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Abstract—We explore exploits possible for cheating in real-time,
multiplayer games for both client-server and serverless archi-
tectures. We offer the first formalization of cheating in online
games and propose an initial set of strong solutions. We propose a
protocol that has provable anti-cheating guarantees, is provably
safe and live, but suffers a performance penalty. We then develop
an extended version of this protocol, called asynchronous synchro-
nization, which avoids the penalty, is serverless, offers provable
anti-cheating guarantees, is robust in the presence of packet loss,
and provides for significantly increased communication perfor-
mance. This technique is applicable to common game features as
well as clustering and cell-based techniques for massively mul-
tiplayer games. Specifically, we provide a zero-knowledge proof
protocol so that players are within a specific range of each other,
and otherwise have no notion of their distance. Our performance
claims are backed by analysis using a simulation based on real
game traces.

Index Terms—Gaming, multimedia communication, peer-to-
peer networking, security.

I. INTRODUCTION

THE THREE primary factors that affect the quality of on-
line, massively multiplayer games are: timely playout of

real-time interaction; scalability of communication and game
architectures to large numbers of users; and the prevention or de-
tection of cheating players. Although cheating abounds in cur-
rent game play on the Internet, there is little or no real security to
prevent cheating in online games. Previous work in prevention
and detection of cheaters in games has been largely relegated to
mental poker [1] and similar games.

Modifications to games are often sophisticated open-source,
community efforts at reverse-engineering the games. For ex-
ample, the Decal project offers to expose information about
game play normally hidden from players.1 Such modifications
are simple to download and use.

Online, real-time, strategy games, first-person shooters,
and massively-multiplayer virtual worlds all rely on a
client-server-based architecture for execution of game play.
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This architecture offers a single point of game coordination, but
it creates a bottleneck of processing and signaling as the size
of and number of players in online worlds increases. Moving
to a peer-to-peer (i.e., serverless) architecture increases scala-
bility and performance, but complicates player interaction and
increases the already troubling potential for cheating extant in
centralized approaches.

In this paper, we make fair and cheat-proof interaction a nec-
essary condition of correct game play. We offer several contribu-
tions that make cheat-proof interaction among players feasible
for the first time in a peer-to-peer network.

First, we show that the common synchronization techniques
used to preserve the real-time quality of online games, gener-
ally called dead reckoning, are detrimental to correct game play
and can create irresolvable conditions for multiplayer coordina-
tion. We show that cheating players are indistinguishable from
noncheating players under such techniques. For example, with
dead reckoning, a player can cheat simply by delaying until
other players announce their moves for the next few frames.
Then, the cheating player can alter their strategy and announce
moves for recent past frames as if the packets were delayed in
the network. Other players will accept the late packets.

Second, we propose a simple protocol for peer-to-peer game
play, called Lockstep, and prove cheating is not possible. We
extend the protocol with a new technique that improves per-
formance but preserves security. We call the extended protocol
asynchronous synchronization (AS). We evaluate AS and Lock-
step with traces from a multiplayer game and show that AS im-
proves performance over Lockstep significantly. For example,
in a simulation with 75 players, 95% of frames were stalled at
least 10 ms under Lockstep, while only 40% of frames were
stalled at least 10 ms under AS.

Third, we extend the scalability of AS with a cell-based pro-
tocol. Cell-based protocols allow players to limit most of their
interactions to opponents within their local region, thereby re-
ducing network traffic and decreasing playout delays. Our pro-
posed cell-based protocol allows players to determine if they
are in the same cell, or near the border of two cells. Importantly,
players that are not in the same cell or near a border do not learn
the respective location of the other player. This prevents the ex-
posure of too much information that can assist in player strategy.

There are several differences between the preliminary publi-
cation of this work [2] and this version. First, the performance
evaluations discussed in Section VI use a increased number of
simulated players, and the section now includes a discussion of
scalability and jitter. Second, Section VII presents a previously
unpublished protocol for cell-based gaming. The new protocol
removes a critical problem with the preliminary work: players
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one pixel apart but in adjacent cells could not determine they
were so close. This prevented running the AS protocol between
players in adjacent cells. The new protocol ensures that players
will know if they are within half of a cell-width of one another,
even if in different cells. We did not introduce additional ex-
changes between players in the new protocol.

The remainder of this paper is organized around those goals.
We present background information on game architectures
in Section III. Section IV considers the potential for cheating
during game synchronization. Section V presents new protocols
for cheat prevention. Section VI presents an analysis of the net-
work performance by simulation of the protocols. Section VII
looks how our techniques may be combined with clustering
and cell-based techniques for scaling to massively multiplayer
scenarios. Section VIII concludes.

II. BACKGROUND

Dead reckoning is a technique that compensates for variable
communication latency and loss across a network by allowing
a client to guess the state of another player when updates
are missing based on the last known vectors. Dead reckoning
is a part of the Distributed Interactive Simulation (DIS) and
High-Level Architecture (HLA) standards [3], [4], and is
commonly used by researchers and developers [5]–[11]. In
its simplest form, the predicted position of a player is equal
to the previous position plus the velocity times the elapsed
time. Singhal and Cheriton [9] have refined this basic formu-
lation. Diot, Gautier, and Kurose [7], [8] have evaluated the
performance of bucket synchronization with dead reckoning
in a simple, distributed game called MiMaze. Bucket syn-
chronization provisions a series of buckets at each client, one
bucket per discrete time unit in the game. Each bucket collects
state updates sent from each remote player. When it is time to
process a bucket, any missing updates are dead-reckoned.

Previous work places dead reckoning as a necessary tech-
nology for timely game play but does not address the potential
for cheating. We show that cheating is possible in a dead reck-
oning system, and we provide solutions to the cheating problem
in later sections of this paper. The next section shows that any
form of dead reckoning can lead to irresolvable player inter-
actions if players do not act honestly, especially with a p2p
architecture.

Several articles authored by commercial game developers are
relevant to our work. For example, Bernier [12] describes how
clients compensate for network delay. Pritchard [13] motivates
the problem of cheating in games.

Our work is also related to past work on interest management
for massively multiplayer games and applications [14]–[19].
Typically, interest grouping is done on the basis of grid-
coordinates, a natural clustering of interest for virtual environ-
ments. Section VII discusses how our work can leverage these
techniques.

Lastly, our work is related to parallel simulation techniques
[4], [20], [21]. Parallel simulations operate with either conserva-
tive or optimistic event processing. In conservative processing,
no entity may be out of synchronization with other entities and
therefore no lookahead and processing of events is possible. Op-
timistic techniques allow for entities to execute events asynchro-

nously, but then must be tolerant of incorrect state or computa-
tion during execution. Typically, once it is realized that such in-
correct state exists, the computation is undone, or rolled back, to
the last correct point. This method requires that states are saved.
Such techniques are not useful for real-time multiplayer games
as it would not be practical to force a human participant to restart
to previous points in the game. In this paper, we allow for a lim-
ited form of optimistic processing without the need for rollback.

Since the preliminary version of this work was published [2],
several works on cheat-proof playout of p2p games followed
that have sought to extend our approach or relax its assumptions
[22]–[25]. Recently, we have produced our own extension to
AS called Ghost [26] that manages a p2p cheat-free game for
a set of players with heterogeneous network resources. Ghost
dynamically creates responsive sub-games based on the delay
profiles of players.

III. MODEL AND TERMINOLOGY

In this section, we define our model and assumptions re-
garding the information available to players from software.

A. Abilities of Players and Cheaters

We grant to cheaters the ability to read, insert, modify,
and block messages involved with the game protocol applica-
tion-level signaling. Our goal is to develop techniques to guard
against attacks from reading, inserting, modifying, or blocking
game messages that provide the players with an advantage in
game play. Protecting against attacks on existing transport-layer
and network-layer protocols, such as TCP denial-of-service
attacks [27], is beyond the scope of this paper. However, such
attacks are addressed by our follow on work [26].

We assume application software—i.e., the client—is read-
able by the user and will perform its functions as originally
intended. Moreover, any information available to the client is
available to the player, e.g., game state or cryptographic keys.
This assumption precludes any attempt to employ security by
obscurity, which is the predominant model in games today [13].
By allowing the cheater the ability to modify outgoing and in-
coming messages, we are effectively allowing almost any attack
that would require modifying the client itself.

B. Game State

Games are rule-based, real-time simulations of multiple en-
tities, which are in-game objects (e.g., military troops) con-
trolled by a player. The game proceeds along a sequence of
time units called frames that are distinct from wallclock time.
Each frame, player’s make decisions, which are actions allow-
able under game rules that the status of each player’s entites.
The set of variables that completely describe the status of an
entity in the game at a specific frame is called the entity state.
The set of all entity states that completely describes the status
of a game at a specific frame is called the game state. Players
take exactly one decision during each frame. Every frame, the
players’ decisions must be resolved by computing the resulting
state according to game rules. The sequence of resolved states
observed by each player is the game’s playout.

A player may control multiple entities in the game, but we
may use the terms entity and player interchangeably since it is
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the player’s decisions that affect game play. Entity actions may
be automated, but we still refer to the controlling “player”, even
though it is not a human user.

Game simulators offer precise game control, but may appear
slow to a player if the simulator cannot compute each successive
frame quickly enough. A player may also perceive slower game
play, in terms of wallclock time, if it must wait for updates from
a player across the network.

Under a client-server communication architecture, all entity
states are computed, maintained, and broadcast by a central-
ized server. The sequence of games states resolved by the server
are based on input from clients, who supply player game deci-
sions. Client-server architectures offer a single point of game
coordination at the server. In the face of missing client updates,
the server uses the entity model to resolve any interactions,
which may result in conflicting views of game state between
the server and affected client. However, the server has authority
over maintaining game state, and the client must accept these
discrepancies and conform to the server’s view of the game
world. The simplicity of maintaining a consistent game state in a
client-server architecture has likely contributed to the architec-
ture’s popularity among developers, and thus to its prevalence
in deployed software.

Under a peer-to-peer communication architecture, each client
maintains its own entity state, informs other clients of decisions,
and resolves any interactions without the use of any centralized
authority. In this serverless, decentralized model, each client
keeps a model of each remote entity. However, when updates
from remote clients are missing, the local client must advance
its local frame only if the playout will not conflict with every
other remote client. We explore this further in the next section
and offer a solution.

IV. FAIR PLAYOUT

A player cheats by working outside the original client pro-
gram to read, modify, or block game state to gain an unfair
advantage. Correct playout of real-time interaction means that
the game state is identically perceived by every player. A fair
game is one where players see events occur as would be ex-
pected by games rules and player game actions. The goal of this
paper is to achieve correct and fair sequence of games states in
a multiplayer, networked game. In terms of the performance,
cheat-proof solutions must be scalable to as many players as
possible in terms of signaling costs, and delays in advancing
game frames must be only minimally perceivable to players.

A. Irresolvable Interactions

Dead reckoning can be used in client-server or p2p envi-
ronments [7], [8] and the operation is the same. In the cen-
tralized case, interactions are resolved by the server uniformly,
but unfairly. If the server uses dead-reckoned state to resolve
an interaction, the decision may differ from the expectation of
the dead-reckoned player. Thus, a dead-reckoned player may
view the server’s decision as unfair, since the player’s true ac-
tions were not used by the server. The resulting discrepancy in
playout may cause jumpiness in game play or other artifacts,
lowering the quality of the game.

The annoyance of unfair decisions becomes damaging in a
p2p architecture: interactions based on dead-reckoned state may
corrupt the global game state as seen by each client. We say
that an irresolvable interaction problem results when dead reck-
oning is used and interactions are either determined unfairly by
a server or potentially incorrectly by a distributed client.

For example, say players and dead-reckon player
to take no actions during a particular frame, when from ’s
point-of-view, she destroyed player . If player then destroys
player before ’s missing actions are resolved, then game
play is corrupted. Every player’s current game frame could be
restored to a state before the interaction, but this is not a fair
or practical solution for real-time play—although, it is exactly
the approach taken by the High Level Architecture’s optimistic
time management service [4].

B. Cheating Under Dead Reckoning

The problem of cheating in multiplayer games is widely rec-
ognized, but rarely solved in any definitive way. Many games
are designed around the client-server architecture, which pro-
vides some implicit security along with centralized control of
game state. P2P games are much more prone to cheating, but
cheats are possible within a client-server game.

One security flaw under bucket synchronization [8] is what
we term the suppress-correct cheat, which allows a client to
gain an advantage by purposefully dropping update messages.
Suppose that under some dead reckoning policy, buckets are
allowed to be dead-reckoned before the player is considered
to have lost connectivity and is removed from the game. The
value of thus determines a bound on the maximum delay that
is permissible among clients in the game. With such a policy,
a cheating player can purposefully drop update packets
while playing. The player then uses knowledge of the current
game state to construct an update packet for the th bucket that
provides some advantage.

A simple example allows a sluggish player, , to chase a
more agile player, . begins pursuit, then drops up-
dates; meanwhile, dead-reckons ’s missing state but cannot
confirm where really is. For the th bucket, sends a fabri-
cated update that places on the heels of . As long as sends
plausible updates very th bucket, cannot confirm that is
cheating or playing fairly; simply claims to be on a congested,
lossy link.

This cheat applies both to client-server as well as distributed
games. We can conclude that fair play is indistinguishable from
cheating when dead reckoning is used. In the following sections
of this paper, we provide strong guarantees of cheat prevention
and detection.

V. CHEAT-PROOF GAME PROTOCOLS

Most real-time strategy games require interaction resolution
at each discrete game frame. A stop-and-wait protocol similar
to those used for reliable transport [28] is a simple way to fulfill
this requirement for client-server and distributed architectures:
before time advances in the game, the state change decisions
made by each player must be available. In other words, for a
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game at frame , all players stop and wait to receive the an-
nouncements of all other players for frame , before con-
tinuing on to frame . Because no dead reckoning is al-
lowed, the suppress-correct cheat is eliminated. Moreover, since
all state decisions are known at each turn, all interactions can be
resolved correctly and fairly by each client.

Unfortunately, this approach is not sufficient for cheat-free
play. A malicious player can decide their action for frame
after waiting until some or all other players have announced
their respective decisions, which we call the lookahead cheat.
For example, may take a lethal shot towards that could not
be defended against in normal human reaction times. However,
using the lookahead cheat, player may have an automated
agent that sends the decision to take defensive action in time.
When a stop-and-wait-type protocol is employed, players that
appear to be slower may actually be implementing a lookahead
cheat, which can be serious depending on such game features.

In this section, we present a solution to these cheats called
the Lockstep Protocol. We show that the Lockstep protocol is
safe and live with a formal proof. We do not intend Lockstep
to be used on a network because it’s performance is based on
the slowest player. It is a stepping stone to our asynchronous
synchronization protocol, which improves performance without
sacrificing security.

A. Lockstep Protocol

To counter the lookahead cheat, we propose a stop-and-wait-
type protocol with a commitment step. We call this secured ver-
sion the Lockstep protocol.

Suppose frame is complete. Each player makes a de-
cision for frame and announces a cryptographically
secure one-way hash of its decision as a commitment. This
announcement includes randomized padding if necessary to
avoid recognizable hashed decisions and avoid collisions [1].
Once all players have announced their commitments, players
then reveal their decisions in plaintext (including the padding).
Clients can easily verify revealed decisions by comparing
hashes of plaintext to the previously sent committed value.
Because each client has only the current turn information to
make its next-turn decision, the lookahead cheat is prevented;
waiting is no longer beneficial. As an optimization, the last
client is not required to commit its decision if all other clients
have already committed theirs; the last player may reveal its
decision immediately.

The two-phase commitment and required waiting period for
all players in the Lockstep protocol introduces a performance
penalty. Although correct playout is preserved with lookahead
cheat prevention, the game and all players will run at the speed
of the slowest player. The reception of other player’s packets
is likely to be delayed by current network conditions. Below,
we present a synchronization mechanism and protocol that re-
tains the desirable properties of the Lockstep protocol and al-
lows the game to run at a speed independent of all players when-
ever possible.

1) Proof of Correctness: A safety and liveness proof of the
Lockstep protocol shows that it fulfills its requirements by not
producing an error condition and always progressing [28]. We
make a number of assumptions: there exists a reliable channel

between all players; all players know of all other players; players
are able to authenticate messages from each other player; and
all players wait only a finite time before making decisions and
revealing commitments.2

Theorem: (1) The Lockstep protocol is safe: no client ever
receives the state of another client before the game rules permit;
an error occurs if knows ’s state for frame before has
committed to events at , where and are any two players.
(2) The Lockstep protocol is live: each player monotonically
advances the frame counter with wallclock time within a finite
delay.

Proof: The safety of the Lockstep protocol follows directly
from the protocol specification.3 Let be equal to the current
frame being resolved by an arbitrary player . Initially, .
As per the protocol description, announces a hashed version
of the decision it has made for once it has received com-
mitments from all other players for the same frame. will not
announce its committed decision for time until decisions
for time from every other player are revealed, received, and
verified against commitments. No player, including , may alter
announced events because of the hash commitments. Because
may not advance, there is no possibility that another participant
will learn ’s decision for a later frame earlier than the one cur-
rently being resolved.

To prove liveness, let be the wallclock time at which arbi-
trary player starts to resolve frame of the game. Let be
the wallclock time at which all players learn the revealed deci-
sions of all other players for frame ; let if this never
occurs. Let be the wallclock time at which player advances
to time frame ; let if this never occurs. We will
show that and that is finite.

Assume player is not the last player to commit. Let
equal the value of variable at player at wallclock time
. Let . By definition of the protocol, we know

. Because all players wait only a finite time before
committing to decisions, and because all communication takes
place over a reliable channel, we know the commitment of the
last player will be received within a finite time, and therefore,

is finite. Because the protocol is safe, we know that the value
of is incremented to only at time . It is clear from the
statement of the algorithm that is a nondecreasing value
over time. Because is nondecreasing, . Because
all players reveal commitments within a finite time over a reli-
able channel, is also finite.

A similar proof can be constructed if player is the last
player to commit. In that case, it is ’s communication that en-
sures and are finite.

B. Asynchronous Synchronization

In this section, we present a new synchronization technique
with guaranteed fair playout called asynchronous synchroniza-
tion (AS) that relaxes the requirements of the Lockstep pro-
tocol method of synchronization by decentralizing the game

2All our assumptions can be implemented in practice. For example, players
not revealing or committing decisions within a bounded time would be released
from game play.

3We follow the proof of correctness for stop-and-go protocols given by Bert-
sekas and Gallager [28, p. 74].
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Fig. 1. Base and delta spheres of influence.

clock. Each client advances in time asynchronously from the
other clients, but enters into a Lockstep-style mode when inter-
action is required. Correct playout and fairness are guaranteed.
Asynchronous operation of the Lockstep mechanism provides
a performance advantage because at times players can advance
in game time even without contact from all other players. This
relaxed contact requirement may overcome intermittently slow
network signaling, packet loss, or slow client processing.

We do not expect AS to be used to allow players with com-
pletely different network and client resources to play together.
Instead, for this initial design, AS is meant as a technique to
isolate the effects of temporarily poor connections between
players who play at the same rate for a large majority of time
and to reduce the time it takes to resolve interactions. Else-
where, we have published an extension of AS called Ghost [26]
that does manage players with heterogeneous resources. Ghost
allows each user to set the quality of game they are willing to
play and creates the maximum-sized game that satisfies the
users’ requirements. Notably, AS is the foundation of Ghost.

1) Spheres of Influence: Using AS, each player’s client
keeps track of each other player’s advance in game time and
space during game play. The area of the game that can possibly
be affected by a player in the next turn—and therefore poten-
tially require resolution with other player decisions—is called
the player’s sphere of influence (SOI). We define influence as
any in-game information that affects a player’s decisions, and
therefore the outcome of a player’s decisions; where in-game
refers to parts of the game world, as opposed to external knowl-
edge that the player may have, e.g., that a certain opponent
typically follows some strategy. It follows that anything outside
of a player’s current SOI is immaterial to the player’s gameplay
decisions and resulting events. For example, if a player is not
within earshot of a forest, then the player cares not if a falling
tree made any sound, nor if it fell. The exact shape and radius
of an SOI is game specific.

A geometric SOI is a conservative choice appropriate to al-
most all real-time games, but a game programmer could exploit
knowledge of the game world to tighten the boundary of the
SOI.

In AS, each player considers the intersection of two types
of SOI. First, a player’s own SOI, which indicates a geometric
area wherein decisions made contribute to and must be resolved
with the player’s decisions for the next turn. Second, SOI of
remote players, which indicate the areas that can be affected by
the other players on their next turn. Accordingly, if two players’

TABLE I
TABLE OF VARIABLES

TABLE II
AS AT THE LOCAL PLAYER FOR EACH GAME TURN

SOI do not intersect for a certain turn, their decided events will
not affect each other when resolving game state for that turn.

In AS-based games, each client may be making decisions for
a different time frame and advancing its time frame independent
of other clients; details are described subsequently. Therefore,
an SOI is composed of two parts. The base SOI is the max-
imum area that may influence or be influenced on any one turn.
The delta SOI is the change in influence area that may occur
in subsequent turns. Base and delta are represented as radii, as
illustrated in Fig. 1, and delta is added to base to compute sub-
sequent turns.4

2) Asynchronous Synchronization Protocol: Our description
of the AS protocol is from the point of view of one client in a
peer-to-peer architecture. The protocol can be easily adapted to
a centralized architecture.

A formal description of the protocol is given in Tables I and
II as it would take place for an arbitrary turn at a player . If a
player has reached turn , then we assume it has already revealed
state for turn .

For simplicity, we assume in-order, fully reliable delivery of
packets. We extend the protocol to out-of-order, unreliable de-
livery of messages later in this section. Not shown is an initial-
ization phase that occurs before the game begins: every player
learns the full set of remote other players, , and starts each re-
mote player, , in lockstep with every other player until
the initial positions of the other players are received over the
network.

4The figures illustrate 2-D play only, but clearly, AS mechanisms exist for
3-D coordinate systems.
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Fig. 2. (a) Dilation to time = 3. (b) Dilation to and intersection at time = 4.

For an arbitrary turn , a player first determines its decision
for that turn (Step 1), and second announces the commitment
of the decision to all players (Step 2). Third, commitments that
are one frame past the last revealed frame of a remote player are
accepted (Step 3). Before revealing its commitment, the local
player must determine which remote players it is waiting for
(Step 4). A remote player is not in the wait state only if there is
no intersection with the SOI dilated from the last revealed frame
of the remote player, or if a commitment from the remote player
has been accepted by the local player.

Each other remote player’s SOI is computed using the base
radius of the last known position plus a delta radius for each
time frame that the local player is ahead of the remote player’s
last known time frame. If the local client is in the future relative
to another player, then the other player’s potential to influence
the local player’s next decision is dilated to the local player’s
next time frame Fig. 2(a). If the local client is not in the future
of a remote client, then no dilation is performed. Intersection of
the SOI as the local player moves to the next time frame without
receiving revealed state from the remote player since frame
is illustrated in Fig. 2(b).

Finally, if no remote clients are in the wait state, the local
client reveals its state for turn , updates its local entity model
of each other player with their last known state, including the
remote client’s last known time frame (no dead reckoning is
performed), and advances to the next turn (Step 5). The protocol
then repeats for the next turn.

Fig. 3. Player position versus game frames. Top lines: players A, B, C , and
D. Bottom lines: paths in the xy-plane.

Fig. 4. Player position versus wallclock time. Top lines: players C and D.
Middle lines: players A, and B. Bottom lines: paths in the xy-plane.

AS allows a client to advance in time at a rate independent
of other clients, until there is potential influence from a slower
player that might result in interactions that must be resolved.

As an illustrative example, consider the case depicted in
Figs. 3 and 4, drawn from simulation results. Fig. 3 shows
a pair of players crossing each other in the -plane of the
game. The axis represents the frame of each player for a
corresponding -coordinate. Both players’ paths start at frame
zero and end at frame 111. Consider another set of players,
and , that take the same paths in the game, but must proceed
in lockstep synchronization. Players and have the same
frame-versus- -coordinate graph as players and . Fig. 4
shows the same paths in the -plane, but the axis represents
the wallclock time of the players for each coordinate. Players

and are represented by the two lines advancing slowly in
wallclock time (higher in the -plane).

In contrast, players and proceed according to the AS
algorithm: they may advance in time as quickly as possible, only
proceeding in lockstep when their SOI intersect. Fig. 4 shows
players and only having a sharp increase in slope as the
two approach each other in the -plane. Players and need
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not wait to hear from the other player to continue with the game
otherwise, and therefore are not affected by network delays. In
contrast, players and must constantly wait for each other,
and so network delays affect every moment of the game.

With AS, lookahead cheats are prevented similarly to the
Lockstep protocol: by committing to a hash of the next-turn de-
cision until all clients have committed at the same time frame
or have revealed past decisions that remove the potential for
cheating (i.e., the potential for interaction). AS also eliminates
the suppress-correct cheat in the same way as in the Lockstep
protocol. The client cannot advance in time until all potential in-
fluences for one turn have been resolved. The lookahead cheat
might appear to be more serious than in lockstep synchroniza-
tion: a client may purposely lag behind other clients in order to
preview future information. However, a client cannot advance in
time past the point where a potential influence is detected, hence
cheating is useless as no player would be affected. For example,
if a cheater attempts to move to a position outside their SOI, the
cheat will be detected as honest clients will see that the cheater
has moved to a location outside their dilated SOI.

By the definition of SOI, the future information released by
the advancing client is immaterial to any other player’s game
decisions. However, AS signaling may give a player advance
location information about another player, which will not allow
cheating of game playout but may possibly alter a player’s
strategy. We present a solution to this situation for centralized
and distributed architectures in Section VII.

The AS protocol also preserves the Lockstep protocol’s
guaranteed correct and fair playout, since all interactions are
resolved with perfect information for each turn in the game.
AS also offers a performance increase over Lockstep. In a
game using AS, clients may advance their local game clock
independent of remote clients when no interactions are pos-
sible. We demonstrate such performance gains by simulation
in Section VI.

A client in a distributed game using the AS protocol can
execute as fast as possible until a potential influence overlap
is detected. To preserve a set game play frame rate, designers
may impose a maximum game speed. (Simulation results in
Section VI make use of a similar type of capped rate.) At best,
once an SOI intersection is detected, a client will have to wait
for only one update from another player, which will restrict its
potential SOI and allow the local client to continue. At worst, the
potentially interacting player must catch up in time to a faster
client in order to resolve an actual interaction. This worst case
occurs, for example, when the lagging player moves directly to-
ward the future position of another player at the maximum delta
rate. Otherwise, the past player’s dilated SOI will not intersect
the future player’s SOI, and the future player may continue. As
we stated earlier, our protocol Ghost [26] offers are more so-
phisticated solution to this problem.

3) AS With Packet Loss: Although our proof of AS assumed
the existence of a reliable channel between all players, this
assumption can be relaxed. Simply stated, players can skip
missing packets and accept new, out-of-order packets from
other players when the missing packets represent state outside

a SOI intersection. Missing packets that represent intersection
of SOI cannot be dropped or skipped. In fact, packets with very
long delay are equivalent to lost packets.

We do not present a new proof here, however, one can be
easily constructed by examining if the dilated SOI resulting
from missing packets result in an intersection; if they do not,
the packet may be skipped. It is clear the protocol has enough
information to determine if missing information would possibly
result in SOI intersection if eventually received.

We can conclude that AS represents a performance advantage
over Lockstep. Rather than contact every player every turn, with
AS, players need only contact players that have SOI intersec-
tion. In other words, a player 20 SOI radii away need be only
heard from after 20 turns to be sure there is no SOI intersection.
Other performance benefits are explored in more detail in the
next section.

VI. PERFORMANCE ANALYSIS

We analyzed the performance of the AS protocol compared
to the Lockstep protocol by simulation. We did not compare
against dead reckoning techniques as it is clear dead reckoning
will perform better but introduces unfair actions for central-
ized architectures and irresolvable events in p2p architectures,
as well as allowing players to cheat.

We took traces of player movements from a representative
game, XPilot [29], a networked, multiplayer game where
players control ships in a two-dimensional space. Accordingly,
we cannot claim the results presented in this section are generic.
However, our hope is that they are representative.

A. Methodology

We built a custom simulator that controlled each player in the
game based on traces from real XPilot sessions. We configured
XPilot to run for about 4000 frames of game play with various
numbers of automated players on a 300-by-300 size map,5 and
modified the game to log -coordinate information to a file.
Logging did not begin until all players had joined the game.
Our simulator took the logs as input for each player, and each

-coordinate in the log was considered a turn decision taken
by each player.

Each unit of simulator time represented 10 ms of wallclock
time. Each unit of time in the simulator, players could read from
the logs for their next turn and send that turn to other players.
However, sending of a decision would be blocked appropri-
ately by the Lockstep or AS protocol according to anti-cheating
constraints.

We assumed a star topology, with the server at the center and
players at the point of the star. This topology reflects the typical
network topology of XPilot when played on the Internet. Each
player’s network connection had a delay to the center point of
the star topology that was drawn each turn from an exponential
distribution [30] with a mean of five simulator time units. We
also investigated a fixed-unit delay and the results did not pro-
vide additional insight, and we do not present them here for the
sake of brevity. We did not investigate more biased distributions

5This value is the XPilot map size, but the granularity of the player position
coordinate system is much finer, on the order of 50 000-by-50 000.
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Fig. 5. Cumulative distribution of milliseconds stalled between frames due to lockstep interaction.

of bandwidth, such as a power law, as gaming requires some ho-
mogeneity in the quality of network connections among players.

The star topology has two interpretations. The first is that
packets were multicast from each player to each other player.
The second is that packets were unicast to a nonplaying/nonref-
ereeing server located at the center of the star, which then im-
mediately and simultaneously unicast the packets to each other
player.

Players could not take turns more often than every four units
of the simulation so that we were consistent with constraints
on human reaction times assumed by previous simulation work
[7], [8]; we termed this the lower cap. Additionally, players had
an upper cap: they could not advance in turns more than once
for every 10 units of simulator time that had passed. This was
to simulate a game running at 10 frames per second, which is
consistent with a typical XPilot game.

For example, consider a player at simulator time 30 who just
read and sent its decision for game frame 3 to all other players.
It must wait 4 steps before reading its next turn (the lower cap),
and may not send out the packet until simulator time 40 is

reached (the upper cap). However, consider if, due to lockstep
constraints, the player was forced to wait until simulator time
51 to send the packet for frame 4. Since four time units had
passed since it read frame 4 from the trace, and because time 50
had passed, it could immediately read frame 5 from the trace
log and would be able to try to send out the packet immediately
(subject to lockstep constraints).

We took traces of 10, 25, 50, and 75 players. Larger numbers
of players are possible to simulate—however, our goal was to
show quantitative evidence that AS scales better than the Lock-
step protocol. Second, it is more likely that massive numbers
of players would be designed around a cell-based virtual world,
and we provide techniques for cell-based play in Section VII.
It is also suitable to consider our simulation as that of one cell
in a cell-based or clustered game; this is discussed further in
Section VII.

For each trace, our simulator used four different SOI sizes.
The smallest SOI usable was set as the maximum distance any
player could move in a single turn (an SOI of 1). It is important
to note that an SOI of 1 is the size used in practice. The largest
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Fig. 6. Per-player wait distributions (“jitter”) for one set of simulation parameters. Other simulations showed similar behavior. (SOI = 1, 102 players).

SOI simulated was of infinite size, corresponding exactly to a
Lockstep protocol. Strictly for comparison purposes only, we
also simulated twice the smallest SOI size (denoted soi
in the graphs), and four times the smallest SOI size (denoted
soi ).

B. Results and Discussion

Fig. 5 shows the results for traces of 10, 25, 50, and 75
players. Each graph shows a histogram representing the distri-
bution of time stalled between frames for an average player due
to lockstep anti-cheating constraints; i.e., the ms stalled by an
average player before each turn’s decision could be transmitted
over the network as measured from the last turn. Stall time due
to the upper and lower caps are not included in these results
as they are not involved in AS calculations. involved in AS
calculations. Fig. 7 presents the CDF of wait times for AS when
the SOI is 1 and the number of players is varied.

The simulation results clearly show the performance advan-
tages of the AS protocol. With the Lockstep protocol, players al-
ways wait for the slowest player to send their decision. With the
AS protocol, 30%–40% of the turns can be taken without delay
due to player coordination while still guaranteeing cheat-proof
game play. Even when a player must be stalled, the AS protocol
enables players to stall for less time. The simulations show that
while AS performance degrades slowly as more players interact,
so does the Lockstep protocol, and that AS generally maintains
a large advantage. Further, as shown in Fig. 6, the per-player dis-
tribution of wait times (i.e., the jitter) is fairly consistent. Fully
exploring the effects of AS on jitter is beyond the scope of this
paper, and it is discussed more fully in our follow-on work [26].

We expect these results to hold for large numbers of players in
large environments. Additionally, in the next section, we present
a technique to support distributed cell-based game play so that
players need only contact other players in their own cell while
still following anti-cheating constraints.

VII. SCALING AS TO MASSIVELY MULTIPLAYER GAMES

In order for massively multiplayer games to scale to thou-
sands of participants or more it must be the case that the amount
of communication and processing per client must remain low
for all entities involved. This is true for server-based and server-
less architectures. Rather than employ client- or server-based
filtering, one approach commonly used is to cluster participants
into separate multicast addresses or separate servers based on
geometric position. Accordingly, a virtual playing field may

Fig. 7. Cumulative distribution of milliseconds stalled between frames, com-
paring different player sizes.

broken into cells to increase scalability [14]–[19]. Cells are
transparent to the player’s view of the game.

The AS technique couples together nicely with cell-based
techniques. Cell sizes should be quite a bit larger than the SOI
size. A player must only perform AS for the players inside the
same cell.

Unfortunately, a cheating player may use information on cell
position available in signaling necessary for the correct opera-
tion of AS (or dead reckoning or lockstep) in order to learn of an
upcoming ambush. While knowledge of the position of a remote
ambush or hidden possession may not affect game resolution as
discussed in Section IV, it might affect player strategy.

In a client-server architecture, secret information does not
present a problem, as the server may be trusted to resolve in-
teractions and advance players without revealing secret infor-
mation to players.

For distributed architectures, secret information presents
a difficult dilemma for AS, dead reckoning, and lockstep
approaches. Players must exchange positional information in
order to execute the protocols, but the signaling represents an
opportunity for cheating by providing advance knowledge of
position to players, possibly altering their strategy.

In this section, we present a solution to this problem in the
context of the AS protocol. The addition of a hidden positions
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Fig. 8. Players near each other in CBHP [2] separated only by cell borders
cannot detect their proximity.

protocol allows a peer-to-peer network game to scale with the
number of participants by limiting communication between
players distant or isolated from one another in the topography
of the game world. In our preliminary work [2], we proposed a
protocol that allowed players to discover whether they occupy
the same simulation cell, without revealing to each other their
current positions. We refer to that protocol as Cell-Based
Hidden Position (CBHP).

Briefly stated, in the CBHP protocol, each player contacts
every other player upon crossing a cell boundary. Each pair of
players determines if their respective current cells’ numbers are
the same. In this paper, we detail some weaknesses of that design
and propose an improved protocol.

A. Sub-Cell Hidden Positions

In this section, we demonstrate that our previous method of
dividing a game world into cells, the CBHP protocol [2], does
not always correctly determine player distance, and show a so-
lution to this problem. Further, we show that cell-based proto-
cols can be compromised in a finite number of rounds, and that
while this compromise can be delayed and detected, it cannot
be prevented.

The CBHP protocol suffers from several limitations:
1. The CBHP protocol fails to detect player proximity in all

cases.
By dividing a game world into cells, CBHP hidden positions

protocol attempts group players according to the topography of
the game world. If cells in the game world are topographically
isolated by in-game barriers, then the CBHP protocol as de-
scribed is correct. However, the protocol fails if the cells repre-
sent contiguous areas in the game world. Consider a game world
divided into cells, as in Fig. 8.

If players are located at the edges of two adjacent cells, e.g.,
and , or in the corners of diagonally adjacent cells, e.g.,
and , they can be immediately adjacent, yet be in separate

cells. This is problematic if the cell based method is used to
determine when to enter AS. Players whose SOIs intersect may
not be forced into lockstep, and the cheats that AS is designed
to prevent may occur. We show a modification to the CBHP
protocol that prevents these cheats when adjacent game cells
are contiguous areas in the game topography.

2. The CBHP protocol can be compromised in a number of
rounds equal to the number of cells in a game world.

Suppose players are allowed to engage in the CBHP protocol
at any time. There is nothing preventing a malicious player from
querying other players many times in quick succession. Each
query could claim the malicious player was in a different cell of
the game world, thus testing the cell for the presence of other

players. By testing all cells in such a manner, the malicious
player will determine the cell that each other player is in. If the
game rules do not allow a player such knowledge, then this is
an exposure. In the worst case, a malicious player would have
to query each of the cells in a game, and thus be able to de-
termine the location of all other players in the game in
queries. We show how the addition of a simple hash function
can detect, but not prevent, this sort of cheating.

3. The CBHP protocol does not provide fine granularity in its
Detection of SOI intersections.

Another limitation of the cell-based method is the lack of
granularity in the detection of SOI intersection among players.
With a cell-based hidden positions protocol, the only way to in-
crease this granularity is to use a grid with smaller cells. Ide-
ally, a protocol would allow players to know exactly when their
SOIs intersect, but would not reveal any other information. In
the next, we present a protocol that will allow players to deter-
mine more accurate distances from one another at any time.

Additionally, allowing players to join a game in progress is a
useful property for a game protocol. We discuss a method by
which new players may join an existing game that utilizes a
cell-based hidden positions protocol.

B. Sub-Cell Hidden Positions Protocol

Our modification to the original CBHP protocol of the pre-
liminary version of this paper provides all the required proper-
ties of a hidden positions without requiring additional message
exchanges. This protocol is based upon dividing cells into sub-
cells, and we refer to as the sub-cell hidden positions (SCHP)
protocol.

In SCHP, if players are within half a cell width of each other
they will be notified; importantly, this is true even if they are
in different but adjacent cells. By comparison, in our previous
approach, CBHP, players could be on the borders of adjacent
cells and not know it (as illustrated in Fig. 8).

1) Requirements, Terminology, and Notation: In the SCHP
protocol, a game world is divided into cells, illustrated in
Fig. 9. The cells are of size , where is the minimum
distance at which players will be informed of their proximity.
Each of these cells is divided such that there is a
square sub-cell in the center of each, four rectangular
area of and four square areas of around it.
These smaller areas will be referred to as sub-cells. These nine
sub-cells will be numbered 0 8, and a sub-cell within a cell
will be referred to as , where .

A player engages in the SCHP protocol when crossing be-
tween cells or sub-cells.

Players will never come closer than within units of one
another before being alerted to this fact by this protocol. This
case will occur when players are located on the inner borders of
two directly adjacent rectangular sub-cells; this is the case for
players and in Fig. 9. The furthest apart players can be when
detected is units; this is the case for players and in
Fig. 9.

We are able to achieve this as follows. At any given time in
the game, a player is located within some sub-cell in the game
world. We will assign the player three cell designations based
upon this location.
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Fig. 9. SCHP divides the game arena into cells each 2n-by-2n; each is divided
into nine sub-cells: an n-by-n center subcell surrounded by n-by-n or n-by-2n
subcells.

• The first of these cell designations is the cell in
which the player is located.

• The second and third cell designations of the player are
determined by the players subcell:
— If the player is located in sub-cell , , or , then

the next cell designation of the player is that of the cell
located below him in the game topography.

— If the player is located in sub-cell , , or , then
the next cell designation of the player is that of the cell
located to the right of him in the game topography.

— If either or both of the cell designations are not assigned
at this point, then they are chosen at random as a suffi-
ciently large .

It is easy to show the bounds on the minimum distances be-
tween players in SCHP. Consider the game world in Fig. 9, di-
vided into four cells. If a player is in cell, say, , three possibil-
ities exist, illustrated by considering players in subcells , ,
and in Fig. 9:

• Example 1. The player is in the central sub-cell, . In this
case, the cell designation of the player is , where

.
• Example 2. The player is in a rectangular sub-cell, such as

. In this case, the player has a designation of :
actual cell , adjacent to, in this case, .

• Example 3. The player is in a corner sub-cell, such as . If
this is the case, the player has three actual cell designations,
one for the current cell of the player, and one for each cell
adjacent to the sub cell. In this example, the designations
would be .

Below we detail how players can compare their designations
without revealing their actual locations.

2) Protocol: The SCHP protocol functions with a minimal
amount of additional data transferred per message between
players as compared to the original CBHP protocol. It does not
introduce any additional rounds between players.

As in the original protocol, we require a commutative cryp-
tosystem such as RSA [31] or Pohlig–Hellman [32], so that for
any message we have , where

denotes encryption of a message with key .
Step 1) Player generates three random numbers , ,

and and sends player a one-way hash of each; gen-
erates three random numbers , , and and sends

a one-way hash of each. They now have both committed
their choices to each other. In addition, both players generate
keys, and respectively, to be revealed at the end of the
protocol.

Step 2) Players and now exchange their previously com-
mitted choices for each .

Step 3) They independently compute , , and as the
bitwise XOR of each pair and .

Step 4a) sends the result of encrypting , where
each is one of the three current cell designations of , using
a random key generated by and not known to .

Step 4b) sends the result of encrypting , where
each is one of the three current cell designations of , using
a random key generated by and not known to .

Step 5a) sends the result of encrypting each that she
received in Step 3 using the key that she used in Step 2.

Step 5b) sends the result of encrypting each that he
received in Step 2 using the key that he used in Step 3.

Step 6) and both learn whether any by com-
paring each to each : if and only if ,
which is true by the commutativity of the cryptosystem.

Players can cheat in at least two ways. First, could ask
to check against every cell in the game sequentially. Second,
A could lie about its current position. To avoid both, the keys
are eventually revealed. This can be done at the conclusion of
the game, or after some period of time after which revealing the
cell position is no longer an advantage (i.e., long enough that the
player could have moved to a new cell). Revealing the key also
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reveals the position from Step 4, which can then be checked for
validity against these cheats.

This method of zero-knowledge proof was suggested to us by
Mike Atallah of Purdue University; Fagin, Naor, and Winkler
offer an excellent summary of related work [33]. The advantage
of the approach we present here is it determines success in
exactly six exchanges and with no doubt as to the outcome. In
comparison, other approaches (see [33]) require tens of rounds
of blind signatures and cut-and-choose exchanges to ensure
success that only approaches 100% as the number of rounds
increases.

3) Discussion: The purpose of utilizing a hidden positions
protocol is to keep the players out of a slower protocol such as
AS until the intersection of their SOIs is imminent. Depending
upon the game topography, game rules, and the diameter of the
SOI, a value of may be chosen to minimize the duration of
time spent in AS.

At the cost of additional complexity, a grid of a more optimal
geometry may be constructed. For example, the SCHP protocol
adapted to a hexagonal grid will produce a lower variance be-
tween minimum and maximum distance at which player prox-
imity will be detected.

In some games, it may be beneficial to have players relay
some information about their proximity to one another. For ex-
ample, if a player in the SCHP protocol discovers their prox-
imity to another player, he could request from that other player
a list of who is near that other player, and enter AS with those
players. This may be most relevant in games where players will
tend to congregate in the game world.

VIII. CONCLUSION

We have made cheat-proof playout a necessary condition for
the design of network game communication architectures. We
have shown that previous methods of network game communi-
cation are exploitable by cheating players. We have proposed
the first protocol for providing cheat-proof and fair playout of
centralized and distributed network games. To improve upon
the performance of this protocol, we have proposed the asyn-
chronous synchronization protocol, which allows for optimistic
execution of events without the possibility of conflicting states
due to packet loss or the possibility of cheating. Asynchronous
synchronization does not require roll back techniques or a cen-
tralized server. Our performance analysis shows it significantly
improves performance over the Lockstep protocol. Asyn-
chronous synchronization provides implicit robustness in the
face of packet loss and allows reduced signaling requirements
to be used in combination with cell-based techniques, while
always maintaining cheat prevention and detection, allowing
for massively multiplayer environments.
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