6.5.

• Deduction: Deduction is reasoning from the general to the particular. It lies
at the core of all reasoning techniques. In program analysis, deduction is
used for reasoning from the program code (or other abstractions) to con-
crete runs — especially for deducing what can or cannot happen. These de-
ductions take the form of mathematical proofs. If the abstraction is true, so
are the deduced properties. Because deduction does not require any knowl-
edge about the concrete, it is not required that the program in question
actually be executed.

 . A hierarchy of program analysis techniques.



162   Scientific Debugging

In this book, we call any technique static analysis if it infers findings
without executing the program — that is, the technique is based on deduc-
tion alone. In contrast, dynamic analysis techniques use actual executions.

As Nethercote (2004) points out, this distinction of whether a program
is executed or not may be misleading. In particular, this raises the issue of
what exactly is meant by “execution.” Instead, he suggests that static tech-
niques predict approximations of a program’s future; dynamic analysis remem-
bers approximations of a program’s past. Because in debugging we are typically
concerned about the past, most interesting debugging techniques fall into
the “dynamic” categories, which we discuss next.

• Observation: Observation allows the programmer to inspect arbitrary as-
pects of an individual program run. Because an actual run is required, the
associated techniques are called dynamic. Observation brings in actual facts
of a program execution. Unless the observation process is flawed, these facts
cannot be denied.

In this book, we call a technique observational if it generates findings or
approximations from a single execution of the program. Most observational
techniques make use of the program code in some form or another and thus
also rely on deduction.

• Induction: Induction is reasoning from the particular to the general. In pro-
gram analysis, induction is used to summarize multiple program runs (e.g.,
a test suite or random testing) to some abstraction that holds for all con-
sidered program runs. In this context, a “program” may also be a piece of
code that is invoked multiple times from within a program — that is, some
function or loop body.

In this book, we call a technique inductive if it generates findings from
multiple executions of the program. By definition, every inductive technique
makes use of observation.

• Experimentation: Searching for the cause of a failure using scientific method
(Chapter 6 “Scientific Debugging”) requires a series of experiments, refining
and rejecting hypotheses until a precise diagnosis is isolated. This implies
multiple program runs that are controlled by the reasoning process.

In this book, we call a technique experimental if it generates findings
from multiple executions of the program that are controlled by the technique.
By definition, every experimental technique uses induction and thus obser-
vation.

In the following chapters, we examine the most important of these tech-
niques. We start with Chapter 7 “Deducing Errors,” deducing hypotheses from



6.10. Concepts 163

the program code without actually executing the program. Chapter 8 “Observ-
ing Facts,” Chapter 9 “Tracking Origins,” and Chapter 10 “Asserting Expecta-
tions” focuses on observational techniques. Chapter 11 “Detecting Anomalies”
discusses inductive techniques. Finally, Chapter 13 “Isolating Failure Causes”
and Chapter 14 “Isolating Cause-Effect Chains” introduce experimental tech-
niques.

6.10 

To isolate a failure cause, use scientific method (Section 6.2): HOW TO

1. Observe a failure (i.e., as described in the problem description).

2. Invent a hypothesis as to the failure cause that is consistent with the
observations.

3. Use the hypothesis to make predictions.

4. Test the hypothesis by experiments and further observations:

• If the experiment satisfies the predictions, refine the hypothesis.

• If the experiment does not satisfy the predictions, create an alter-
nate hypothesis.

5. Repeat steps 3 and 4 until the hypothesis can no longer be refined.

To understand the problem at hand, make it explicit. Write it down or talk to HOW TO

a friend (Section 6.4).

To avoid endless debugging sessions, make the individual steps explicit. Keep HOW TO

a logbook (Section 6.5).

To locate an error in a functional or logical program, consider algorithmic HOW TO

debugging.

Algorithmic debugging drives the debugging process by proposing hypothe-
ses about error origins, which the user (or some oracle) must individually
judge.

To debug quick-and-dirty, think hard and solve the problem — but as soon HOW TO

you exceed some time limit go the formal way (Section 6.6).

To derive a hypothesis, consider: HOW TO



164   Scientific Debugging

• The problem description

• The program code

• The failing run

• Alternate runs

• Earlier hypotheses

See Section 6.8 for details.

To reason about programs, one can use four different techniques:HOW TO

• Deduction (zero runs)

• Observation (one single run)

• Induction (multiple runs)

• Experimentation (multiple controlled runs)

All of these are discussed in further chapters.

6.11  

Algorithmic debugging as a semiautomation of scientific method was conceived
by Shapiro (1982) for logical programming languages such as PROLOG. In 1992,
Fritzson et al. extended the approach to imperative languages, using program
slicing (Section 7.4) to determine data dependences, and demonstrated the fea-
sibility on a subset of PASCAL. The algorithmic debugging example session is
based on Fritzson et al. (1992). In 1997, Naish generalized algorithmic debug-
ging to the more general concept of declarative debugging.

Whereas the scientific method is the basis of all experimental science, it is
rarely discussed or used in computer science. The reason is that computer sci-
ence is concerned with artifacts, which are supposed to be fully under control
and fully understood. However, as an unexpected failure occurs the artifact must
be explored just like some natural phenomenon. For an early but still excellent
book on experimental and statistical methods for data reduction, see An Intro-
duction to Scientific Research by Wilson (1952). A more general book from the
same period that remains useful today is The Art of Scientific Investigation by
Beveridge (1957).



6.12. Exercises 165

For philosophy of science, the undisputed classic is the work of Popper
(1959), who coined the term falsifiability as the characteristic method of sci-
entific investigation and inference. For Popper, any theory is scientific only if it
is refutable by a conceivable event — which is why experiments play such a role
in obtaining diagnoses.

The definitions of cause and effect in this book are called based on counter-
factuals, because they rely on assumptions about nonfacts. The first counterfac-
tual definition of causes and effects is attributed to Hume (1748): “If the first
object [the cause] had not been, the second [the effect] never had existed.” The
best-known counterfactual theory of causation was elaborated by Lewis (1973),
refined in 1986.

Causality is a vividly discussed philosophical field. Other than the coun-
terfactual definitions, the most important alternatives are definitions based on
regularity and probabilism. I recommend Zalta (2002) for a survey.

6.12 

 .. “We have reached a state where many programs are just as un-
predictable as natural phenomena.” Discuss.

 .. Using the logbook format (Section 6.5), describe the individual
steps of the algorithmic debugging run in Section 6.7. Which are the hypothe-
ses, predictions, and experiments?

 .. Simplification of tests, as discussed in Chapter 5 “Simplifying
Problems,” can be seen as an application of the scientific method. What are the
hypotheses, predictions, and tests being used?

 .. Set up a logbook form sheet with entries such as “Prediction,”
“Observation,” and so on such that programmers only need to fill in the gaps.
Give them to fellows and collect their opinions.

 .. “I want to archive logbook entries, such that in case a similar
problem occurs I may find hints on which hypotheses to use and which experi-
ments to conduct.” Discuss.


	Title page
	Copyright page
	About the Author
	Contents
	Foreword
	Preface
	How This Book Came to be Written
	Audience
	What This Book Is and What It Is Not
	Overview of Content
	Supplements, Resources, and Web Extensions
	Advice for Instructors
	Advice for Readers
	Acknowledgments

	1 How Failures Come to Be
	1.1 My Program Does Not Work!
	1.2 From Defects to Failures
	1.3 Lost in Time and Space
	1.4 From Failures to Fixes
	1.5 Automated Debugging Techniques
	1.6 Bugs, Faults, or Defects?
	1.7 Concepts
	1.8 Tools
	1.9 Further Reading
	1.10 Exercises

	2 Tracking Problems
	2.1 Oh! All These Problems
	2.2 Reporting Problems
	2.3 Managing Problems
	2.4 Classifying Problems
	2.4.1 Severity
	2.4.2 Priority
	2.4.3 Identifier
	2.4.4 Comments
	2.4.5 Notification

	2.5 Processing Problems
	2.6 Managing Problem Tracking
	2.7 Requirements as Problems
	2.8 Managing Duplicates
	2.9 Relating Problems and Fixes
	2.10 Relating Problems and Tests
	2.11 Concepts
	2.12 Tools
	BUGZILLA
	PHPBUGTRACKER
	ISSUETRACKER
	TRAC
	SOURCEFORGE
	GFORGE

	2.13 Further Reading
	2.14 Exercises

	3 Making Programs Fail
	3.1 Testing for Debugging
	3.2 Controlling the Program
	3.3 Testing at the Presentation Layer
	3.3.1 Low-level Interaction
	3.3.2 System-level Interaction
	3.3.3 Higher-level Interaction
	3.3.4 Assessing Test Results

	3.4 Testing at the Functionality Layer
	3.5 Testing at the Unit Layer
	3.6 Isolating Units
	3.7 Designing for Debugging
	3.8 Preventing Unknown Problems
	3.9 Concepts
	3.10 Tools
	JUNIT
	ANDROID
	APPLESCRIPT
	VBSCRIPT
	Other scripting languages
	FAUmachine
	VMWare
	Virtual PC

	3.11 Further Reading
	3.12 Exercises

	4 Reproducing Problems
	4.1 The First Task in Debugging
	4.2 Reproducing the Problem Environment
	4.3 Reproducing Program Execution
	4.3.1 Reproducing Data
	4.3.2 Reproducing User Interaction
	4.3.3 Reproducing Communications
	4.3.4 Reproducing Time
	4.3.5 Reproducing Randomness
	4.3.6 Reproducing Operating Environments
	4.3.7 Reproducing Schedules
	4.3.8 Physical Influences
	4.3.9 Effects of Debugging Tools

	4.4 Reproducing System Interaction
	4.5 Focusing on Units
	4.5.1 Setting Up a Control Layer
	4.5.2 A Control Example
	4.5.3 Mock Objects
	4.5.4 Controlling More Interaction

	4.6 Concepts
	4.7 Tools
	Winrunner
	Android
	Revirt
	Checkpointing Tools

	4.8 Further Reading
	4.9 Exercises

	5 Simplifying Problems
	5.1 Simplifying the Problem
	5.2 The Gecko BugAThon
	5.3 Manual Simplification
	5.4 Automatic Simplification
	5.5 A Simplification Algorithm
	5.6 Simplifying User Interaction
	5.7 Random Input Simplified
	5.8 Simplifying Faster
	5.8.1 Caching
	5.8.2 Stop Early
	5.8.3 Syntactic Simplification
	5.8.4 Isolate Differences, Not Circumstances

	5.9 Concepts
	5.10 Tools
	Delta Debugging
	Simplification Library

	5.11 Further Reading
	5.12 Exercises

	6 Scientific Debugging
	6.1 How to Become a Debugging Guru
	6.2 The Scientific Method
	6.3 Applying the Scientific Method
	6.3.1 Debugging sample—Preparation
	6.3.2 Debugging sample—Hypothesis 1
	6.3.3 Debugging sample—Hypothesis 2
	6.3.4 Debugging sample—Hypothesis 3
	6.3.5 Debugging sample—Hypothesis 4

	6.4 Explicit Debugging
	6.5 Keeping a Logbook
	6.6 Debugging Quick-and-Dirty
	6.7 Algorithmic Debugging
	6.8 Deriving a Hypothesis
	6.9 Reasoning About Programs
	6.10 Concepts
	6.11 Further Reading
	6.12 Exercises

	7 Deducing Errors
	7.1 Isolating Value Origins
	7.2 Understanding Control Flow
	7.3 Tracking Dependences
	7.3.1 Effects of Statements
	7.3.2 Affected Statements
	7.3.3 Statement Dependences
	7.3.4 Following Dependences
	7.3.5 Leveraging Dependences

	7.4 Slicing Programs
	7.4.1 Forward Slices
	7.4.2 Backward Slices
	7.4.3 Slice Operations
	7.4.4 Leveraging Slices
	7.4.5 Executable Slices

	7.5 Deducing Code Smells
	7.6 Limits of Static Analysis
	7.7 Concepts
	7.8 Tools
	CODESURFER
	FINDBUGS

	7.9 Further Reading
	7.10 Exercises

	8 Observing Facts
	8.1 Observing State
	8.2 Logging Execution
	8.2.1 Logging Functions
	8.2.2 Logging Frameworks
	8.2.3 Logging with Aspects
	8.2.4 Logging at the Binary Level

	8.3 Using Debuggers
	8.3.1 A Debugging Session
	8.3.2 Controlling Execution
	8.3.3 Postmortem Debugging
	8.3.4 Logging Data
	8.3.5 Invoking Functions
	8.3.6 Fix and Continue
	8.3.7 Embedded Debuggers
	8.3.8 Debugger Caveats

	8.4 Querying Events
	8.4.1 Watchpoints
	8.4.2 Uniform Event Queries

	8.5 Visualizing State
	8.6 Concepts
	8.7 Tools
	LOG4J
	ASPECTJ
	PIN
	BCEL
	GDB
	DDD
	JAVA SPIDER
	eDOBS

	8.8. Further Reading
	8.9 Exercises

	9 Tracking Origins
	9.1 Reasoning Backwards
	9.2 Exploring Execution History
	9.3 Dynamic Slicing
	9.4 Leveraging Origins
	9.5 Tracking Down Infections
	9.6 Concepts
	9.7 Tools
	ODB

	9.8 Further Reading
	9.9 Exercises

	10 Asserting Expectations
	10.1 Automating Observation
	10.2 Basic Assertions
	10.3 Asserting Invariants
	10.4 Asserting Correctness
	10.5 Assertions as Specifications
	10.6 From Assertions to Verification
	10.7 Reference Runs
	10.8 System Assertions
	10.8.1 Validating the Heap with MALLOC_CHECK
	10.8.2 Avoiding Buffer Overflows with ELECTRICFENCE
	10.8.3 Detecting Memory Errors with VALGRIND
	10.8.4 Language Extensions

	10.9 Checking Production Code
	10.10 Concepts
	10.11 Tools
	JML
	ESC/Java
	GUARD
	VALGRIND
	PURIFY
	INSURE++
	CYCLONE
	CCURED

	10.12 Further Reading
	10.13 Exercises

	11 Detecting Anomalies
	11.1 Capturing Normal Behavior
	11.2 Comparing Coverage
	11.3 Statistical Debugging
	11.4 Collecting Data in the Field
	11.5 Dynamic Invariants
	11.6 Invariants on the Fly
	11.7 From Anomalies to Defects
	11.8 Concepts
	11.9 Tools
	DAIKON
	DIDUCE

	11.10 Further Reading
	11.11 Exercises

	12 Causes and Effects
	12.1 Causes and Alternate Worlds
	12.2 Verifying Causes
	12.3 Causality in Practice
	12.4 Finding Actual Causes
	12.5 Narrowing Down Causes
	12.6 A Narrowing Example
	12.7 The Common Context
	12.8 Causes in Debugging
	12.9 Concepts
	12.10 Further Reading
	12.11 Exercises

	13 Isolating Failure Causes
	13.1 Isolating Causes Automatically
	13.2 Isolating versus Simplifying
	13.3 An Isolation Algorithm
	13.4 Implementing Isolation
	13.5 Isolating Failure-inducing Input
	13.6 Isolating Failure-inducing Schedules
	13.7 Isolating Failure-inducing Changes
	13.8 Problems and Limitations
	13.9 Concepts
	13.10 Tools
	Delta Debugging Plug-ins for ECLIPSE
	CCACHE

	13.11 Further Reading
	13.12 Exercises

	14 Isolating Cause-Effect Chains
	14.1 Useless Causes
	14.2 Capturing Program States
	14.3 Comparing Program States
	14.4 Isolating Relevant Program States
	14.5 Isolating Cause-Effect Chains
	14.6 Isolating Failure-inducing Code
	14.7 Issues and Risks
	14.8 Concepts
	14.9 Tools
	ASKIGOR
	IGOR

	14.10 Further Reading
	14.11 Exercises

	15 Fixing the Defect
	15.1 Locating the Defect
	15.2 Focusing on the Most Likely Errors
	15.3 Validating the Defect
	15.3.1 Does the Error Cause the Failure?
	15.3.2 Is the Cause Really an Error?
	15.3.3 Think Before You Code

	15.4 Correcting the Defect
	15.4.1 Does the Failure No Longer Occur?
	15.4.2 Did the Correction Introduce New Problems?
	15.4.3 Was the Same Mistake Made Elsewhere?
	15.4.4 Did I Do My Homework?

	15.5 Workarounds
	15.6 Learning from Mistakes
	15.7 Concepts
	15.8 Further Reading
	15.9 Exercises

	Appendix Formal Definitions
	A.1 Delta Debugging
	A.1.1 Configurations
	A.1.2 Passing and Failing Run
	A.1.3 Tests
	A.1.4 Minimality
	A.1.5 Simplifying
	A.1.6 Differences
	A.1.7 Isolating

	A.2 Memory Graphs
	A.2.1 Formal Structure
	A.2.2 Unfolding Data Structures
	A.2.3 Matching Vertices and Edges
	A.2.4 Computing the Common Subgraph
	A.2.5 Computing Graph Differences
	A.2.6 Applying Partial State Changes
	A.2.7 Capturing C State

	A.3 Cause-Effect Chains

	Glossary
	Bibliography
	Index
	Calvin.pdf
	Title page
	Copyright page
	About the Author
	Contents
	Foreword
	Preface
	How This Book Came to be Written
	Audience
	What This Book Is and What It Is Not
	Overview of Content
	Supplements, Resources, and Web Extensions
	Advice for Instructors
	Advice for Readers
	Acknowledgments

	1 How Failures Come to Be
	1.1 My Program Does Not Work!
	1.2 From Defects to Failures
	1.3 Lost in Time and Space
	1.4 From Failures to Fixes
	1.5 Automated Debugging Techniques
	1.6 Bugs, Faults, or Defects?
	1.7 Concepts
	1.8 Tools
	1.9 Further Reading
	1.10 Exercises

	2 Tracking Problems
	2.1 Oh! All These Problems
	2.2 Reporting Problems
	2.3 Managing Problems
	2.4 Classifying Problems
	2.4.1 Severity
	2.4.2 Priority
	2.4.3 Identifier
	2.4.4 Comments
	2.4.5 Notification

	2.5 Processing Problems
	2.6 Managing Problem Tracking
	2.7 Requirements as Problems
	2.8 Managing Duplicates
	2.9 Relating Problems and Fixes
	2.10 Relating Problems and Tests
	2.11 Concepts
	2.12 Tools
	BUGZILLA
	PHPBUGTRACKER
	ISSUETRACKER
	TRAC
	SOURCEFORGE
	GFORGE

	2.13 Further Reading
	2.14 Exercises

	3 Making Programs Fail
	3.1 Testing for Debugging
	3.2 Controlling the Program
	3.3 Testing at the Presentation Layer
	3.3.1 Low-level Interaction
	3.3.2 System-level Interaction
	3.3.3 Higher-level Interaction
	3.3.4 Assessing Test Results

	3.4 Testing at the Functionality Layer
	3.5 Testing at the Unit Layer
	3.6 Isolating Units
	3.7 Designing for Debugging
	3.8 Preventing Unknown Problems
	3.9 Concepts
	3.10 Tools
	JUNIT
	ANDROID
	APPLESCRIPT
	VBSCRIPT
	Other scripting languages
	FAUmachine
	VMWare
	Virtual PC

	3.11 Further Reading
	3.12 Exercises

	4 Reproducing Problems
	4.1 The First Task in Debugging
	4.2 Reproducing the Problem Environment
	4.3 Reproducing Program Execution
	4.3.1 Reproducing Data
	4.3.2 Reproducing User Interaction
	4.3.3 Reproducing Communications
	4.3.4 Reproducing Time
	4.3.5 Reproducing Randomness
	4.3.6 Reproducing Operating Environments
	4.3.7 Reproducing Schedules
	4.3.8 Physical Influences
	4.3.9 Effects of Debugging Tools

	4.4 Reproducing System Interaction
	4.5 Focusing on Units
	4.5.1 Setting Up a Control Layer
	4.5.2 A Control Example
	4.5.3 Mock Objects
	4.5.4 Controlling More Interaction

	4.6 Concepts
	4.7 Tools
	Winrunner
	Android
	Revirt
	Checkpointing Tools

	4.8 Further Reading
	4.9 Exercises

	5 Simplifying Problems
	5.1 Simplifying the Problem
	5.2 The Gecko BugAThon
	5.3 Manual Simplification
	5.4 Automatic Simplification
	5.5 A Simplification Algorithm
	5.6 Simplifying User Interaction
	5.7 Random Input Simplified
	5.8 Simplifying Faster
	5.8.1 Caching
	5.8.2 Stop Early
	5.8.3 Syntactic Simplification
	5.8.4 Isolate Differences, Not Circumstances

	5.9 Concepts
	5.10 Tools
	Delta Debugging
	Simplification Library

	5.11 Further Reading
	5.12 Exercises

	6 Scientific Debugging
	6.1 How to Become a Debugging Guru
	6.2 The Scientific Method
	6.3 Applying the Scientific Method
	6.3.1 Debugging sample—Preparation
	6.3.2 Debugging sample—Hypothesis 1
	6.3.3 Debugging sample—Hypothesis 2
	6.3.4 Debugging sample—Hypothesis 3
	6.3.5 Debugging sample—Hypothesis 4

	6.4 Explicit Debugging
	6.5 Keeping a Logbook
	6.6 Debugging Quick-and-Dirty
	6.7 Algorithmic Debugging
	6.8 Deriving a Hypothesis
	6.9 Reasoning About Programs
	6.10 Concepts
	6.11 Further Reading
	6.12 Exercises

	7 Deducing Errors
	7.1 Isolating Value Origins
	7.2 Understanding Control Flow
	7.3 Tracking Dependences
	7.3.1 Effects of Statements
	7.3.2 Affected Statements
	7.3.3 Statement Dependences
	7.3.4 Following Dependences
	7.3.5 Leveraging Dependences

	7.4 Slicing Programs
	7.4.1 Forward Slices
	7.4.2 Backward Slices
	7.4.3 Slice Operations
	7.4.4 Leveraging Slices
	7.4.5 Executable Slices

	7.5 Deducing Code Smells
	7.6 Limits of Static Analysis
	7.7 Concepts
	7.8 Tools
	CODESURFER
	FINDBUGS

	7.9 Further Reading
	7.10 Exercises

	8 Observing Facts
	8.1 Observing State
	8.2 Logging Execution
	8.2.1 Logging Functions
	8.2.2 Logging Frameworks
	8.2.3 Logging with Aspects
	8.2.4 Logging at the Binary Level

	8.3 Using Debuggers
	8.3.1 A Debugging Session
	8.3.2 Controlling Execution
	8.3.3 Postmortem Debugging
	8.3.4 Logging Data
	8.3.5 Invoking Functions
	8.3.6 Fix and Continue
	8.3.7 Embedded Debuggers
	8.3.8 Debugger Caveats

	8.4 Querying Events
	8.4.1 Watchpoints
	8.4.2 Uniform Event Queries

	8.5 Visualizing State
	8.6 Concepts
	8.7 Tools
	LOG4J
	ASPECTJ
	PIN
	BCEL
	GDB
	DDD
	JAVA SPIDER
	eDOBS

	8.8. Further Reading
	8.9 Exercises

	9 Tracking Origins
	9.1 Reasoning Backwards
	9.2 Exploring Execution History
	9.3 Dynamic Slicing
	9.4 Leveraging Origins
	9.5 Tracking Down Infections
	9.6 Concepts
	9.7 Tools
	ODB

	9.8 Further Reading
	9.9 Exercises

	10 Asserting Expectations
	10.1 Automating Observation
	10.2 Basic Assertions
	10.3 Asserting Invariants
	10.4 Asserting Correctness
	10.5 Assertions as Specifications
	10.6 From Assertions to Verification
	10.7 Reference Runs
	10.8 System Assertions
	10.8.1 Validating the Heap with MALLOC_CHECK
	10.8.2 Avoiding Buffer Overflows with ELECTRICFENCE
	10.8.3 Detecting Memory Errors with VALGRIND
	10.8.4 Language Extensions

	10.9 Checking Production Code
	10.10 Concepts
	10.11 Tools
	JML
	ESC/Java
	GUARD
	VALGRIND
	PURIFY
	INSURE++
	CYCLONE
	CCURED

	10.12 Further Reading
	10.13 Exercises

	11 Detecting Anomalies
	11.1 Capturing Normal Behavior
	11.2 Comparing Coverage
	11.3 Statistical Debugging
	11.4 Collecting Data in the Field
	11.5 Dynamic Invariants
	11.6 Invariants on the Fly
	11.7 From Anomalies to Defects
	11.8 Concepts
	11.9 Tools
	DAIKON
	DIDUCE

	11.10 Further Reading
	11.11 Exercises

	12 Causes and Effects
	12.1 Causes and Alternate Worlds
	12.2 Verifying Causes
	12.3 Causality in Practice
	12.4 Finding Actual Causes
	12.5 Narrowing Down Causes
	12.6 A Narrowing Example
	12.7 The Common Context
	12.8 Causes in Debugging
	12.9 Concepts
	12.10 Further Reading
	12.11 Exercises

	13 Isolating Failure Causes
	13.1 Isolating Causes Automatically
	13.2 Isolating versus Simplifying
	13.3 An Isolation Algorithm
	13.4 Implementing Isolation
	13.5 Isolating Failure-inducing Input
	13.6 Isolating Failure-inducing Schedules
	13.7 Isolating Failure-inducing Changes
	13.8 Problems and Limitations
	13.9 Concepts
	13.10 Tools
	Delta Debugging Plug-ins for ECLIPSE
	CCACHE

	13.11 Further Reading
	13.12 Exercises

	14 Isolating Cause-Effect Chains
	14.1 Useless Causes
	14.2 Capturing Program States
	14.3 Comparing Program States
	14.4 Isolating Relevant Program States
	14.5 Isolating Cause-Effect Chains
	14.6 Isolating Failure-inducing Code
	14.7 Issues and Risks
	14.8 Concepts
	14.9 Tools
	ASKIGOR
	IGOR

	14.10 Further Reading
	14.11 Exercises

	15 Fixing the Defect
	15.1 Locating the Defect
	15.2 Focusing on the Most Likely Errors
	15.3 Validating the Defect
	15.3.1 Does the Error Cause the Failure?
	15.3.2 Is the Cause Really an Error?
	15.3.3 Think Before You Code

	15.4 Correcting the Defect
	15.4.1 Does the Failure No Longer Occur?
	15.4.2 Did the Correction Introduce New Problems?
	15.4.3 Was the Same Mistake Made Elsewhere?
	15.4.4 Did I Do My Homework?

	15.5 Workarounds
	15.6 Learning from Mistakes
	15.7 Concepts
	15.8 Further Reading
	15.9 Exercises

	Appendix Formal Definitions
	A.1 Delta Debugging
	A.1.1 Configurations
	A.1.2 Passing and Failing Run
	A.1.3 Tests
	A.1.4 Minimality
	A.1.5 Simplifying
	A.1.6 Differences
	A.1.7 Isolating

	A.2 Memory Graphs
	A.2.1 Formal Structure
	A.2.2 Unfolding Data Structures
	A.2.3 Matching Vertices and Edges
	A.2.4 Computing the Common Subgraph
	A.2.5 Computing Graph Differences
	A.2.6 Applying Partial State Changes
	A.2.7 Capturing C State

	A.3 Cause-Effect Chains

	Glossary
	Bibliography
	Index

	Calvin.pdf
	Title page
	Copyright page
	About the Author
	Contents
	Foreword
	Preface
	How This Book Came to be Written
	Audience
	What This Book Is and What It Is Not
	Overview of Content
	Supplements, Resources, and Web Extensions
	Advice for Instructors
	Advice for Readers
	Acknowledgments

	1 How Failures Come to Be
	1.1 My Program Does Not Work!
	1.2 From Defects to Failures
	1.3 Lost in Time and Space
	1.4 From Failures to Fixes
	1.5 Automated Debugging Techniques
	1.6 Bugs, Faults, or Defects?
	1.7 Concepts
	1.8 Tools
	1.9 Further Reading
	1.10 Exercises

	2 Tracking Problems
	2.1 Oh! All These Problems
	2.2 Reporting Problems
	2.3 Managing Problems
	2.4 Classifying Problems
	2.4.1 Severity
	2.4.2 Priority
	2.4.3 Identifier
	2.4.4 Comments
	2.4.5 Notification

	2.5 Processing Problems
	2.6 Managing Problem Tracking
	2.7 Requirements as Problems
	2.8 Managing Duplicates
	2.9 Relating Problems and Fixes
	2.10 Relating Problems and Tests
	2.11 Concepts
	2.12 Tools
	BUGZILLA
	PHPBUGTRACKER
	ISSUETRACKER
	TRAC
	SOURCEFORGE
	GFORGE

	2.13 Further Reading
	2.14 Exercises

	3 Making Programs Fail
	3.1 Testing for Debugging
	3.2 Controlling the Program
	3.3 Testing at the Presentation Layer
	3.3.1 Low-level Interaction
	3.3.2 System-level Interaction
	3.3.3 Higher-level Interaction
	3.3.4 Assessing Test Results

	3.4 Testing at the Functionality Layer
	3.5 Testing at the Unit Layer
	3.6 Isolating Units
	3.7 Designing for Debugging
	3.8 Preventing Unknown Problems
	3.9 Concepts
	3.10 Tools
	JUNIT
	ANDROID
	APPLESCRIPT
	VBSCRIPT
	Other scripting languages
	FAUmachine
	VMWare
	Virtual PC

	3.11 Further Reading
	3.12 Exercises

	4 Reproducing Problems
	4.1 The First Task in Debugging
	4.2 Reproducing the Problem Environment
	4.3 Reproducing Program Execution
	4.3.1 Reproducing Data
	4.3.2 Reproducing User Interaction
	4.3.3 Reproducing Communications
	4.3.4 Reproducing Time
	4.3.5 Reproducing Randomness
	4.3.6 Reproducing Operating Environments
	4.3.7 Reproducing Schedules
	4.3.8 Physical Influences
	4.3.9 Effects of Debugging Tools

	4.4 Reproducing System Interaction
	4.5 Focusing on Units
	4.5.1 Setting Up a Control Layer
	4.5.2 A Control Example
	4.5.3 Mock Objects
	4.5.4 Controlling More Interaction

	4.6 Concepts
	4.7 Tools
	Winrunner
	Android
	Revirt
	Checkpointing Tools

	4.8 Further Reading
	4.9 Exercises

	5 Simplifying Problems
	5.1 Simplifying the Problem
	5.2 The Gecko BugAThon
	5.3 Manual Simplification
	5.4 Automatic Simplification
	5.5 A Simplification Algorithm
	5.6 Simplifying User Interaction
	5.7 Random Input Simplified
	5.8 Simplifying Faster
	5.8.1 Caching
	5.8.2 Stop Early
	5.8.3 Syntactic Simplification
	5.8.4 Isolate Differences, Not Circumstances

	5.9 Concepts
	5.10 Tools
	Delta Debugging
	Simplification Library

	5.11 Further Reading
	5.12 Exercises

	6 Scientific Debugging
	6.1 How to Become a Debugging Guru
	6.2 The Scientific Method
	6.3 Applying the Scientific Method
	6.3.1 Debugging sample—Preparation
	6.3.2 Debugging sample—Hypothesis 1
	6.3.3 Debugging sample—Hypothesis 2
	6.3.4 Debugging sample—Hypothesis 3
	6.3.5 Debugging sample—Hypothesis 4

	6.4 Explicit Debugging
	6.5 Keeping a Logbook
	6.6 Debugging Quick-and-Dirty
	6.7 Algorithmic Debugging
	6.8 Deriving a Hypothesis
	6.9 Reasoning About Programs
	6.10 Concepts
	6.11 Further Reading
	6.12 Exercises

	7 Deducing Errors
	7.1 Isolating Value Origins
	7.2 Understanding Control Flow
	7.3 Tracking Dependences
	7.3.1 Effects of Statements
	7.3.2 Affected Statements
	7.3.3 Statement Dependences
	7.3.4 Following Dependences
	7.3.5 Leveraging Dependences

	7.4 Slicing Programs
	7.4.1 Forward Slices
	7.4.2 Backward Slices
	7.4.3 Slice Operations
	7.4.4 Leveraging Slices
	7.4.5 Executable Slices

	7.5 Deducing Code Smells
	7.6 Limits of Static Analysis
	7.7 Concepts
	7.8 Tools
	CODESURFER
	FINDBUGS

	7.9 Further Reading
	7.10 Exercises

	8 Observing Facts
	8.1 Observing State
	8.2 Logging Execution
	8.2.1 Logging Functions
	8.2.2 Logging Frameworks
	8.2.3 Logging with Aspects
	8.2.4 Logging at the Binary Level

	8.3 Using Debuggers
	8.3.1 A Debugging Session
	8.3.2 Controlling Execution
	8.3.3 Postmortem Debugging
	8.3.4 Logging Data
	8.3.5 Invoking Functions
	8.3.6 Fix and Continue
	8.3.7 Embedded Debuggers
	8.3.8 Debugger Caveats

	8.4 Querying Events
	8.4.1 Watchpoints
	8.4.2 Uniform Event Queries

	8.5 Visualizing State
	8.6 Concepts
	8.7 Tools
	LOG4J
	ASPECTJ
	PIN
	BCEL
	GDB
	DDD
	JAVA SPIDER
	eDOBS

	8.8. Further Reading
	8.9 Exercises

	9 Tracking Origins
	9.1 Reasoning Backwards
	9.2 Exploring Execution History
	9.3 Dynamic Slicing
	9.4 Leveraging Origins
	9.5 Tracking Down Infections
	9.6 Concepts
	9.7 Tools
	ODB

	9.8 Further Reading
	9.9 Exercises

	10 Asserting Expectations
	10.1 Automating Observation
	10.2 Basic Assertions
	10.3 Asserting Invariants
	10.4 Asserting Correctness
	10.5 Assertions as Specifications
	10.6 From Assertions to Verification
	10.7 Reference Runs
	10.8 System Assertions
	10.8.1 Validating the Heap with MALLOC_CHECK
	10.8.2 Avoiding Buffer Overflows with ELECTRICFENCE
	10.8.3 Detecting Memory Errors with VALGRIND
	10.8.4 Language Extensions

	10.9 Checking Production Code
	10.10 Concepts
	10.11 Tools
	JML
	ESC/Java
	GUARD
	VALGRIND
	PURIFY
	INSURE++
	CYCLONE
	CCURED

	10.12 Further Reading
	10.13 Exercises

	11 Detecting Anomalies
	11.1 Capturing Normal Behavior
	11.2 Comparing Coverage
	11.3 Statistical Debugging
	11.4 Collecting Data in the Field
	11.5 Dynamic Invariants
	11.6 Invariants on the Fly
	11.7 From Anomalies to Defects
	11.8 Concepts
	11.9 Tools
	DAIKON
	DIDUCE

	11.10 Further Reading
	11.11 Exercises

	12 Causes and Effects
	12.1 Causes and Alternate Worlds
	12.2 Verifying Causes
	12.3 Causality in Practice
	12.4 Finding Actual Causes
	12.5 Narrowing Down Causes
	12.6 A Narrowing Example
	12.7 The Common Context
	12.8 Causes in Debugging
	12.9 Concepts
	12.10 Further Reading
	12.11 Exercises

	13 Isolating Failure Causes
	13.1 Isolating Causes Automatically
	13.2 Isolating versus Simplifying
	13.3 An Isolation Algorithm
	13.4 Implementing Isolation
	13.5 Isolating Failure-inducing Input
	13.6 Isolating Failure-inducing Schedules
	13.7 Isolating Failure-inducing Changes
	13.8 Problems and Limitations
	13.9 Concepts
	13.10 Tools
	Delta Debugging Plug-ins for ECLIPSE
	CCACHE

	13.11 Further Reading
	13.12 Exercises

	14 Isolating Cause-Effect Chains
	14.1 Useless Causes
	14.2 Capturing Program States
	14.3 Comparing Program States
	14.4 Isolating Relevant Program States
	14.5 Isolating Cause-Effect Chains
	14.6 Isolating Failure-inducing Code
	14.7 Issues and Risks
	14.8 Concepts
	14.9 Tools
	ASKIGOR
	IGOR

	14.10 Further Reading
	14.11 Exercises

	15 Fixing the Defect
	15.1 Locating the Defect
	15.2 Focusing on the Most Likely Errors
	15.3 Validating the Defect
	15.3.1 Does the Error Cause the Failure?
	15.3.2 Is the Cause Really an Error?
	15.3.3 Think Before You Code

	15.4 Correcting the Defect
	15.4.1 Does the Failure No Longer Occur?
	15.4.2 Did the Correction Introduce New Problems?
	15.4.3 Was the Same Mistake Made Elsewhere?
	15.4.4 Did I Do My Homework?

	15.5 Workarounds
	15.6 Learning from Mistakes
	15.7 Concepts
	15.8 Further Reading
	15.9 Exercises

	Appendix Formal Definitions
	A.1 Delta Debugging
	A.1.1 Configurations
	A.1.2 Passing and Failing Run
	A.1.3 Tests
	A.1.4 Minimality
	A.1.5 Simplifying
	A.1.6 Differences
	A.1.7 Isolating

	A.2 Memory Graphs
	A.2.1 Formal Structure
	A.2.2 Unfolding Data Structures
	A.2.3 Matching Vertices and Edges
	A.2.4 Computing the Common Subgraph
	A.2.5 Computing Graph Differences
	A.2.6 Applying Partial State Changes
	A.2.7 Capturing C State

	A.3 Cause-Effect Chains

	Glossary
	Bibliography
	Index




