Convex Programs

COMPSCI 371D — Machine Learning

▲□▶▲圖▶★≧▶★≧▶ 差 のへで

COMPSCI 371D — Machine Learning	Convex Programs	1/21
---------------------------------	-----------------	------

Support Vector Machines (SVMs) and Convex Programs

- SVMs are linear predictors
- Defined for both regression and classification
- Multi-class versions exist
- We will cover only binary SVM classification
- We'll need some new math: Convex Programs
- Optimization of convex functions with affine constraints (equalities and inequalities)
- Lagrange multipliers, but for inequalities

Outline

- $\textbf{1} \ \text{Logistic Regression} \rightarrow \text{Support Vector Machines}$
- **2** Local Convex Minimization \rightarrow Convex Programs
- 3 Shape of the Solution Set
- Geometry: Closed, Convex Polyhedral Cones
- 6 Cone Duality
- 6 The KKT Conditions
- Lagrangian Duality

Logistic Regression \rightarrow SVMs

- A logistic-regression classifier places the decision boundary *somewhere* (and approximately) between the two classes
- Loss is never zero → Exact location of the boundary can be determined by samples that are very distant from the boundary (even on the correct side of it)
- SVMs place the boundary "exactly half-way" between the two classes (with exceptions to allow for non linearly-separable classes)
- Only samples close to the boundary matter: These are the *support vectors*
- SVMs are effectively immune from the curse of dimensionality
- A "kernel trick" allows going beyond linear classifiers

- 34

Local Convex Minimization \rightarrow Convex

- Convex function $f(\mathbf{u})$: $\mathbb{R}^m \to \mathbb{R}$
- f differentiable, with continuous first derivatives
- Unconstrained minimization: $\mathbf{u}^* = \arg \min_{\mathbf{u} \in \mathbb{R}^m} f(\mathbf{u})$
- Constrained minimization: $\mathbf{u}^* = \arg \min_{\mathbf{u} \in C} f(\mathbf{u})$

 $\mathbf{C} = \{\mathbf{u} \in \mathbb{R}^m : A\mathbf{u} + \mathbf{b} \ge \mathbf{0}\}$

• *f* is a convex *function*

Programs

- *C* is a convex *set*: If $\mathbf{u}, \mathbf{v} \in C$, then for $t \in [0, 1]$ $t\mathbf{u} + (1 - t)\mathbf{v} \in C$
- The specific C is bounded by hyperplanes
- This is a convex program

le constroints

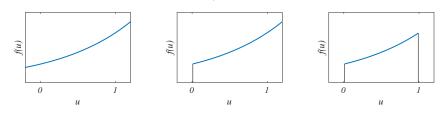
k×m

Shape of the Solution Set

- Just as for the unconstrained problem:
 - There is one f* but there can be multiple u* (a flat valley)
 - The set of solution points **u*** is convex
 - if *f* is strictly convex at **u**^{*}, then **u**^{*} is the unique solution point

Zero Gradient \rightarrow KKT Conditions

- For the unconstrained problem, the solution is characterized by \(\nabla f(\mu) = \mathbf{0}\)
- · Constraints can generate new minima and maxima
- Example: $f(u) = e^{u}$ $u \ge 0$ $u \le 1$ $u \ge 0$

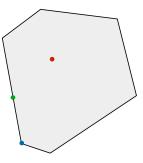


- What is the new characterization?
- Karush-Kuhn-Tucker conditions, necessary and sufficient

COMPSCI 371D — Machine Learning	Convex Programs	7/21

Geometry of *C*

- The neighborhoods of points of \mathbb{R}^m "look the same"
- Not so for C: Different points "look different"
- Example m = 2: *C* is a convex polygon

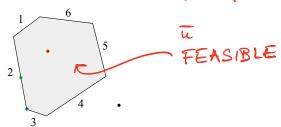


- View from the interior: Same as \mathbb{R}^2
- View from a side: C is a half-plane
- View from a corner: C is an angle

Active Constraints were \rightarrow C closed • A constraint $c_i(\mathbf{u}) \ge 0$ is active at \mathbf{u} if $c_i(\mathbf{u}) = 0$

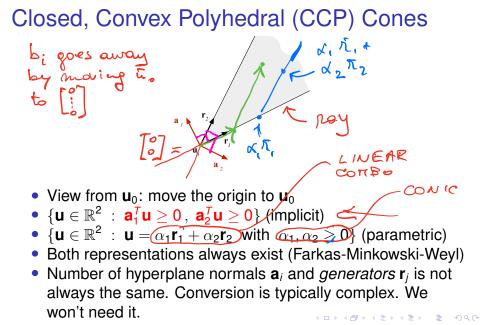
- u "touches" that constraint

• The active set:
$$\mathcal{A}(\mathbf{u}) = \{i : c_i(\mathbf{u}) = 0\} \subseteq \{\mathbf{z}, \ldots, \mathbf{k}\}$$



0

- $\mathcal{A}(\mathbf{u}) = \{\}$ • $A(\mathbf{u}) = \{2\}$
- $A(\mathbf{u}) = \{2, 3\}$
- Black u is infeasible, the others are feasible.



COMPSCI 371D — Machine Learning	Convex Programs	10/21
COMPSCI 3/1D — Machine Learning	Convex Programs	10/2

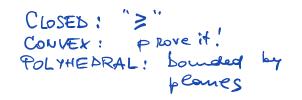
Lines, Half Lines, Half-Planes, Planes

- Line in \mathbb{R}^2 : $\mathbf{a}^T \mathbf{u} \ge \mathbf{0}$, $-\mathbf{a}^T \mathbf{u} \ge \mathbf{0}$ or $(\mathbf{u} = \alpha_1 \mathbf{r} + \alpha_2(-\mathbf{r}))$
- Half line: $\mathbf{a}^T \mathbf{u} \ge \mathbf{0}$, $\mathbf{a}^T \mathbf{u} \ge \mathbf{0}$, $\mathbf{\hat{r}}^T \mathbf{u} \ge \mathbf{0}$ or $\mathbf{u} = \alpha \mathbf{r}$
- Half plane $\mathbf{a}^{\mathsf{T}}\mathbf{u} \ge \mathbf{0}$ or $\mathbf{u} = \alpha_1\mathbf{r} + \alpha_2(-\mathbf{r}) + \alpha_3\mathbf{a}$ (glue two angles together)
- Plane: {} or u = α₁r₁ + α₂r₂ + α₃r₃ with r₁, r₂, r₃, say, 120 degrees apart (glue three angles together)
- Parametric representation is not unique
- More variety in \mathbb{R}^3 much more in \mathbb{R}^d

GENERATOR

Geometry: Closed, Convex Polyhedral Cones

General CCP Cones
THE VIEW of C
LOCAL



- $P = \{ \mathbf{u} \in \mathbb{R}^m : \mathbf{p}_i^T \mathbf{u} \ge 0 \text{ for } i = 1, \dots, k \}$
- $P = \{ \mathbf{u} \in \mathbb{R}^m : \mathbf{u} = \sum_{j=1}^{\ell} \alpha_j \mathbf{r}_j \text{ with } \alpha_1, \dots, \alpha_\ell \ge 0 \}$
- Both representations always exist (Farkas-Minkowski-Weyl)
- The conversion is algorithmically complex ("representation conversion problem")

Cone Duality

Cone Duality

- $\mathbf{P} = {\mathbf{u} \in \mathbb{R}^m : \mathbf{p}_i^T \mathbf{u} \ge 0 \text{ for } i = 1, \dots, k}$
 - $D = \{ \mathbf{u} \in \mathbb{R}^m : \mathbf{u} = \sum_{i=1}^k \alpha_i \mathbf{p}_i \text{ with } \alpha_1, \dots, \alpha_k \geq \mathbf{0} \}$
 - D is the dual of P

• D dual of $P \Leftrightarrow P$ dual of D

- Different cones, same vectors, different representations!
- All and only the points in P have a nonnegative inner $\leq 9^{\circ}$ product with all and only the points in D

P2

PI

P2

Necessary and Sufficient Condition for a Minimum

- u* is a minimum iff f(u) does not decrease when moving away from u* while staying in C
- *f* is differentiable, so we can look at $\nabla f(\mathbf{u}^*)$
- No matter how we choose a direction $\mathbf{s} \in \mathbb{R}^m$,

if a tiny step away from **u**^{*} and along **s** keeps us in *C*,

- then $\mathbf{s}^T \nabla f(\mathbf{u}^*)$ must be ≥ 0 • If $\mathbf{s} \in P = \{\mathbf{s} : \mathbf{s}^T \nabla c_i(\mathbf{u}^*) \geq 0 \text{ for } i \in \mathcal{A}(\mathbf{u}^*)\}$
 - then $\mathbf{s}^T \nabla f(\mathbf{u}^*)$ must be ≥ 0
- $\nabla f(\mathbf{u}^*)$ is any vector with a nonnegative inner product with all vectors in *P*
- $\nabla f(\mathbf{u}^*)$ is in the dual cone of P, $D = \{ \mathbf{g} : \mathbf{g} = \sum_{i \in \mathcal{A}(\mathbf{u}^*)} \alpha_i \nabla c_i(\mathbf{u}^*) \text{ with } \alpha_i \ge 0 \}$

 $C_{i}(\tilde{u}^{*})$

(1-2)

 $C_{i} = u_{i} - 1 \ge 0$

The Karush-Kuhn-Tucker Conditions

•
$$\nabla f(\mathbf{u}^*)$$
 is in $D = \{\mathbf{g} : \mathbf{g} = \sum_{i \in \mathcal{A}(\mathbf{u}^*)} \alpha_i \nabla c_i(\mathbf{u}^*) \text{ with } \alpha_i \ge 0\}$
• $\nabla f(\mathbf{u}^*) = \sum_{i \in \mathcal{A}(\mathbf{u}^*)} \alpha_i^* \nabla c_i(\mathbf{u}^*) \text{ for some } \alpha_i^* \ge 0$
• $\frac{\partial}{\partial \mathbf{u}} \left[f(\mathbf{u}^*) - \sum_{i \in \mathcal{A}(\mathbf{u}^*)} \alpha_i^* c_i(\mathbf{u}^*) \right] = 0 \text{ for some } \alpha_i^* \ge 0$

• There exist α^* s.t. $\frac{\partial}{\partial \mathbf{u}} \mathcal{L}(\mathbf{u}^*, \alpha^*) = 0$ where $\mathcal{L}(\mathbf{u}, \alpha) \stackrel{\text{def}}{=} f(\mathbf{u}) - \sum_{i \in \mathcal{A}(\mathbf{u})} \alpha_i c_i(\mathbf{u})$ with $\alpha_i \ge 0$ for $i \in \mathcal{A}(\mathbf{u})$ C(u) = 0 $S C(u) \ge 0$ $C(u) \le 0$

- L is the Lagrangian function of this convex program
- The values in α^* are called the Lagrange multipliers
- KKT conditions also hold in the interior of C!

Technical Cleanup

- Simplifying the sum $\sum_{i \in A(\mathbf{u})} \alpha_i c_i(\mathbf{u})$
- Anywhere in *C*, we have $\alpha_i \ge 0$ (cone) and $c_i(\mathbf{u}) \ge 0$ (feasible \mathbf{u}), so $\sum_{i=1}^{k} \alpha_i c_i(\mathbf{u}) = \alpha^T \mathbf{c}(\mathbf{u}) \ge 0$

At (**u**^{*}, *α*^{*}), the multiplier *α*^{*}_i is in the sum only if *c*_i(**u**^{*}) = 0, so we can replace the sum with

if we add the *complementarity constraint* $(\alpha^*)^T \mathbf{c}(\mathbf{u}^*) = 0$ which requires $\alpha_i^* = 0$ for $i \notin \mathcal{A}(\mathbf{u}^*)$

 $\alpha^T \mathbf{C}(\mathbf{u})$

At (u^{*}, α^{*}), the sum ∑_{i∈A(u)} α_ic_i(u) is equivalent to
 α^Tc(u) together with the constraint (α^{*})^Tc(u^{*}) = 0

The KKT Conditions

 It is necessary and sufficient for u* to be a solution to a convex program that there exists α^* such that

 \leftarrow

 $\frac{\partial}{\partial u} \mathcal{L}(\mathbf{u}^*, \boldsymbol{\alpha}^*) = \mathbf{0}$ (no descent direction) $\boldsymbol{\triangleleft}$ $c(u^*) \ge 0$ (feasibility) <

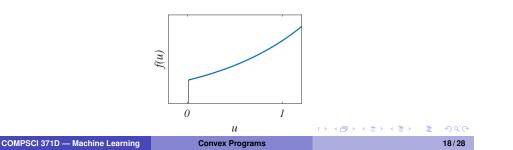
 $\alpha^* > 0$ (cone) $(\alpha^*)^T \mathbf{c}(\mathbf{u}^*) = 0$ (complementarity) where $\mathcal{L}(\mathbf{u}, \alpha) \stackrel{\text{def}}{=} f(\mathbf{u}) - \alpha^T \mathbf{c}(\mathbf{u})$

- We can now recognize a minimum if we see one
- Subsumes to $\nabla f(\mathbf{u}^*) = 0$ for the unconstrained case
- Since both $f(\mathbf{u})$ and $\alpha^T \mathbf{c}(\mathbf{u})$ are convex, so is $\mathcal{L}(\mathbf{u}, \alpha)$
- Therefore, (\mathbf{u}^*, α^*) is a global minimum of \mathcal{L} w.r.t. \mathbf{u} (because of the first KKT condition)

KKT

A Tiny Example

- In simple examples, we can *solve* the KKT conditions and find the minimum (as opposed to just checking whether a given u* is a minimum)
- This is analogous to solving the *normal equations* \(\nabla f(\mu^*) = 0\) in the unconstrained case
- Example: $\min_u f(u) = e^u$ subject to $c(u) = u \ge 0$
- Lagrangian: $\mathcal{L}(\boldsymbol{u}, \alpha) = f(\boldsymbol{u}) \alpha \boldsymbol{c}(\boldsymbol{u}) = \boldsymbol{e}^{\boldsymbol{u}} \alpha \boldsymbol{u}$
- We obviously know the solution, $u^* = 0$



A Tiny Example: KKT Conditions

• Lagrangian:
$$\mathcal{L}(\boldsymbol{u}, \alpha) = \boldsymbol{e}^{\boldsymbol{u}} - \alpha \boldsymbol{u}$$

 $\frac{\partial}{\partial \boldsymbol{u}} \mathcal{L}(\boldsymbol{u}^*, \alpha^*) = \boldsymbol{e}^{\boldsymbol{u}^*} - \alpha^* = \mathbf{0}$
 $\boldsymbol{c}(\boldsymbol{u}^*) = \boldsymbol{u}^* \ge \mathbf{0}$
 $\alpha^* \ge \mathbf{0}$
 $\alpha^* \boldsymbol{c}(\boldsymbol{u}^*) = \alpha^* \boldsymbol{u}^* = \mathbf{0}$

- Complementarity yields $u^* = 0$, which is feasible
- [Yay!]

• We have
$$\alpha^* = e^{u^*} = e^0$$

• Since $\alpha^* > 0$, this constraint is *active*

Lagrangian Duality

• We will find a transformation of a convex program

$$\begin{array}{rcl} \mathsf{PRIMAL} & f^* & \stackrel{\mathsf{def}}{=} & \min_{\mathbf{u} \in \mathcal{C}} f(\mathbf{u}) \\ \mathcal{C} & \stackrel{\mathsf{def}}{=} & \{\mathbf{u} \in \mathbb{R}^m \ : \ \mathbf{c}(\mathbf{u}) \geq \mathbf{0} \end{array}$$

into an equivalent maximization problem, called the Lagrangian dual

- The original problem is called the primal
- This is not cone duality!
- This transformation will seem arbitrary for now
- Dual involves *only* the Lagrange multipliers α , and not **u**
- The dual is often simpler than the primal
- For SVMs, the dual leads to SVMs with *nonlinear decision* boundaries

Derivation of Lagrangian Duality

• Duality is based on bounds on the Lagrangian

•
$$\mathcal{L}(\mathbf{u}, \alpha) \stackrel{\text{def}}{=} f(\mathbf{u}) - \alpha^T \mathbf{C}(\mathbf{u})$$

where $\alpha^T \mathbf{c}(\mathbf{u}) \geq 0$ in *C* and $(\alpha^*)^T \mathbf{c}(\mathbf{u}^*) = 0$

• Therefore, $\mathcal{L}(\mathbf{u}^*, \boldsymbol{\alpha}^*) = f(\mathbf{u}^*)$

• Also,
$$\mathcal{L}(\mathbf{u}, \alpha) \leq f(\mathbf{u})$$
 for all $\mathbf{u} \in C$ and $\alpha \geq 0$

• Even more so,
$$D(\alpha) \stackrel{\text{def}}{=} \min_{\mathbf{u} \in C} \mathcal{L}(\mathbf{u}, \alpha) \leq f(\mathbf{u})$$

for all $\mathbf{u} \in C$ and $\alpha \geq 0$, and in particular

$$\mathcal{D}(\alpha) \leq f^* \stackrel{\text{def}}{=} f(\mathbf{u}^*)$$
 for all $\alpha \geq 0$

- \mathcal{D} is called the Lagrangian dual of \mathcal{L}
- For different α , the bound varies in tightness
- For what α is it tightest?

Derivation of Lagrangian Duality, Continued

•
$$\mathcal{L}(\mathbf{u}, \alpha) \stackrel{\mathsf{def}}{=} f(\mathbf{u}) - \alpha^T \mathbf{C}(\mathbf{u})$$

•
$$\mathcal{D}(\alpha) \stackrel{\text{def}}{=} \min_{\mathbf{u} \in C} \mathcal{L}(\mathbf{u}, \alpha) \leq f(\mathbf{u})$$

•
$$(\alpha^*)^T \mathbf{c}(\mathbf{u}^*) = 0$$
 (complementarity)

•
$$\mathcal{D}(\boldsymbol{\alpha}^{*}) = \min_{\mathbf{u}\in C} \mathcal{L}(\mathbf{u}, \boldsymbol{\alpha}^{*}) = \mathcal{L}(\mathbf{u}^{*}, \boldsymbol{\alpha}^{*}) = f(\mathbf{u}^{*}) - (\boldsymbol{\alpha}^{*})^{T} \mathbf{c}(\mathbf{u}^{*}) = f(\mathbf{u}^{*}) = f^{*}$$

• Thus,
$$\mathcal{D}(\alpha) \leq f(\mathbf{u})$$
 and $\mathcal{D}(\alpha^*) = f^*$, so that

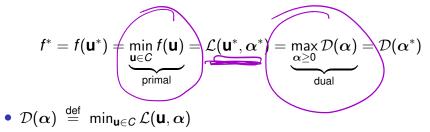
$$\max_{\alpha \geq 0} \mathcal{D}(\alpha) = f^* \text{ and } \arg\max_{\alpha \geq 0} \mathcal{D}(\alpha) = \alpha^*$$

 This is the dual problem. The value at the solution is the same as that of the primal problem, and the value α* where the maximum is achieved is the same that yields the solution to the primal problem

・ (日) (四) (日) (日) (日) (日)

COMPSCI 371D — Machine Learning	Convex Programs	22/28

Summary of Lagrangian Duality

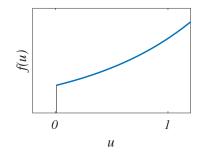


- *L* has a minimum in **u** and a maximum in *α* at the solution
 (**u**^{*}, *α*^{*}) of both problems
- $(\mathbf{u}^*, \boldsymbol{\alpha}^*)$ is a saddle point for $\mathcal L$

A Tiny Example, Continued

$$f(u) = e^u$$
 subject to $c(u) = u \ge 0$

• Lagrangian:
$$\mathcal{L}(u, \alpha) = f(u) - \alpha c(u) = e^{u} - \alpha u$$



▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

A Tiny Example: The Dual

- Lagrangian: $\mathcal{L}(\boldsymbol{u}, \alpha) = \boldsymbol{e}^{\boldsymbol{u}} \alpha \boldsymbol{u}$
- $\mathcal{D}(\alpha) = \min_{u \ge 0} \mathcal{L}(u, \alpha) = \min_{u \ge 0} (e^u \alpha u)$
- Differentiate \mathcal{L} and set to zero to find the minimum
- Been there, done that: We know that L(u, α) has a minimum in u when α = e^u
- However, we are now interested in the value of *u* for fixed *α*, so we solve for *u*: *u* = ln *α*

•
$$\mathcal{D}(\alpha) = \mathcal{L}(\ln \alpha, \alpha) = e^{\ln \alpha} - \alpha \ln \alpha = \alpha (1 - \ln \alpha)$$

A Tiny Example: The Dual

- $\mathcal{D}(\alpha) = \alpha(1 \ln \alpha)$
- Maximizing \mathcal{D} in α yields the same α^* as the primal problem
- We have eliminated u
- Compute the derivative and set it to zero

•
$$\frac{d\mathcal{D}}{d\alpha} = 1 - \ln \alpha - \frac{\alpha}{\alpha} = -\ln \alpha = 0$$

for $\alpha^* = 1$

- [Yay!]
- If we hadn't already solved the primal, we could plug α^{*} = 1 into the Lagrangian:
- $\mathcal{L}(\mathbf{U}, \alpha^*) = \mathbf{e}^{\mathbf{U}} \mathbf{U}$
- We have eliminated α

Solving the Primal Given α^*

- $\min_u f(u) = e^u$ subject to $c(u) = u \ge 0$
- $\min_{u} \mathcal{L}(u, \alpha^*) = \min_{u} \mathcal{L}(u, 1) = e^u u$ without constraints
- Compute the derivative and set it to zero

•
$$\frac{d\mathcal{L}}{du} = e^u - 1 = 0$$

for $u^* = 0$

• [Yay!]

Summary of Lagrangian Duality

• Worth repeating in light of the example:

$$f^* = f(\mathbf{u}^*) = \underbrace{\min_{\mathbf{u} \in C} f(\mathbf{u})}_{\text{primal}} = \mathcal{L}(\mathbf{u}^*, \alpha^*) = \underbrace{\max_{\alpha \ge 0} \mathcal{D}(\alpha)}_{\text{dual}} = \mathcal{D}(\alpha^*)$$

•
$$\mathcal{D}(\alpha) \stackrel{\text{def}}{=} \min_{\mathbf{u} \in C} \mathcal{L}(\mathbf{u}, \alpha)$$

- *L* has a minimum in **u** and a maximum in *α* at the solution
 (**u**^{*}, *α*^{*}) of both problems
- $(\mathbf{u}^*, \boldsymbol{\alpha}^*)$ is a saddle point for $\mathcal L$