Raft

Yicheng Jin

Some materials are from Prof. Danyang Zhuo

Fault-Tolerant Distributed System

Fundamental Goals

- Safety

- Nothing bad happens. System runs correctly

- Consistency: All nodes see the same data at the same time
- Liveness

- Something good eventually happens. System makes progress

- Availability: Systems remain responsive during failures

Fault-Tolerant Distributed System
Generic Technique: Replicated State Machine (RSM)

- Replicated state machine

- Model service as a deterministic state machine t
reques

- Same commands - same output ij ~ A
o v

- Run multiple replicas that fail independently
Clients result
- Redundancy and independency State
Machine
- No single point of failure

_ Model Services as State Machines
- Replicas agree on the seq of ops they run

Fault-Tolerant Distributed System

Consensus Algorithm

- Consensus algorithm

- Nodes agree on something in the presence of failures
- Type 1. Byzantine fault tolerance

- Proof-of-work (BitCoin), proof-of-stake (Ethereum)
- Type 2. Crash fault tolerance

- Paxos, Raft (this lecture)

Fault-Tolerant Distributed System

RSM with Consensus

CEEEEEEE Clients

Z—X |

[Consensus onsensus Q Consgnsus ate)
Module achine Module Machine MoWule Madhine

“ Qg% " Servers
m Log m

[x=1 | y3 [x4 [z<x | | x—1 | y—3 | x4 | z<x | [x—1 | ye3 | x4 | z<x |

Leader Node

- Leader-based: A leader node is designated to coordinate consensus process

- Consensus: Ensure consistency across nodes via log replication

Fault-Tolerant Distributed System

Fundamental Trade-Off Between Safety and Liveness

- FLP Impossibility

- Theorem: In an asynchronous (unbounded network
delay) distributed system with even one faulty node, it is
impossible to guarantee both safety and liveness in
reaching consensus.

L1 L2
Case 1. Network Partition

- Proof: Because messages can be delayed indefinitely, a

protocol cannot distinguish between a slow node (or .
network partition) and a failed node. % :
- Implication: Consensus algorithms must sacrifice L1 L2

liveness under certain failures to maintain safety. Case 2. Node Fail
ase 2. Node Failure

Fault-Tolerant Distributed System

Fundamental Trade-Off Between Safety and Liveness

- CAP Theorem

- Theorem: In a distributed system that can experience
network partitions, it is impossible to simultaneously
achieve consistency, availability, and partition tolerance.

¥ Partition

- Proof: Serving clients in one partition during network Availability Tolerance

partition: (1) reject ops: sacrifice availability; (2) allow ops:
sacrifice consistency.

- Implication: Under network failures, you must choose Categorizing Dist Sys By
between consistency (safety) and availability (liveness). Trade-Offs They Make

Fault-Tolerant Distributed System

Quorum-Based Consensus: Trade Off Availability for Consistency

- Leader must be supported by a majority of the group (a quorum)

- Consistency: At most one connected subgroup can serve requests
- Availability: Once a majority of replicas fail, the remaining replicas should not

serve requests due to the indistinguishbility issue.

Raft: Overview

N

(Consensus [Consensus
Module achine Module

Log

| x—1 | y3 | x4 | z<x

—

Machine

)

Log

CEEEEEEE

Z—X l

l X«—1 I y<—3 | X4 |‘Z<lx I

Consgnsus ate
MoWule Madhine

oy

| X<—1 I y<—3 | x<—4 I‘Z;X |

B

Quorum-based, leader-based consensus for RSM
Failure model: message delayed/lost messages, fail-stop

Clients

Servers

Raft: Problem Decomposition

- Leader election
- Detect leader crashes and select a new leader

- Log replication
- Leader appends commands from clients to its log
- Leader replicate its log to other servers

- Safety properties

Raft: Leader Election
Server Roles and RPCs

start

l

FOIIOWer

discover

higher
term

RPC from
leader

no -2

heartbeat
y For a timeout

\

Cand|date

wi

election
y Get a majority of votes

Leade%m
=y

Passive (but expects
regular heartbeats)

Issues RequestVote RPCs
to get elected as leader
Nodes vote for the first request received

Issues AppendEntries RPCs:
* Replicate its log
* Heartbeats to maintain leadership

term 1 term 2 term 4

Raft: Leader Election 1 il

)
Terms N [tems
election normal no emerging
operation leader

- Logical time individually maintained by each node
- Incremented when a node initiates a new election
- Synced when receives RPCs with newer terms
- Included in both types of RPCs to sync clock
- Older term - reject requests and reply with an error
- Newer term - advance node’s own clock
- Each term has at most one leader

- Agreement on term is equivalent to agreement on leader

- Election achieves consensus on leader as well as term

Raft: Leader Election
Safety and Liveness of Election

- Safety: at most one leader per term

- Proof: one vote per node. Two majorities must overlap.

; (— — VT — %
goimaony 1 (Ji]) (O O} canciceten

Servers

- Liveness: some candidate eventually wins

- Issue: fixed election timeout leads to split votes, where multiple nodes
timeout and request votes simultaneously, and none receives a majority

- Solution: nodes use randomized timeout, hoping one candidate wins
before the next node timeout

Raft: Log Replication

Normal Operation

i? i‘q . ij iq iq ij iq\@\ Clients
/Consensus Consensus ate)
Module achine Module Magdhine
~
P =
“ 58 Servers

og _
[x=1 | ye3 [x4 | zex | [x=1 | ye3 | x4 | z<x

og 0

| x=1 | y<3 | x4 | z<x

Current Leader

Followers reply with a positive acknowledgement

_§)Leader notifies followers of committed entries in subsequent AppendEntries RPCs
Replicated to any majority

Raft: Log Replication

Log Structure (Normal Operation)

term

kN
command I

1 2 &) 4 5 6 7 8 9 10
1 1 1 2 2 3 3 3 3 3
x—3|q—8| j«2 | x—q|z5]|y—1]|y<3| qj | x4 |z—6

1 1 1 2 2 3 3
x—3|q—8| j<2 | x—q|z5]|y1]|y<3
1 1 1 2 2 3 3 3 3 3
x—3|q«8|j—2 |x—q|z<5|y—1|y<—3| g | x4 |z—6
1 1
x<—3|q<8
1 1 1 2 2 3 3 3
X<—3|q—8| j«2 | x—q|z<5]|y—1]y<3| g«

Y

log index

leader for term 3

> followers

committed entries

Raft: Log Replication

Issue: Log Inconsistency Caused by Crashes

1 2 3 4 5 6 7 8 9 10 log index

111]2]2]3]3]s3
S1 |[x—3|q—8|j—2 [x—q|z—5|y—1|y—3| gj

leader for term 4

1 1 1 2 2 % &
Sz e—t] q<_8 J<_2 X0 71_5 Ve—1 \/4-_3
Committed EntriesZ
1 1 1 2 2 3]
83 x—3|q8|j2 | x—q|z<5|y—1|y<3| q—j | x4

1 1
S4 x<—3|q<8

— [eader for term 3 (crashed)

1 1 1 2 2 2 2 2 2

S5 [x—3|q—8|j—2 |x—qlz5|y—3| qj [x—8 | x—4 — Leader for term 2 (partitioned)

Mismatched entries

Raft: Log Replication
Fix: Log Matching Property via Consistency Check

Log matching property: If log entries on
different nodes have same index and term,
then they store the same command, and
the logs are identical in all preceding
entries.

- If a given entry is committed, all
preceding entries are also committed.

Matching prefix

1 2 3 4 5 6 |7 8 9

10

z<6

Matching entry

Raft: Log Replication
Fix: Log Matching Property via Consistency Check

- AppendEntries includes <term, index> of the preceding log entry
- Followers first check if they have the preceding log entry

- Match: append log entry and send positive ack

- Mismatch: send negative ack, asking leader to retry replicating the preceding entry
- Ensures log matching property via induction

1 2 |3 4 1 2 |3 4 |5 1 2 3 4 |5
: 1 11 2] 3 1 | 1 2. 1 L] 2713
leader: x<—3 | g8 | x«—q|| y«1 X—3|q—8 | x—q| y«—1 X3 | q8) x«—q | y«-1

: 111]2 TR — R Rl

follower before: |, 3[q—8|x—q x—3|q—8|j—2 |y—6]a—x x—3|q8|j2 [yblacx
: 111]2 BB) (RO) 117273
follower after: |, "5 g8 [x—q [y1 x—3|q—8|j—2 [y—6|y—6 x—3|q—8|x—q|y—1
Example #1: success | Example #2: mismatch Backtrack & retry append #3: success

Retry append #4: success

Raft: Log Replication

Issue: Leader Overwriting Committed Entries of Previous Terms

Term2 Term 3 Term 4

1 2 1 2 1 2 3
S1711]2 112 "11(2]4
S2 [1]2 1|2 1 25
s3 [1 1 1] 2]
sa [T 1 1 #2 commited
S5 |1 11{3 1{3

Term 5: who can be the new leader?
1 2 3 1 2 3

#2 overwritten!

Raft: Log Replication

Fix: Leader Completeness Property During Election

- Ensure leaders contain all committed logs

- How: RequestVote includes <term, index> of the last log entry, and
voters reject candidates whose log is less up-to-date than them.

- Proof: The new leader’s log is more up-to-date than a majority of the
nodes. The majority that committed the entries in the previous term
must overlap with the majority that elects the new leader.

Raft: Log Replication

Committed Entries

- Why are log entries replicated to a majority of nodes considered stable
and safe to apply to state machines?

- Election rules make sure that new leaders always contain all committed entries, thus
committed entries cannot be overwritten during log replication

- Leaders can fix inconsistency/lagging in followers’ logs, making sure a majority of nodes
contains all committed entries when replicating a new entry

