Understanding Quaternions:
 Rotations, Reflections, and Perspective Projections

Ron Goldman
Department of Computer Science
Rice University

The invention of the calculus of quaternions is a step towards the knowledge of quantities related to space which can only be compared for its importance with the invention of triple coordinates by Descartes. The ideas of this calculus, as distinguished from its operations and symbols, are fitted to be of the greatest use in all parts of science. -- Clerk Maxwell, 1869.

Quaternions came from Hamilton after his really good work had been done; and, though beautifully ingenious, have been an unmixed evil to those who have touched them in any way, including Clerk Maxwell. - Lord Kelvin, 1892

Motivation

Classical Applications of Quaternions in Computer Graphics

Provide Compact Representations for Rotations and Reflections of Vectors in 3-Dimensions

Avoid Distortions due to Floating Point Computations during Rotations

Enable Key Frame Animation by Spherical Linear Interpolation

Compact Representation for Rotations of Vectors in 3-Dimensions

- 3×3 Matrices -- 9 Entries
- Unit Quaternions -- 4 Coefficients

$\underline{\text { Avoids Distortions due to Floating Point Computations }}$

Problem

- After several matrix multiplications, rotation matrices may no longer be orthogonal due to floating point inaccuracies.
- Non-Orthogonal matrices are difficult to renormalize.
-- Leads to distortions in lengths and angles during rotation.

Solution

- Quaternions are easily renormalized.
-- $\quad q \rightarrow \frac{q}{\|q\|}$ avoids distortions during rotation.

Key Frame Animation

- Linear Interpolation between two rotation matrices R_{1} and R_{2} (key frames) fails to generate another rotation matrix.
-- $\operatorname{Lerp}\left(R_{1}, R_{2}, t\right)=(1-t) R_{1}+t R_{2}--$ not necessarily orthogonal matrices.
- Spherical Linear Interpolation between two unit quaternions always generates a unit quaternion.
-- $\operatorname{Slerp}\left(q_{1}, q_{2}, t\right)=\frac{\sin ((1-t) \phi)}{\sin (\phi)} q_{1}+\frac{\sin (t \phi)}{\sin (\phi)} q_{2}$-- always a unit quaternion.

Additional Applications of Quaternions in Geometric Modeling

Practical methods for tubing and texturing smooth curves and surfaces using optimal orthonormal frames [Hanson, 2006].

Better ways to visualize streamlines [Hanson, 2006].

Effective techniques for generating and analyzing 3-dimensional Pythagorean hodograph curves [Farouki, 2008].

Novel constructions of curves and surface patches on spheres [Krasauskas, 2011].

Efficient conformal transformations on triangular meshes [Schroder et al, 2011].

Goals and Motivation

- To provide a geometric interpretation for quaternions, appropriate for contemporary Computer Graphics.
- To present better ways to visualize quaternions, and the effect of quaternion multiplication on points and vectors in 3-dimensions.
- To develop simple, intuitive proofs of the sandwiching formulas for rotation and reflection.
- To show how to apply sandwiching to compute perspective projections (NEW).

Prerequisites

Complex Numbers

- $e^{i \theta}=\cos (\theta)+i \sin (\theta)$
- $z \mapsto e^{i \theta} z$ rotates z by the angle θ in the complex plane

Vector Geometry

- $u \cdot v=0 \Leftrightarrow u \perp v$
- $u \times v \perp u, v$

Models for Visualizing 4-Dimensions

Mathematical Models for 4-Dimensions

- Mass-Points
- Vectors in 4-Dimensions
- Pairs of Mutually Orthogonal Planes

Mass Points and Archimedes' Law of the Lever

$$
\begin{aligned}
& m_{1} \\
& d_{1}=\operatorname{dist}\left(\frac{\left.m_{1} P_{1}+m_{2} P_{2}, m_{1}\right)+\left(m_{2} P_{2}, m_{2}\right)=\left(m_{1} P_{1}+m_{2} P_{2}, m_{1}+m_{2}\right)}{m_{1}+m_{2}}, P_{1}\right)=\frac{m_{2}\left|P_{2}-P_{1}\right|}{m_{1}+m_{2}} \\
& d_{2}=\operatorname{dist}\left(\frac{m_{1} P_{1}+m_{2} P_{2}}{m_{1}+m_{2}}, P_{2}\right)=\frac{m_{1}\left|P_{1}-P_{2}\right|}{m_{1}+m_{2}}
\end{aligned}
$$

Mass Points and Vectors

Addition and Subtraction for Vectors

Addition

Subtraction

Quaternions

Old Definition

- $q=a+b i+c j+d k=a+\mathbf{v}$
- Sum of a scalar and a vector

New Definition

- $q=a O+b i+c j+d k=a O+\mathbf{v}$
- Sum of a mass-point and a vector $=$ a mass-point
- $O=(0,0,0,1)=$ origin \leftrightarrow identity for quaternion multiplication

Quaternion Multiplication

Notation (Mass-Points)

- $q=a O+b i+c j+d k$
- $O=$ identity for multiplication

Multiplication (Basis Vectors)

- $i^{2}=j^{2}=k^{2}=-O \quad O^{2}=O$
- $i j=k \quad j k=i \quad k i=j$
- $j i=-k \quad k j=-i \quad i k=-j$

Multiplication (Arbitrary Quaternion)

- $(a O+\boldsymbol{v})(\alpha O+\boldsymbol{w})=(a \alpha-\boldsymbol{v} \cdot \boldsymbol{w}) O+(\alpha \boldsymbol{v}+a \boldsymbol{w}+\boldsymbol{v} \times \boldsymbol{w})$
- $v w=-(\boldsymbol{v} \cdot \boldsymbol{w}) O+\boldsymbol{v} \times \boldsymbol{w}$

Properties of Quaternion Multiplication

- Associative
- Not Commutative
- Distributes Through Addition
- Identity and Inverses

The 4-Dimensional Vector Space of Quaternions

Pairs of Complementary Orthogonal Planes

Complex Plane
$i^{2}=-O, O^{2}=O$

Orthogonal Plane

$$
j, k \perp O, i
$$

Orthogonal Plane

Orthogonal Plane

$$
j, k \perp O, i
$$

Complex Plane * j

Pairs of Complementary Orthogonal Planes

Complex Plane

$$
j^{2}=-O, O^{2}=O
$$

Orthogonal Plane $k, i \perp O, j$

Orthogonal Plane

Orthogonal Plane

Complex Plane * k

Pairs of Complementary Orthogonal Planes

Complex Plane
$N^{2}=-O, O^{2}=O$

Orthogonal Plane
$v_{\perp}, N \times v_{\perp} \perp O, N$

Orthogonal Plane

Orthogonal Plane

Complex Plane * v_{\perp}

The Geometry of Quaternion Multiplication

Quaternion Multiplication and Isometries

Norm of Product

- $\|p q\|=\|p\|\|q\|$

Quaternion Multiplication and Isometries

Norm of Product

- $\|p q\|=\|p\|\|q\|$

Multiplication by Unit Quaternions

- $p \mapsto p q$
- $\|q\|=1 \Rightarrow$ multiplication by q (on left or right) is a linear isometry in R^{4}

Quaternion Multiplication and Isometries

Norm of Product

- $\|p q\|=\|p\|\|q\|$

Multiplication by Unit Quaternions

- $p \mapsto p q$
- $\|q\|=1 \Rightarrow$ multiplication by q (on left or right) is a linear isometry in R^{4}
\Rightarrow multiplication by q (on left or right) is rotation in R^{4}

Properties of Vector Multiplication

Vector Multiplication

- $v w=(-v \cdot w) O+v \times w$

Consequences

- $N \perp v \Rightarrow N v=N \times v$
- $\|N\|=1 \Rightarrow N^{2}=-O$
- O, N plane is isomorphic to the complex plane
-- $\quad N^{2}=-O, \quad O^{2}=O$
-- $\quad N O=O N=N$

Vector Multiplication Introduces Mass via Rotation

Plane of v, w
Orthogonal Plane of $v \times w, O$

Multiplication by v represents a rotation in 4-dimensions

Planes Isomorphic to the Complex Plane

O, N Plane

$$
\begin{array}{lc}
N^{2}=-O, O^{2}=O & i^{2}=-1,1^{2}=1 \\
q(N, \theta)=\cos (\theta) O+\sin (\theta) N \leftrightarrow & \text { Rotation } \leftrightarrow
\end{array} e^{i \theta}=\cos (\theta)+i \sin (\theta) .
$$

Conjugation

Definition

- $q=a O+b i+c j+d k$
- $q^{*}=a O-b i-c j-d k$

Properties

- $(p q)^{*}=q^{*} p^{*}$
- $q q^{*}=\|q\|^{2} O \quad(\Rightarrow\|p q\|=\|p\|\|q\|)$

Inverses and Inversion

- $q^{-1}=\frac{q^{*}}{q q^{*}}=\frac{q^{*}}{\|q\|^{2}} \quad$ (inverses)
- $v^{-1}=-\frac{v}{\|v\|^{2}} \quad$ (inversion)

Inversion in the Sphere

Definition

- $q=$ center of unit sphere
- $\quad i n v_{q}(p)=$ point along line from q to p at distance $d=1 /\|p-q\|$ from q

Formula

- $\quad \operatorname{inv}_{q}(p)=q+\frac{p-q}{\|p-q\|^{2}}=q-(p-q)^{-1}$
- $\left\|i n v_{q}(p)-q\right\|=\frac{\|p-q\|}{\|p-q\|^{2}}=\frac{1}{\|p-q\|}$

Properties

- $\quad i n v_{q}$ turns unit sphere centered at q inside out
- $\quad i n v_{q} \circ i n v_{q}=$ identity
- $\quad i n v_{q}$ maps spheres and planes to spheres and planes

Conjugates of Complex Numbers

Complex Number

- $q(N, \theta)=\cos (\theta) O+\sin (\theta) N$

Complex Conjugate

- $q^{*}(N, \theta)=\cos (\theta) O-\sin (\theta) N$
- $q^{*}(N, \theta)=q(N,-\theta)=q(N, \theta)^{-1}$

Rotation in Complementary Planes -- Double Isoclinic Rotations

Plane of \boldsymbol{O}, N
Rotation by the Angle θ
$q(N, \theta), q^{*}(N, \theta)$ Cancel

Plane Perpendicular to O, N
Rotation by the Angle θ
$q(N, \theta), q^{*}(N, \theta)$ Reinforce

Rotation in Plane Perpendicular to O, N

i. $q(N, \theta) v=(\cos (\theta) O+\sin (\theta) N) v=\cos (\theta) v+\sin (\theta) N \times v$
ii. $v q(N, \theta)=v(\cos (\theta) O+\sin (\theta) N)=\cos (\theta) v+\sin (\theta) v \times N=\cos (\theta) v-\sin (\theta) N \times v$

Plane $\perp O, N$

Sandwiching with Conjugates in Complementary Planes -- Simple Rotations

Plane of O, N
Sandwiching $q(N, \theta) p q^{*}(N, \theta)$
$q(N, \theta), q^{*}(N, \theta)$ Cancel

Plane Perpendicular to O, N
Sandwiching $q(N, \theta) v q^{*}(N, \theta)$
$q(N, \theta), q^{*}(N, \theta)$ Reinforce

Sandwiching in Complementary Planes -- Simple Rotations

Plane of O, N
Sandwiching $q(N, \theta) p q(N, \theta)$
$q(N, \theta)$ on Left and Right Reinforce

Plane Perpendicular to O, N
Sandwiching $q(N, \theta) v q(N, \theta)$
$q(N, \theta)$ on Left and Right Cancel

Rotation, Reflection
 and
 Perspective Projection

3-Dimensional and 4-Dimensional Interpretations of the Plane \perp to O, N

Plane of Vectors $\perp O$, N in 4-Dimensions $=$ Plane of Vectors $\perp N$ in 3-Dimensions

The 4-Dimensional Vector Space of Quaternions

3-Dimensional and 4-Dimensional Interpretations of the Plane of O, N

Plane of O, N in 4-Dimensions
Plane of Vectors in 4-Dimensions

Line Through O in Direction N in 3-Dimensions
Line of Points in 3-Dimensions

Rotation and Reflection

$p \mapsto q(N, \theta) p q^{*}(N, \theta)$

- Plane of $O, N=$ Line through O parallel to N
-- Identity \rightarrow FIXED AXIS LINE
- Plane $\perp O, N=$ Plane $\perp N$
-- Rotation by Angle 2θ-- ROTATION
$p \mapsto q(N, \theta) p q(N, \theta)$
- Plane $\perp O, N=$ Plane $\perp N$
-- Identity \rightarrow FIXED PLANE
- Plane of $O, N=$ Line through O parallel to N
-- $N \mapsto-N$-- MIRROR IMAGE
-- $N \mapsto$ Mass-Point -- PERSPECTIVE PROJECTION

Rotation

Sandwiching with Conjugates in Complementary Planes -- Simple Rotations

Plane of O, N
Sandwiching $q(N, \theta) p q^{*}(N, \theta)$
$q(N, \theta), q^{*}(N, \theta)$ Cancel

Plane Perpendicular to O, N
Sandwiching $q(N, \theta) v q^{*}(N, \theta)$
$q(N, \theta), q^{*}(N, \theta)$ Reinforce

Rotation: Sandwiching in Complementary Planes

Plane of O, N
$q(N, \theta / 2) v_{\|} q^{*}(N, \theta / 2)=v_{\|}$
Identity

Plane Perpendicular to O, N
$q(N, \theta / 2) v_{\perp}^{\text {new }} q^{*}(N, \theta / 2)$
Rotation by θ

Theorem 1: Sandwiching Rotates Vectors in 3-Dimensions

Let

- $q(N, \theta / 2)=\cos (\theta / 2) O+\sin (\theta / 2) N$
- $v=$ vector in R^{3}

Then

- $q(N, \theta / 2) v q^{*}(N, \theta / 2) \quad$ rotates v by the angle θ around the axis N

Corollary: Composites of Rotations are Represented by Products of Quaternions

The composite of rotations represented by two quaternions $q\left(N_{1}, \theta_{1} / 2\right), q\left(N_{2}, \theta_{2} / 2\right)$ is represented by the product quaternion $q=q\left(N_{2}, \theta_{2} / 2\right) q\left(N_{1}, \theta_{1} / 2\right)$.

Proof:

$$
\begin{aligned}
q v q^{*} & =q\left(N_{2}, \theta_{2} / 2\right) q\left(N_{1}, \theta_{1} / 2\right) v\left(q\left(N_{2}, \theta_{2} / 2\right) q\left(N_{1}, \theta_{1} / 2\right)\right)^{*} \\
& =q\left(N_{2}, \theta_{2} / 2\right) q\left(N_{1}, \theta_{1} / 2\right) v q^{*}\left(N_{1}, \theta_{1} / 2\right) q^{*}\left(N_{2}, \theta_{2} / 2\right)
\end{aligned}
$$

Reflection

Sandwiching in Complementary Planes -- Simple Rotations

Plane of O, N
Sandwiching $q(N, \theta) p q(N, \theta)$
$q(N, \theta)$ on Left and Right Reinforce

Plane Perpendicular to O, N
Sandwiching $q(N, \theta) v q(N, \theta)$
$q(N, \theta)$ on Left and Right Cancel

Reflection: Sandwiching in Complementary Planes

Plane of O, N
$q(N, \theta / 2) v_{\|} q(N, \theta / 2)$
Rotation by θ

Plane Perpendicular to O, N
$q(N, \theta / 2) v_{\perp} q(N, \theta / 2)=v_{\perp}$ Identity

Theorem 2: Sandwiching Reflects Vectors in 3-Dimensions

Let $v=$ vector in R^{3}

Then $\quad N \vee N$ is the mirror image of w in the plane $\perp N$

Proof: Take $\theta=\pi$. Then sandwiching v with:

$$
q(N, \pi / 2)=\cos (\pi / 2) O+\sin (\pi / 2) N=N
$$

gives the mirror image of v in the plane $\perp N$.

Perspective Projection

Perspective Projection: Sandwiching in the Plane of O, N

Plane of O, N
Before Sandwiching with $q(N,-\pi / 4)$

Plane of O, N
After Sandwiching with $q(N,-\pi / 4)$

Length along N is mapped to mass at O

Perspective Projection: Sandwiching in Complementary Planes

Plane of O, N
$q(N,-\pi / 4) d N q(N,-\pi / 4)=d O$
Rotation by $\pi / 2$

Plane Perpendicular to O, N $q(N,-\pi / 4) v q(N,-\pi / 4)=v$

Identity

Perspective Projection

$$
\begin{gathered}
P-E=d N+v \rightarrow d O+v \rightarrow O+v / d \\
\Delta E O P^{\text {new }} \approx \Delta E R P
\end{gathered}
$$

Theorem 3: Sandwiching Vectors to the Eye with $q(N,-\pi / 4)$ Gives Perspective

Let

- $S=$ plane through the origin O perpendicular to the unit normal N
- $E=O-N=$ eye point
- $P=$ point in R^{3}

Then

- $\quad q(N,-\pi / 4)(P-E) q(N,-\pi / 4)$ is a mass-point, where:
-- the point is located at the perspective projection of the point P from the eye point E onto the plane S;
-- the mass is equal to the distance d of the point P from the plane through the eye point E perpendicular to the unit normal N.

Hidden Surfaces

$$
d<d^{*} \Rightarrow P \text { obscures } P^{*}
$$

Converts Distance Along N to Mass at O

Summary: Sandwiching with $q(N,-\pi / 4)$

Maps the Vector N to the Point O

- $q(N,-\pi / 4) N q(N,-\pi / 4)=O$
- Projects a Vector to a Point
- Projects Points into a Plane

Converts Distance Along N to Mass at O

- $q(N,-\pi / 4) d N q(N,-\pi / 4)=d O$
- No Information is Lost
- Hidden Surfaces

Perspective Projection: Sandwiching in Complementary Planes

Plane of O, N

$$
q(N,-\theta / 2) N q(N,-\theta / 2)=\sin (\theta) O+\cos (\theta) N
$$

Rotation by $-\theta$

Plane Perpendicular to O, N $q(N, \theta / 2) \vee q(N, \theta / 2)=v$

Identity

Perspective Projection

$$
\begin{gathered}
P-E=d N+v \rightarrow d \sin (\theta) O+d \cos (\theta) N+v \equiv O+\cot (\theta) N+\csc (\theta) \frac{v}{d} \\
\Delta E Q P^{\text {new }} \approx \Delta E R P
\end{gathered}
$$

Theorem 4: Sandwiching Vectors to the Eye with $q(N,-\theta / 2)$ Gives Perspective

Let

- $S=$ plane through the point $O+\cot (\theta) N \equiv q(N,-\theta / 2) N q(N,-\theta / 2)$ perpendicular to the unit normal N
- $E=O+(\cot (\theta)-\csc (\theta)) N=$ eye point
- $P=$ point in R^{3}

Then

- $q(N,-\theta / 2)(P-E) q(N,-\theta / 2)$ is a mass-point, where:
-- the point is located at the perspective projection of the point P from the eye point E onto the plane S;
-- the mass is equal $\sin (\theta)$ times the distance d of the point P from the plane through the eye point E perpendicular to the unit normal N.

Translation and Perspective Commute

Theorem 5: Sandwiching Vectors to the Eye with $q(N,-\theta / 2)$ Gives Perspective

Let

- $E=$ eye point
- $S=$ plane at a distance $\csc (\theta)$ from E perpendicular to the unit normal N
- $P=$ point in R^{3}

Then

- $q(N,-\theta / 2)(P-E) q(N,-\theta / 2)$ is a mass-point, where:
-- the point is located at the perspective projection of the point P from the eye point E onto the plane S translated to the canonical plane;
-- the mass is equal $\sin (\theta)$ times the distance d of the point P from the plane through the eye point E perpendicular to the unit normal N.

Proof: Translation and Perspective Commute.

Conclusions

Rotations, Reflections, and Perspective Projections in 3-Dimensions can all be Modeled by Simple Rotations in 4-Dimensions

Simple Rotations in 4-Dimensions can be Modeled by Sandwiching either
i. Between a Unit Quaternion and its Conjugate (Rotation)
ii. Between Two Copies of the Same Unit Quaternion (Reflection and Perspective Projection)

Formulas

Rotation

- $\quad v \mapsto q(N, \theta) v q^{*}(N, \theta)$

Reflection

- $\quad v \mapsto N v N$

Perspective Projection

- $\quad P \mapsto q(N, \theta)(P-E) q^{*}(N, \theta)$

Inversion

- $\quad P \mapsto Q-(P-Q)^{-1}$

References

1. Goldman, R. (2010), Rethinking Quaternions: Theory and Computation, Synthesis Lectures on Computer Graphics and Animation, ed. Brian A. Barsky, No. 13. San Rafael: Morgan \& Claypool Publishers.
2. Goldman, R. (2011), Understanding Quaternions, Graphical Models, Vol. 73, pp. 21-49.
3. Goldman, R. (2011), Modeling Perspective Projections in 3-Dimensions by Rotations in 4-Dimensions, submitted for publication.
