
Raft
Yicheng Jin

Some materials are from Prof. Danyang Zhuo



Fault-Tolerant Distributed System
Fundamental Goals

- Safety

- Nothing bad happens. System runs correctly

- Consistency: All nodes see the same data at the same time

- Liveness

- Something good eventually happens. System makes progress

- Availability: Systems remain responsive during failures



Fault-Tolerant Distributed System
Generic Technique: Replicated State Machine (RSM)

- Replicated state machine

- Model service as a deterministic state machine

- Same commands → same output

- Run multiple replicas that fail independently

- Redundancy and independency

- No single point of failure

- Replicas agree on the seq of ops they run
Model Services as State Machines



Fault-Tolerant Distributed System
Consensus Algorithm

- Consensus algorithm

- Nodes agree on something in the presence of failures

- Type 1. Byzantine fault tolerance

- Proof-of-work (BitCoin), proof-of-stake (Ethereum)

- Type 2. Crash fault tolerance

- Paxos, Raft (this lecture)



Fault-Tolerant Distributed System
RSM with Consensus

- Leader-based: A leader node is designated to coordinate consensus process

- Consensus: Ensure consistency across nodes via log replication

Leader Node



Fault-Tolerant Distributed System
Fundamental Trade-Off Between Safety and Liveness

- FLP Impossibility

- Theorem: In an asynchronous (unbounded network 
delay) distributed system with even one faulty node, it is 
impossible to guarantee both safety and liveness in 
reaching consensus.

- Proof: Because messages can be delayed indefinitely, a 
protocol cannot distinguish between a slow node (or 
network partition) and a failed node.

- Implication: Consensus algorithms must sacrifice 
liveness under certain failures to maintain safety.

Case 1. Network Partition

Case 2. Node Failure



Fault-Tolerant Distributed System
Fundamental Trade-Off Between Safety and Liveness

- CAP Theorem

- Theorem: In a distributed system that can experience 
network partitions, it is impossible to simultaneously 
achieve consistency, availability, and partition tolerance.

- Proof: Serving clients in one partition during network 
partition: (1) reject ops: sacrifice availability; (2) allow ops: 
sacrifice consistency.

- Implication: Under network failures, you must choose 
between consistency (safety) and availability (liveness).

Categorizing Dist Sys By 
Trade-Offs They Make



Fault-Tolerant Distributed System
Quorum-Based Consensus: Trade Off Availability for Consistency

- Leader must be supported by a majority of the group (a quorum) 

- Consistency: At most one connected subgroup can serve requests

- Availability: Once a majority of replicas fail, the remaining replicas should not 

serve requests due to the indistinguishbility issue.



Raft: Overview

- Quorum-based, leader-based consensus for RSM
- Failure model: message delayed/lost messages, fail-stop



Raft: Problem Decomposition

- Leader election
- Detect leader crashes and select a new leader

- Log replication
- Leader appends commands from clients to its log
- Leader replicate its log to other servers

- Safety properties



Raft: Leader Election
Server Roles and RPCs

1⃣

2⃣

For a timeout

Get a majority of votes

3⃣

RPC from 
leader

Nodes vote for the first request received



- Logical time individually maintained by each node
- Incremented when a node initiates a new election

- Synced when receives RPCs with newer terms

- Included in both types of RPCs to sync clock
- Older term → reject requests and reply with an error

- Newer term → advance node’s own clock

- Each term has at most one leader
- Agreement on term is equivalent to agreement on leader

- Election achieves consensus on leader as well as term

Raft: Leader Election
Terms



Raft: Leader Election
Safety and Liveness of Election

- Safety: at most one leader per term

- Proof: one vote per node. Two majorities must overlap.

- Liveness: some candidate eventually wins

- Issue: fixed election timeout leads to split votes, where multiple nodes 
timeout and request votes simultaneously, and none receives a majority

- Solution: nodes use randomized timeout, hoping one candidate wins 
before the next node timeout



Raft: Log Replication
Normal Operation

1⃣

2⃣

3⃣
3⃣

4⃣4⃣ 6⃣

7⃣8⃣
8⃣

9⃣ 9⃣

5⃣

5⃣ Followers reply with a positive acknowledgement
8⃣ Leader notifies followers of committed entries in subsequent AppendEntries RPCs

Replicated to any majority

Current Leader



Raft: Log Replication
Log Structure (Normal Operation)



Raft: Log Replication
Issue: Log Inconsistency Caused by Crashes

Committed Entries
Leader for term 3 (crashed)

Leader for term 2 (partitioned)

Mismatched entries



Raft: Log Replication
Fix: Log Matching Property via Consistency Check

- Log matching property: If log entries on 
different nodes have same index and term, 
then they store the same command, and 
the logs are identical in all preceding 
entries.

→ If a given entry is committed, all 
preceding entries are also committed.

Matching entry

Matching prefix



Raft: Log Replication
Fix: Log Matching Property via Consistency Check

- AppendEntries includes <term, index> of the preceding log entry
- Followers first check if they have the preceding log entry

- Match: append log entry and send positive ack
- Mismatch: send negative ack, asking leader to retry replicating the preceding entry

- Ensures log matching property via induction

Backtrack & retry append #3: success
Retry append #4: success



Raft: Log Replication
Issue: Leader Overwriting Committed Entries of Previous Terms

Term 2 Term 3 Term 4 Term 5: who can be the new leader?

#2 commited

#2 overwritten!



Raft: Log Replication
Fix: Leader Completeness Property During Election

- Ensure leaders contain all committed logs

- How: RequestVote includes <term, index> of the last log entry, and 
voters reject candidates whose log is less up-to-date than them.

- Proof: The new leader’s log is more up-to-date than a majority of the 
nodes. The majority that committed the entries in the previous term 
must overlap with the majority that elects the new leader.



Raft: Log Replication
Committed Entries

- Why are log entries replicated to a majority of nodes considered stable 
and safe to apply to state machines?

- Election rules make sure that new leaders always contain all committed entries, thus 
committed entries cannot be overwritten during log replication

- Leaders can fix inconsistency/lagging in followers’ logs, making sure a majority of nodes 
contains all committed entries when replicating a new entry


