Buffers and
Pipelines

Based on slides from Steve Marschner

1

Hidden surface elimination

e We have discussed how to map primitives to
image space

e projection and perspective are depth cues

e occlusion is the MOST important depth cue

Back face culling

e For closed shapes you will never see the inside
e therefore only draw surfaces that face the camera

e implement by checkingn - v

Painter’s algorithm

e Simplest way to do hidden surfaces

e Draw from back to front, use overwriting in
framebuffer

Painter’s algorithm

e Amounts to a topological sort of the graph of
occlusions

e thatis, an edge from A to B means A is
occluded by B

e any sort is valid -
*ABCDEF gl F
*BADCFE ' LA

e if there are cycles
there is no sort

[Foley et

Painter’s algorithm

e Useful when a valid order is easy to come by
e Compatible with alpha-blended transparency

[Feley etal)

The z buffer

e In many (most) applications maintaining a z sort is too
expensive

e changes all the time as the view changes
e many data structures exist, but complex
e Solution: draw in any order, keep track of closest

e allocate extra channel per pixel to keep track of closest
depth so far

e when drawing, compare object’s depth to current
closest depth and discard if greater

e this works just like any other compositing operation

The z buffer

o olofololo] [sISISISIS]S]S s[sis[siss]s]
oolololojololo] [s]sis|s]|s]s s|sis[s[s]s
oloolajololo| [s]s]sS]S]s s|sis[s]s]o]
joelojo 0 S|5181|5 ‘ss;ss;_‘._
oolojolofolo]o 15|55 s|s]5|ololo]ole
‘‘‘‘‘‘‘‘ .- ‘49— 4 - - - -
....... 0 5|56/ $i|8iojoiolp
------- —— — 11 . '
lojojojojojolio]o 5] slojofojale
0 9 0jojojojolo|c
| sIs[s[s]5[5]s]
s[s[s|sisis c
sisisisisic]|
5|55 0j0]
n 0
0

e another example of a memory-intensive
brute force approach that works and has
become the standard

[Feley et al)

Precision in z buffer

e The precision is distributed between the near
and far clipping planes

e this is why these planes have to exist

e also why you can’t always just set them to
very small and very large distances

e Generally use z’ (not world z) in z buffer

Interpolating in projection

projection plane

eye point

equally spaced z (screen depth)

linear interp. in screen space # linear interp. in world (eye) space

10

Pipeline for minimal operation

e Vertex stage (position and color)

e transform position (object -> screen space)
e Rasterize stage

e fill in shape color
e Fragment stage

e write color to framebuffer

Result of minimal pipeline

Pipeline for basic z buffer

e Vertex stage (position and color)

e transform position (object -> screen space)
e Rasterize stage

e interpolate z’ (screen z)

e fill in shape color
e Fragment stage

e write color to framebuffer if interpolated z’ <
current z’

Result of z-buffer pipeline

Flat shading

e Shade using the triangle normal

e Leads to constant shading and faceted
appearance

(Foley et al]

mpd'?v-ﬂ SV refecto | Sekaes 14 4]
by Th

I HE Segnl waing

Puwns s MhtaRasivre w~m;

Pipeline for flat shading

e Vertex stage (position and color)
e transform position (object -> screen space)

e compute shaded color per triangle using normal
e Rasterize stage

e interpolate z’ (screen z)

e fill in shape color

e Fragment stage

e write color to framebuffer if interpolated z’ <
current z’

16

Result of flat-shading pipeline

Lighting
e Phong illumination requires:
e light vector
® eye vector

e surface normal

Directional light

e Directional (infinitely distant) light source

e light vector always points in the same
direction
e often specified by \
position [x y z 0] *
e many pipelines are faster
if you use directional lights
<1,

19

Gouraud shading

*GL_SMOOTH
e Often draw smooth surfaces

e compute colors at
vertices using
vertex normals

Pote B30 Shutwrtug Gownet ¥ aced pofyDoss wit 3™ #feon (Sectons 1443
S0 16241 Copyrght © 1950, Fase. A by Momnes and MR Siape usng
Faar's ronMesiatic Pandecsr ™ sotmare |

e interpolate colors
across triangles

e “Gouraud shading”
e “Smooth shading”

[Feley M-Jlj

Pipeline for Gouraud shading

e Vertex stage (position and color)

e transform position and normal (object -> screen
space)

e compute shaded color per triangle using normal
e Rasterize stage

e interpolate z’ (screen z), and color

e fill in shape color
e Fragment stage

e write color to framebuffer if interpolated z’ < current

¥ 4

Result of Gouraud shading

Vertex normals

e Need normals at vertices to
compute Gouraud shading

e Best to get vertex normals from
the geometry

e e.g. spheres

e Otherwise have to infer vertex
normals from triangles

[Foley et &1)

e simple scheme: average
surrounding face normals

\' S Zl ’\:’-
B 'lz,w\"i:

Non-diffuse Gouraud shading

e Results are not so good with fast-varying models like
specular ones

e problems with any
highlights smaller
than a triangle

:~l.ﬂ ANUTW G Gines aad AT (W Pp g g T Sl e e on Sectoss 164 4
.“i)_ﬁl ooyt © Y950 Piear Rersdered by Thomas W iaers avd HE Segel verg
‘u'v t ’

24

[Feley et al]

Phong shading

e Get higher quality by interpolating the normal
e as easy as interpolating the color

e evaluating the illumination model per pixel rather than per
vertex

e in pipeline, this means moving illumination from the vertex
processing stage to the fragment processing stage

[Fowy et al]

Phong shading

e Produces much better highlights

Pate LD SN0 Phurg steded SovIons wih mecedar sl tun (Gacsone 164 4 gt
M2 Copyngne © Y0, Paow Renderad by Thomes Wilama avd N & Sunjed uwrg Foar s
Aete RerdarWan v eotware |

[Foley ot &)

e R e e L e L T S T)
voplr © 9. Prear Rersdered by Thomas M iters avd H 8 Segel 1eemg
fatn MRerdded\iar = wifwace

26

Pipeline for Phong shading

e Vertex stage (position and color)
e transform position and normal (object -> screen space)
e compute shaded color per triangle using normal
e Rasterize stage
e interpolate z’ (screen z), color, and x, v, z normal
e fill in shape color
e Fragment stage
e compute shading using interpolated and color

e write color to framebuffer if interpolated z’ < current z’

Result of Phong shading

Not
implemented
in OpenGL.
You must
write your
own shaders
to do this.

