Understanding Quaternions:

Rotations, Reflections, and Perspective Projections

Ron Goldman Department of Computer Science Rice University The invention of the calculus of quaternions is a step towards the knowledge of quantities related to space which <u>can only be</u> <u>compared for its importance with the invention of triple</u> <u>coordinates by Descartes</u>. The ideas of this calculus, as distinguished from its operations and symbols, are fitted to be of the greatest use in all parts of science. -- Clerk Maxwell, 1869.

Quaternions came from Hamilton after his really good work had been done; and, though beautifully ingenious, have been <u>an unmixed evil</u> to those who have touched them in any way, including Clerk Maxwell. – Lord Kelvin, 1892

Motivation

<u>Classical Applications of Quaternions in Computer Graphics</u>

Provide Compact Representations for Rotations and Reflections of Vectors in 3-Dimensions

Avoid Distortions due to Floating Point Computations during Rotations

Enable Key Frame Animation by Spherical Linear Interpolation

Compact Representation for Rotations of Vectors in 3-Dimensions

- 3×3 Matrices -- 9 Entries
- Unit Quaternions -- 4 Coefficients

Avoids Distortions due to Floating Point Computations

Problem

- After several matrix multiplications, rotation matrices may no longer be orthogonal due to floating point inaccuracies.
- Non-Orthogonal matrices are <u>difficult to renormalize</u>.
 - -- Leads to distortions in lengths and angles during rotation.

Solution

• Quaternions are <u>easily renormalized</u>.

-- $q \rightarrow \frac{q}{\|q\|}$ avoids distortions during rotation.

Key Frame Animation

- <u>Linear Interpolation</u> between two rotation matrices R_1 and R_2 (key frames) fails to generate another rotation matrix.
 - -- $Lerp(R_1, R_2, t) = (1-t)R_1 + tR_2$ -- not necessarily orthogonal matrices.
- <u>Spherical Linear Interpolation</u> between two unit quaternions always generates a unit quaternion.

-- $Slerp(q_1,q_2,t) = \frac{\sin((1-t)\phi)}{\sin(\phi)}q_1 + \frac{\sin(t\phi)}{\sin(\phi)}q_2$ -- always a unit quaternion.

Additional Applications of Quaternions in Geometric Modeling

Practical methods for <u>tubing and texturing</u> smooth curves and surfaces using optimal orthonormal frames [Hanson, 2006].

Better ways to visualize streamlines [Hanson, 2006].

Effective techniques for generating and analyzing 3–dimensional Pythagorean <u>hodograph curves</u> [Farouki, 2008].

Novel constructions of curves and <u>surface patches on spheres</u> [Krasauskas, 2011].

Efficient conformal transformations on triangular meshes [Schroder et al, 2011].

Goals and Motivation

- To provide a *geometric interpretation for quaternions*, appropriate for contemporary Computer Graphics.
- To present better ways to *visualize quaternions*, and the effect of quaternion multiplication on points and vectors in 3-dimensions.
- To develop *simple*, *intuitive proofs of the sandwiching formulas* for rotation and reflection.
- To show how to apply *sandwiching to compute perspective projections* (NEW).

Prerequisites

Complex Numbers

- $e^{i\theta} = \cos(\theta) + i\sin(\theta)$
- $z \mapsto e^{i\theta} z$ rotates z by the angle θ in the complex plane

Vector Geometry

- $u \cdot v = 0 \Leftrightarrow u \perp v$
- $u \times v \perp u, v$

Models for Visualizing 4–Dimensions

Mathematical Models for 4-Dimensions

- Mass-Points
- Vectors in 4-Dimensions
- Pairs of Mutually Orthogonal Planes

Mass Points and Archimedes' Law of the Lever

Mass Points and Vectors

Addition and Subtraction for Vectors

Quaternions

Old Definition

- $q = a + bi + cj + dk = a + \mathbf{v}$
- Sum of a scalar and a vector

New Definition

- $q = aO + bi + cj + dk = aO + \mathbf{v}$
- Sum of a mass-point and a vector = a mass-point
- $O = (0,0,0,1) = \text{origin} \leftrightarrow \text{identity for quaternion multiplication}$

Quaternion Multiplication

Notation (Mass-Points)

- q = aO + bi + cj + dk
- *O* = identity for multiplication

Multiplication (Basis Vectors)

•
$$i^2 = j^2 = k^2 = -O$$
 $O^2 = O$

•
$$ij = k$$
 $jk = i$ $ki = j$

•
$$ji = -k$$
 $kj = -i$ $ik = -j$

Multiplication (Arbitrary Quaternion)

- $(a O + v)(\alpha O + w) = (a \alpha v \cdot w)O + (\alpha v + a w + v \times w)$
- $vw = -(v \cdot w)O + v \times w$

Properties of Quaternion Multiplication

- Associative
- Not Commutative
- Distributes Through Addition
- Identity and Inverses

The 4–Dimensional Vector Space of Quaternions

Pairs of Complementary Orthogonal Planes

Orthogonal Plane

Pairs of Complementary Orthogonal Planes

Orthogonal Plane

Pairs of Complementary Orthogonal Planes

Orthogonal Plane

The Geometry of Quaternion Multiplication

Quaternion Multiplication and Isometries

Norm of Product

• || pq || = || p || || q ||

Quaternion Multiplication and Isometries

Norm of Product

• || pq || = || p || || q ||

Multiplication by Unit Quaternions

- $p \mapsto pq$
- $||q||=1 \Rightarrow$ multiplication by q (on left or right) is a linear isometry in R^4

Quaternion Multiplication and Isometries

Norm of Product

• || pq || = || p || || q ||

Multiplication by Unit Quaternions

- $p \mapsto pq$
- $||q||=1 \Rightarrow$ multiplication by q (on left or right) is a linear isometry in R^4

 \Rightarrow multiplication by q (on left or right) is rotation in R^4

Properties of Vector Multiplication

Vector Multiplication

• $v w = (-v \cdot w)O + v \times w$

Consequences

- $N \perp v \Rightarrow Nv = N \times v$
- $||N|| = 1 \Rightarrow N^2 = -O$
- *O*, *N* plane is isomorphic to the complex plane

$$- N^2 = -O, \quad O^2 = O$$

$$-- NO = ON = N$$

Vector Multiplication Introduces Mass via Rotation

Plane of v,w

Orthogonal Plane of $v \times w$, *O*

Multiplication by v represents a rotation in 4-dimensions

Planes Isomorphic to the Complex Plane

Conjugation

Definition

- q = aO + bi + cj + dk
- $q^* = aO bi cj dk$

Properties

•
$$(pq)^* = q^*p^*$$

•
$$q q^* = ||q||^2 O$$
 $(\Rightarrow ||pq|| = ||p|| ||q||)$

Inverses and Inversion

•
$$q^{-1} = \frac{q^*}{qq^*} = \frac{q^*}{\|q\|^2}$$
 (inverses)
• $v^{-1} = -\frac{v}{\|v\|^2}$ (inversion)

Inversion in the Sphere

Definition

- q = center of unit sphere
- $inv_q(p) = point along line from q to p at distance <math>d = 1/||p-q||$ from q

Formula

•
$$inv_q(p) = q + \frac{p-q}{\|p-q\|^2} = q - (p-q)^{-1}$$

•
$$\left\| inv_q(p) - q \right\| = \frac{\left\| p - q \right\|}{\left\| p - q \right\|^2} = \frac{1}{\left\| p - q \right\|}$$

Properties

- inv_q turns unit sphere centered at q inside out
- $inv_q \circ inv_q = identity$
- inv_q maps spheres and planes to spheres and planes

Conjugates of Complex Numbers

Complex Number

• $q(N, \theta) = \cos(\theta)O + \sin(\theta)N$

Complex Conjugate

• $q^*(N,\theta) = \cos(\theta)O - \sin(\theta)N$

•
$$q^*(N,\theta) = q(N,-\theta) = q(N,\theta)^{-1}$$

Rotation in Complementary Planes -- Double Isoclinic Rotations

Rotation by the Angle θ $q(N,\theta), q^*(N,\theta)$ Cancel

Plane Perpendicular to O, N

Rotation by the Angle θ $q(N,\theta), q^*(N,\theta)$ Reinforce

Rotation in Plane Perpendicular to *O***,** *N*

i.
$$q(N, \theta)v = (\cos(\theta)O + \sin(\theta)N)v = \cos(\theta)v + \sin(\theta)N \times v$$

ii.
$$vq(N,\theta) = v(\cos(\theta)O + \sin(\theta)N) = \cos(\theta)v + \sin(\theta)v \times N = \cos(\theta)v - \sin(\theta)N \times v$$

Plane \perp *O*, *N*

Sandwiching with Conjugates in Complementary Planes -- Simple Rotations

Plane of O, N

Sandwiching $q(N,\theta) p q^*(N,\theta)$ $q(N,\theta), q^*(N,\theta)$ <u>Cancel</u> Plane Perpendicular to O, NSandwiching $q(N,\theta) v q^*(N,\theta)$ $q(N,\theta), q^*(N,\theta)$ <u>Reinforce</u>

Sandwiching in Complementary Planes -- Simple Rotations

Plane of O, N

Sandwiching $q(N,\theta) p q(N,\theta)$ $q(N,\theta)$ on Left and Right <u>Reinforce</u> Plane Perpendicular to O, NSandwiching $q(N,\theta) v q(N,\theta)$ $q(N,\theta)$ on Left and Right Cancel

Rotation, Reflection and Perspective Projection

<u>3–Dimensional and 4-Dimensional Interpretations of the Plane \perp to O, N</u>

Plane of Vectors \perp *O*, *N in* 4-*Dimensions* = *Plane of Vectors* \perp *N in* 3-*Dimensions*

The 4–Dimensional Vector Space of Quaternions

<u>3-Dimensional and 4-Dimensional Interpretations of the Plane of O, N</u>

Plane of O, N in 4-Dimensions Plane of Vectors in 4-Dimensions

Line Through O in Direction N in 3-Dimensions Line of Points in 3-Dimensions

Rotation and Reflection

 $p \mapsto q(N, \theta) p q^*(N, \theta)$

- Plane of O, N = Line through O parallel to N
 - -- Identity \rightarrow FIXED AXIS LINE
- Plane $\perp O, N =$ Plane $\perp N$
 - -- Rotation by Angle 2θ -- ROTATION

 $p \mapsto q(N, \theta) p q(N, \theta)$

- Plane $\perp O, N =$ Plane $\perp N$
 - -- Identity \rightarrow FIXED PLANE
- Plane of O, N = Line through O parallel to N
 - -- $N \mapsto -N$ -- MIRROR IMAGE
 - -- $N \mapsto$ Mass-Point -- PERSPECTIVE PROJECTION

Rotation

Sandwiching with Conjugates in Complementary Planes -- Simple Rotations

Plane of O, N

Sandwiching $q(N,\theta) p q^*(N,\theta)$ $q(N,\theta), q^*(N,\theta)$ <u>Cancel</u> Plane Perpendicular to O, NSandwiching $q(N,\theta) v q^*(N,\theta)$ $q(N,\theta), q^*(N,\theta)$ <u>Reinforce</u>

Theorem 1: Sandwiching Rotates Vectors in 3–Dimensions

Let

- $q(N, \theta/2) = \cos(\theta/2)O + \sin(\theta/2)N$
- $v = vector in R^3$

Then

• $q(N, \theta/2) v q^*(N, \theta/2)$ rotates v by the angle θ around the axis N

Corollary: Composites of Rotations are Represented by Products of Quaternions

The composite of rotations represented by two quaternions $q(N_1, \theta_1/2), q(N_2, \theta_2/2)$

is represented by the product quaternion $q = q(N_2, \theta_2/2) q(N_1, \theta_1/2)$.

Proof:
$$q v q^* = q(N_2, \theta_2/2) q(N_1, \theta_1/2) v (q(N_2, \theta_2/2)q(N_1, \theta_1/2))^*$$

= $q(N_2, \theta_2/2) q(N_1, \theta_1/2) v q^*(N_1, \theta_1/2) q^*(N_2, \theta_2/2)$

<u>Reflection</u>

Sandwiching in Complementary Planes -- Simple Rotations

Plane of O, N

Sandwiching $q(N,\theta) p q(N,\theta)$ $q(N,\theta)$ on Left and Right <u>Reinforce</u> Plane Perpendicular to O, NSandwiching $q(N,\theta) v q(N,\theta)$ $q(N,\theta)$ on Left and Right Cancel

Reflection: Sandwiching in Complementary Planes

 v_{\perp}

Theorem 2: Sandwiching Reflects Vectors in 3–Dimensions

Let $v = vector in R^3$

Then $N \lor N$ *is the mirror image of* w *in the plane* $\perp N$

Proof: Take $\theta = \pi$. Then sandwiching *v* with:

$$q(N, \pi/2) = \cos(\pi/2)O + \sin(\pi/2)N = N$$

gives the mirror image of v in the plane $\perp N$.

Perspective Projection

 $\Delta EQP^{new} \approx \Delta ERP$

Perspective Projection: Sandwiching in the Plane of *O*, *N*

Length along N is mapped to mass at O

Perspective Projection: Sandwiching in Complementary Planes

Perspective Projection

$$P - E = dN + v \rightarrow dO + v \rightarrow O + v / d$$
$$\Delta EOP^{new} \approx \Delta ERP$$

Theorem 3: Sandwiching Vectors to the Eye with $q(N, -\pi/4)$ Gives Perspective

Let

- S = plane through the origin O perpendicular to the unit normal N
- E = O N = eye point
- $P = point in R^3$

Then

- $q(N, -\pi/4)(P-E)q(N, -\pi/4)$ is a mass-point, where:
 - -- the point is located at the perspective projection of the point P from the eye point E onto the plane S;
 - -- the mass is equal to the distance d of the point P from the plane through the eye point E perpendicular to the unit normal N.

Hidden Surfaces

 $d < d^* \Rightarrow P \ obscures \ P^*$

Converts Distance Along N to Mass at O

Summary: Sandwiching with $q(N, -\pi/4)$

Maps the Vector N to the Point O

- $q(N, -\pi/4) N q(N, -\pi/4) = O$
- Projects a Vector to a Point
- Projects Points into a Plane

Converts Distance Along N to Mass at O

- $q(N, -\pi/4) dN q(N, -\pi/4) = dO$
- No Information is Lost
- Hidden Surfaces

Perspective Projection: Sandwiching in Complementary Planes

Perspective Projection

$$P - E = dN + v \rightarrow d\sin(\theta)O + d\cos(\theta)N + v \equiv O + \cot(\theta)N + \csc(\theta)\frac{v}{d}$$
$$\Delta EQP^{new} \approx \Delta ERP$$

Theorem 4: Sandwiching Vectors to the Eye with $q(N, -\theta/2)$ Gives Perspective

Let

- $S = plane through the point O + \cot(\theta)N \equiv q(N, -\theta/2) N q(N, -\theta/2)$ perpendicular to the unit normal N
- $E = O + (\cot(\theta) \csc(\theta))N = eye point$
- $P = point in R^3$

Then

- $q(N,-\theta/2)(P-E)q(N,-\theta/2)$ is a mass-point, where:
 - -- the point is located at the perspective projection of the point P from the eye point E onto the plane S;
 - -- the mass is equal $sin(\theta)$ times the distance d of the point P from the plane through the eye point E perpendicular to the unit normal N.

Translation and Perspective Commute

Theorem 5: Sandwiching Vectors to the Eye with $q(N, -\theta/2)$ Gives Perspective

Let

- E = eye point
- $S = plane at a distance csc(\theta) from E perpendicular to the unit normal N$
- $P = point in R^3$

Then

- $q(N,-\theta/2)(P-E)q(N,-\theta/2)$ is a mass-point, where:
 - -- the point is located at the perspective projection of the point P from the eye point E onto the plane S translated to the canonical plane;
 - -- the mass is equal $sin(\theta)$ times the distance d of the point P from the plane through the eye point E perpendicular to the unit normal N.

Proof: Translation and Perspective Commute.

Conclusions

Rotations, Reflections, and Perspective Projections in 3–Dimensions can all be Modeled by Simple Rotations in 4–Dimensions

Simple Rotations in 4-Dimensions can be Modeled by Sandwiching either

- *i.* Between a Unit Quaternion and its Conjugate (Rotation)
- *ii.* Between Two Copies of the Same Unit Quaternion (Reflection and Perspective Projection)

<u>Formulas</u>

Rotation

• $v \mapsto q(N,\theta) v q^*(N,\theta)$

Reflection

• $v \mapsto N v N$

Perspective Projection

• $P \mapsto q(N,\theta)(P-E)q^*(N,\theta)$

Inversion

• $P \mapsto Q - (P - Q)^{-1}$

<u>References</u>

- Goldman, R. (2010), *Rethinking Quaternions: Theory and Computation*, Synthesis Lectures on Computer Graphics and Animation, ed. Brian A. Barsky, No. 13. San Rafael: Morgan & Claypool Publishers.
- Goldman, R. (2011), Understanding Quaternions, *Graphical Models*, Vol. 73, pp. 21-49.
- Goldman, R. (2011), Modeling Perspective Projections in 3-Dimensions by Rotations in 4-Dimensions, submitted for publication.