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Support Vector Machines (SVMs)
and Convex Programs

e SVMs are linear predictors

Defined for both regression and classification
Multi-class versions exist

We will cover only binary SVM classification

We’ll need some new math: Convex Programs
Optimization of convex functions with affine constraints
(equalities and inequalities)

e | agrange multipliers, but for inequalities
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| Logistic Regression — Support Vector Machines
Outline

@ Logistic Regression — Support Vector Machines
® Local Convex Minimization — Convex Programs
® Shape of the Solution Set

O Geometry: Closed, Convex Polyhedral Cones

® Cone Duality

0O The KKT Conditions

@ Lagrangian Duality
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Logistic Regression — SVMs

¢ A logistic-regression classifier places the decision boundary
somewhere (and approximately) between the two classes

¢ Loss is never zero — Exact location of the boundary can be
determined by samples that are very distant from the
boundary (even on the correct side of it)

e SVMs place the boundary “exactly half-way” between the
two classes (with exceptions to allow for non
linearly-separable classes)

e Only samples close to the boundary matter:
These are the support vectors

e SVMs are effectively immune from the curse of
dimensionality

e A “kernel trick” allows going beyond linear classifiers
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 Local Convex Minimization —» Comvex Programs
Local Convex Minimization — Convex

Programs Sbl
: R" =R ¢

e Convex function f(u) G
e f differentiable, with continuous first derivatives

e Unconstrained minimization: u* = arg mie@f(u)
e Constrained minimization: u* = arg minycc f(u) .,6_,

(_C’Z£u€Rm:Au+b2® =

e fis a convex function
e Cisaconvex set Ifu,v e C,thenforte[0,1]

u+(1-tveC

¢ The specific C is bounded by hyperplanes
e This is a convex program
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Shape of the Solution Set

e Just as for the unconstrained problem:
® There is one f* but there can be multiple u*
(a flat valley)
® The set of solution points u* is convex
e if f is strictly convex at u*, then u* is the unique solution point
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~ shapeoftheSolutinSet
Zero Gradient — KKT Conditions

¢ For the unconstrained problem, the solution is characterized

by Vf(u)=0
e Constraints can generate new minima and maxima
e Example: f(u) = e wz O
u;O N [(—ud-lgo

flu)

-

0 1 0 1 0 1
u u u

flu)
fu)

e What is the new characterization?
e Karush-Kuhn-Tucker conditions, necessary and sufficient
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Geometry of C
e The neighborhoods of points of R “look the same”
¢ Not so for C: Different points “look different” |
e Example m = 2: C is a convex polygon rﬁwvg @Muev{r% .

e View from the interior: Same as R?
e View from a side: C is a half-plane
e View from a corner: C is an angle
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Active Constraints . wenu —> C cloxe
e A constraint c;(u)(>/0 is active at u if ¢;(u) =0
® u “touches” that constraint
e The active set. A(u) = {i : ¢(u)=0} < ? 4, k}

e
FEASIBLE

o« Au)={)
o Alu)= {2}
o A(u)={2,3}

e Black u is infeasible, the others are feasible
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e View from uo: move the origin to u; Con @
e {ucR?®: aJu>0, aJu > 0Lfmplicit)
e {ucR? : u=(ar{ + azrwith (parametric)

e Both representations always exist (Farkas-Minkowski-Weyl)

e Number of hyperplane normals a; and generators t; is not
always the same. Conversion is typically complex. We
won’t need it.

10/21



| Geometry: Closed, Convex Polyhedral Cones
Lines, Half Lines, Half-Planes, Planes

e Linein R?/a u>0 ~—a’'u>0 orw

e Half linefa’u >0, —aTu>0 u>0 or u—ar
e Half plane{a’u > 0) or U= art + ap(— )+a3a7
(glue two angles together)

e Plane: {} or u=aqri + asfa + asls /Q
with rq,r2, r3, say, 120 degrees apart ~
(glue three angles together) n

e Parametric representation is not unique
e More variety in R® much more in R?
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General CCP Cones Clses: 2"

op !
T« E & o COU\E)( ! e ove ‘+ .
a /\HE ’C o PoLYHEDPRAL ;1 boudted by

LocA I'DCOMQS

P={ueR": p,Tu@O for i=1,... k}
P={ueR" : u= Zﬁ:1 ajf; with 041,...,0@@0}
Both representations always exist (Farkas-Minkowski-Weyl)

The conversion is algorithmically complex (“representation
conversion problem”)

ConvE : weP=> axuw €P
for oy x20
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Cone Duality

@:{UER’” cpu>0 for i=1,... k}
e D={ueR": u:Zfﬁa;p/ with «ay,...,a > 0}
e Disthe dual of P

e Different cones, same vectors, different representations!
e All and only the points in P have a@lfr_e;a\ﬁ;/e inner < 95°

Er@vith all and only the points in D

e D dual of P < P dual of D 1
\é |
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.~ TheKKTCondions
Necessary and Sufficient Condition for a —
Minimum
e u* is a minimum iff f(u) does not decrease when moving

away from u*(while staying in
e fis differentiable, so we can look at Vf(u*)

D

* No matter how we choose a direction s € R", f

if a tiny step away from u* and along s keeps usin C, N

ther's’ V£(u*) must be > 0 3: Cu &)
elfseP={s:s ZOforieA(u*)} C(&*)—

T * L———l
ens'Vf(u*) mustbe >0 ~ ;

e[ Vf(u*) is any vector with a nonnegative inner product with {

all vectors in P C;= u-1 >0

OLVf(u*) is in the dual cone of P,
={g : 9= ZieA(u*) a;Vei(u*) with a; > 0}
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~ TheKKTCondiions
The Karush-Kuhn-Tucker Conditions

E Viur)isinD={g : g=>csuaiVCci(u) with o; > 0}
o VIU*) = icqwry @ Vei(u) for some af >0
o 2 [f(u*) — D ieaur) aj‘c,-(u*)] =0 forsome af >0
e There exist a* s.t. ZL(u*, a*) = 0 where = [b”) =9
[0 E 1) - ¥y o) < 2 clz o
with a; > 0 for i € A(u) | c(w) so
e [ is the Lagrangian function of this convex program
e The values in " are called the Lagrange multipliers
e KKT conditions also hold in the interior of C!
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[ heKKTConduom |
Technical Cleanup

e Simplifying the su

e Anywhere in C, we have «; > 0 (cone) and ¢;j(u) >0
(feasible u), sanT,-:1 oz,'C,-(u)$:EO_z(Tc(u) >0

e At (u*, a*), the multiplier o} is in the sum only if ¢;(u*) = 0,
so we can replace the sum with

a’' c(u)

if we add the complementarity consz‘raimQ (e*)Tc(u*) =0 J
which requires o = 0 for j ¢ A(u*)

* At (u*,a%), the sum 3, ) @ici(u) is equivalent to
o' c(u) together with the constraint (a*)"c(u*) = 0
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~ TheKKTCondiions
The KKT Conditions

e |t is necessary and sufficient for u* to be a solution to a
convex program that there exists o* such that /{

2L(u*,a*) =0 (no descent direction) <=

c(u) >0 (feasibility) <— -

a*>0 (cone) <— Wl
—> (a)Tc(u*) =0 (complementarity)

where|£(u, o) & f(u) — aTc(ml |

e We can now recognize a minimum if we see one
Subsumes to Vf(u") = 0 for the unconstrained case
Since both f(u) and a"c(u) are convex, so is £(u, )
Therefore, (u*, a*) is a global minimum of £ w.r.t. u
(because of the first KKT condition)

COMPSCI 371D — Machine Learning

17/28



I
A Tiny Example

¢ In simple examples, we can solve the KKT conditions and
find the minimum (as opposed to just checking whether a
given u* is a minimum)

This is analogous to solving the normal equations

Vf(u") = 0 in the unconstrained case

Example: min, f(u) = e subjectto c(u) =u >0
Lagrangian: L(u,a) = f(u) — ac(u) = e — au

We obviously know the solution, u* = 0

Sl

0 1
u
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L emwvesioo |
A Tiny Example: KKT Conditions

e Lagrangian: L(u,a) = e“ — au
2L(ua)=6"—a"=0
cu)=u*>0
a*>0
a*c(u*) =a*u* =0

e Solving first yields

which makes o* > 0 moot

e Complementarity yields{ u =0, ’/vhich is feasible

* [Yay!]

e We have a* = e/ = €° é@

e Since o* > 0, this constraint is active
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Lagrangian Duality
e We will find a transformation of a convex program

PRIMAL [ = i

C ¥ {ueR”: c(u) >0}

into an equivalent maximization problem, called the
Lagrangia

The original problem is called the primal

This is not cone duality!

This transformation will seem arbitrary for now

Dual involves only the Lagrange multipliers «, and not u
The dual is often simpler than the primal

For SVMs, the dual leads to SVMs with nonlinear decision
boundaries
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Derivation of Lagrangian Duality

e Duality is based on bounds on the Lagrangian

o L(u,a) X f(u) — aTc(u)
where a’c(u) > 0in C and (a*)"c(u*) =0
e Therefore, L(u*, o) = f(u*), -
e Also,/L(u,a) < f(u)fforallue Cand a >0
e Even more so,}_Zz(a) ® minuec L(u, a)\< f(u
forallu e Cand « >0, and in particular N

D(a) < £ L f(u*)ffor all e > 0

e D s called the Lagrangian dual of L
¢ For different «, the bound varies in tightness
e For what « is it tightest?
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i
Derivation of Lagrangian Duality, Continued

o L(u, ) X f(u) — aTc(u)

e D(a) ¥ minyec £(u, a) < f(u)

¢ (a*)Tc(u*) = 0 (complementarity)

. D(@ = minyec L(U, a*) = L(U*, ™) =
fus) — () Te(u*) = f(u) = F

* Thus, D(a) < f(u)‘ andz)(a*) = f*, so that

— ]

| r;?gé(D(a) = f; and arg r;Eé(D(a) =a".

¢ This is the dual problem. The value at the solution is the
same as that of the primal problem, and the value a* where
the maximum is achieved is the same that yields the
solution to the primal problem
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Summary of Lagrangian Duality

u, o

F = f(u*)

* D(a) iy mingec £(U, @)

® £ has a minimum in u and a maximum in « at the solution
(u*, a*) of both problems
e (u*, ™) is a saddle point for L
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A Tiny Example, Continued

f(u) = e subjectto c(u) =u>0
e Lagrangian: L(u,«a) = f(u) — ac(u) = e* — au

fiw
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A Tiny Example: The Dual

e Lagrangian: L(u,«) =&Y — au
® D(a) = mingso L(U, ) = miny>o(€¥ — au)
e Differentiate £ and set to zero to find the minimum

e Been there, done that: We know that £(u, «) has a
minimum in u when o = eV

e However, we are now interested in the value of u for fixed o,
sowesolveforu: u=Ina

® D(a)=L(lna,a) =" —alna=a(l —Ina)

25/28
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i
A Tiny Example: The Dual

® D(a)=a(1 —Ina)

e Maximizing D in « yields the same o* as the primal problem

e We have eliminated u

e Compute the derivative and set it to zero

° 2_2:1—Ina—§:—lnazo
fora* =1

* [Yayl]

¢ |f we hadn’t already solved the primal, we could plug o* = 1
into the Lagrangian:

e L(u,a*)=¢e"—u

e We have eliminated «
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Solving the Primal Given o*

® min, f(u) = e“ subjectto c(u) =u>0

® min, L(u,a*) = miny L(u,1) = €Y — u without constraints
e Compute the derivative and set it to zero

o I _gl—1=0

foru* =0

[Yayl]
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Summary of Lagrangian Duality

e Worth repeating in light of the example:

f*=f(u*) =minf(u) = L(U*, ") = maxD(ax) = D(ax™)

ueC a>0
—— N——
primal dual

* D(a) S minyec £(U, @)

e [ has a minimum in u and a maximum in « at the solution
(u*, a*) of both problems

e (u*, ") is a saddle point for L
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