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Logistic Regression ! Support Vector Machines

Support Vector Machines (SVMs)
and Convex Programs

• SVMs are linear predictors
• Defined for both regression and classification
• Multi-class versions exist
• We will cover only binary SVM classification
• We’ll need some new math: Convex Programs
• Optimization of convex functions with affine constraints

(equalities and inequalities)
• Lagrange multipliers, but for inequalities
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Logistic Regression ! Support Vector Machines

Logistic Regression ! SVMs
• A logistic-regression classifier places the decision boundary

somewhere (and approximately) between the two classes
• Loss is never zero ! Exact location of the boundary can be

determined by samples that are very distant from the
boundary (even on the correct side of it)

• SVMs place the boundary “exactly half-way” between the
two classes (with exceptions to allow for non
linearly-separable classes)

• Only samples close to the boundary matter:
These are the support vectors

• SVMs are effectively immune from the curse of
dimensionality

• A “kernel trick” allows going beyond linear classifiers
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Local Convex Minimization ! Convex Programs

Local Convex Minimization ! Convex
Programs

• Convex function f (u) : Rm ! R
• f differentiable, with continuous first derivatives
• Unconstrained minimization: u⇤ = argmin

u2Rm f (u)
• Constrained minimization: u⇤ = argminu2C f (u)
• C = {u 2 Rm : Au + b � 0}
• f is a convex function
• C is a convex set: If u, v 2 C, then for t 2 [0, 1]

tu + (1 � t)v 2 C
• The specific C is bounded by hyperplanes
• This is a convex program
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Shape of the Solution Set

Shape of the Solution Set

• Just as for the unconstrained problem:
• There is one f ⇤ but there can be multiple u⇤

(a flat valley)
• The set of solution points u⇤ is convex
• if f is strictly convex at u⇤, then u⇤ is the unique solution point
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Shape of the Solution Set

Zero Gradient ! KKT Conditions
• For the unconstrained problem, the solution is characterized

by rf (u) = 0

• Constraints can generate new minima and maxima
• Example: f (u) = eu
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• What is the new characterization?
• Karush-Kuhn-Tucker conditions, necessary and sufficient
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Geometry: Closed, Convex Polyhedral Cones

Geometry of C
• The neighborhoods of points of Rm “look the same”
• Not so for C: Different points “look different”
• Example m = 2: C is a convex polygon

• View from the interior: Same as R2

• View from a side: C is a half-plane
• View from a corner: C is an angle
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Geometry: Closed, Convex Polyhedral Cones

Active Constraints
• A constraint ci(u) � 0 is active at u if ci(u) = 0
• u “touches” that constraint
• The active set: A(u) = {i : ci(u) = 0}
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• A(u) = {}
• A(u) = {2}
• A(u) = {2, 3}
• Black u is infeasible, the others are feasible
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Geometry: Closed, Convex Polyhedral Cones

Closed, Convex Polyhedral (CCP) Cones

r2

a 2

a 1

r1u0

• View from u0: move the origin to u0
• {u 2 R2 : aT

1 u � 0 , aT
2 u � 0} (implicit)

• {u 2 R2 : u = ↵1r1 + ↵2r2 with ↵1,↵2 � 0} (parametric)
• Both representations always exist (Farkas-Minkowski-Weyl)
• Number of hyperplane normals ai and generators rj is not

always the same. Conversion is typically complex. We
won’t need it.
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Geometry: Closed, Convex Polyhedral Cones

Lines, Half Lines, Half-Planes, Planes

• Line in R2: aT u � 0 , �aT u � 0 or u = ↵1r + ↵2(�r)

• Half line: aT u � 0 , �aT u � 0 , rT u � 0 or u = ↵r

• Half plane: aT u � 0 or u = ↵1r + ↵2(�r) + ↵3a

(glue two angles together)
• Plane: {} or u = ↵1r1 + ↵2r2 + ↵3r3

with r1, r2, r3, say, 120 degrees apart
(glue three angles together)

• Parametric representation is not unique
• More variety in R3 much more in Rd
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Geometry: Closed, Convex Polyhedral Cones

General CCP Cones

• P = {u 2 Rm : pT
i u � 0 for i = 1, . . . , k}

• P = {u 2 Rm : u =
P`

j=1 ↵jrj with ↵1, . . . ,↵` � 0}
• Both representations always exist (Farkas-Minkowski-Weyl)
• The conversion is algorithmically complex (“representation

conversion problem”)
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Cone Duality

Cone Duality
• P = {u 2 Rm : pi

T u � 0 for i = 1, . . . , k}
• D = {u 2 Rm : u =

Pk
i=1 ↵ipi with ↵1, . . . ,↵k � 0}

• D is the dual of P
• Different cones, same vectors, different representations!
• All and only the points in P have a nonnegative inner

product with all and only the points in D
• D dual of P , P dual of D
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The KKT Conditions

Necessary and Sufficient Condition for a
Minimum

• u⇤ is a minimum iff f (u) does not decrease when moving
away from u⇤ while staying in C

• f is differentiable, so we can look at rf (u⇤)
• No matter how we choose a direction s 2 Rm,

if a tiny step away from u⇤ and along s keeps us in C,
then sTrf (u⇤) must be � 0

• If s 2 P = {s : sTrci(u⇤) � 0 for i 2 A(u⇤)}
then sTrf (u⇤) must be � 0

• rf (u⇤) is any vector with a nonnegative inner product with
all vectors in P

• rf (u⇤) is in the dual cone of P,
D = {g : g =

P
i2A(u⇤) ↵irci(u⇤) with ↵i � 0}
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The KKT Conditions

The Karush-Kuhn-Tucker Conditions

• rf (u⇤) is in D = {g : g =
P

i2A(u⇤) ↵irci(u⇤) with ↵i � 0}
• rf (u⇤) =

P
i2A(u⇤) ↵

⇤
i rci(u⇤) for some ↵⇤

i � 0

• @
@u

h
f (u⇤)�

P
i2A(u⇤) ↵

⇤
i ci(u⇤)

i
= 0 for some ↵⇤

i � 0

• There exist ↵⇤ s.t. @
@u
L(u⇤,↵⇤) = 0 where

L(u,↵)
def
= f (u)�

P
i2A(u) ↵i ci(u)

with ↵i � 0 for i 2 A(u)

• L is the Lagrangian function of this convex program
• The values in ↵⇤ are called the Lagrange multipliers
• KKT conditions also hold in the interior of C!
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The KKT Conditions

Technical Cleanup
• Simplifying the sum

P
i2A(u) ↵i ci(u)

• Anywhere in C, we have ↵i � 0 (cone) and ci(u) � 0
(feasible u), so

Pk
i=1 ↵i ci(u) = ↵T c(u) � 0

• At (u⇤,↵⇤), the multiplier ↵⇤
i is in the sum only if ci(u⇤) = 0,

so we can replace the sum with

↵T
c(u)

if we add the complementarity constraint (↵⇤)T c(u⇤) = 0
which requires ↵⇤

i = 0 for i /2 A(u⇤)

• At (u⇤,↵⇤), the sum
P

i2A(u) ↵i ci(u) is equivalent to

↵T c(u) together with the constraint (↵⇤)T c(u⇤) = 0
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The KKT Conditions

The KKT Conditions
• It is necessary and sufficient for u⇤ to be a solution to a

convex program that there exists ↵⇤ such that
@
@u
L(u⇤,↵⇤) = 0 (no descent direction)

c(u⇤) � 0 (feasibility)
↵⇤ � 0 (cone)
(↵⇤)T c(u⇤) = 0 (complementarity)

where L(u,↵)
def
= f (u)�↵T c(u)

• We can now recognize a minimum if we see one
• Subsumes to rf (u⇤

) = 0 for the unconstrained case
• Since both f (u) and ↵T c(u) are convex, so is L(u,↵)

• Therefore, (u⇤,↵⇤) is a global minimum of L w.r.t. u

(because of the first KKT condition)
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The KKT Conditions

A Tiny Example
• In simple examples, we can solve the KKT conditions and

find the minimum (as opposed to just checking whether a
given u⇤ is a minimum)

• This is analogous to solving the normal equations
rf (u⇤

) = 0 in the unconstrained case
• Example: minu f (u) = eu subject to c(u) = u � 0
• Lagrangian: L(u,↵) = f (u)� ↵c(u) = eu � ↵u
• We obviously know the solution, u⇤ = 0

0 1

u
f(

u
)
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The KKT Conditions

A Tiny Example: KKT Conditions
• Lagrangian: L(u,↵) = eu � ↵u

@
@uL(u

⇤,↵⇤) = eu⇤ � ↵⇤ = 0
c(u⇤) = u⇤ � 0
↵⇤ � 0
↵⇤c(u⇤) = ↵⇤u⇤ = 0

• Solving first yields ↵⇤ = eu⇤

which makes ↵⇤ � 0 moot
• Complementarity yields u⇤ = 0, which is feasible
• [Yay!]
• We have ↵⇤ = eu⇤

= e0 = 1
• Since ↵⇤ > 0, this constraint is active
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Lagrangian Duality

Lagrangian Duality
• We will find a transformation of a convex program

f ⇤ def
= min

u2C
f (u)

C def
= {u 2 Rm : c(u) � 0}

into an equivalent maximization problem, called the
Lagrangian dual

• The original problem is called the primal
• This is not cone duality!
• This transformation will seem arbitrary for now
• Dual involves only the Lagrange multipliers ↵, and not u

• The dual is often simpler than the primal
• For SVMs, the dual leads to SVMs with nonlinear decision

boundaries
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Lagrangian Duality

Derivation of Lagrangian Duality
• Duality is based on bounds on the Lagrangian
• L(u,↵)

def
= f (u)�↵T c(u)

where ↵T c(u) � 0 in C and (↵⇤)T c(u⇤) = 0
• Therefore, L(u⇤,↵⇤) = f (u⇤)

• Also, L(u,↵)  f (u) for all u 2 C and ↵ � 0

• Even more so, D(↵)
def
= minu2C L(u,↵)  f (u)

for all u 2 C and ↵ � 0, and in particular

D(↵)  f ⇤ def
= f (u⇤) for all ↵ � 0

• D is called the Lagrangian dual of L
• For different ↵, the bound varies in tightness
• For what ↵ is it tightest?
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Lagrangian Duality

Derivation of Lagrangian Duality, Continued
• L(u,↵)

def
= f (u)�↵T c(u)

• D(↵)
def
= minu2C L(u,↵)  f (u)

• (↵⇤)T c(u⇤) = 0 (complementarity)
• D(↵⇤) = minu2C L(u,↵⇤) = L(u⇤,↵⇤) =

f (u⇤)� (↵⇤)T c(u⇤) = f (u⇤) = f ⇤

• Thus, D(↵)  f (u) and D(↵⇤) = f ⇤, so that

max
↵�0

D(↵) = f ⇤ and argmax
↵�0

D(↵) = ↵⇤ .

• This is the dual problem. The value at the solution is the
same as that of the primal problem, and the value ↵⇤ where
the maximum is achieved is the same that yields the
solution to the primal problem
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Lagrangian Duality

Summary of Lagrangian Duality

f ⇤ = f (u⇤) = min
u2C

f (u)
| {z }

primal

= L(u⇤,↵⇤) = max
↵�0

D(↵)
| {z }

dual

= D(↵⇤)

• D(↵)
def
= minu2C L(u,↵)

• L has a minimum in u and a maximum in ↵ at the solution
(u⇤,↵⇤) of both problems

• (u⇤,↵⇤) is a saddle point for L
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Lagrangian Duality

A Tiny Example, Continued

f (u) = eu subject to c(u) = u � 0
• Lagrangian: L(u,↵) = f (u)� ↵c(u) = eu � ↵u

0 1

u

f(
u

)
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Lagrangian Duality

A Tiny Example: The Dual

• Lagrangian: L(u,↵) = eu � ↵u
• D(↵) = minu�0 L(u,↵) = minu�0(eu � ↵u)
• Differentiate L and set to zero to find the minimum
• Been there, done that: We know that L(u,↵) has a

minimum in u when ↵ = eu

• However, we are now interested in the value of u for fixed ↵,
so we solve for u: u = ln↵

• D(↵) = L(ln↵,↵) = eln↵ � ↵ ln↵ = ↵(1 � ln↵)
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Lagrangian Duality

A Tiny Example: The Dual

• D(↵) = ↵(1 � ln↵)

• Maximizing D in ↵ yields the same ↵⇤ as the primal problem
• We have eliminated u
• Compute the derivative and set it to zero
• dD

d↵ = 1 � ln↵� ↵
↵ = � ln↵ = 0

for ↵⇤ = 1
• [Yay!]
• If we hadn’t already solved the primal, we could plug ↵⇤ = 1

into the Lagrangian:
• L(u,↵⇤) = eu � u
• We have eliminated ↵
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Lagrangian Duality

Solving the Primal Given ↵⇤

• minu f (u) = eu subject to c(u) = u � 0
• minu L(u,↵⇤) = minu L(u, 1) = eu � u without constraints
• Compute the derivative and set it to zero
• dL

du = eu � 1 = 0
for u⇤ = 0

• [Yay!]
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Lagrangian Duality

Summary of Lagrangian Duality

• Worth repeating in light of the example:

f ⇤ = f (u⇤) = min
u2C

f (u)
| {z }

primal

= L(u⇤,↵⇤) = max
↵�0

D(↵)
| {z }

dual

= D(↵⇤)

• D(↵)
def
= minu2C L(u,↵)

• L has a minimum in u and a maximum in ↵ at the solution
(u⇤,↵⇤) of both problems

• (u⇤,↵⇤) is a saddle point for L
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