
Toward High-Performance and
Scalable Network Functions
Virtualization

Chengwei Wang, Oliver
Spatscheck, Vijay
Gopalakrishnan, Yang Xu,
and David Applegate
AT&T Labs – Research

Network functions virtualization (NFV) promises to bring significant flexibility

and cost savings to networking. These improvements are predicated on being

able to run many virtualized network elements on a server, which leads to a

fundamental question on how scalable an NFV platform can be. With this in

mind, the authors build an experimental platform with commonly used NFV

technologies. They evaluate the NFV’s performance and scalability and, based

on their demonstrated improvements, discuss best practices for achieving

optimum NFV performance on commodity hardware. They also reveal the

limitations on NFV scalability and propose a new architecture to address them.

N
et

w
or

k
Fu

nc
ti

on
 V

ir
tu

al
iz

at
io

n

T raditional networks consist of a
large variety of dedicated ele-
ments such as routers, firewalls,

and gateways. While these appliances
serve well in terms of performance,
managing them has been a challenge.
Each device requires its own lifecycle
management with dedicated staff and
resources. Fur ther, capacity provi-
sioning has been a challenge because
resources can’t be shared.

By using general-purpose servers
and virtualization technology, network
functions virtualization (NFV) attempts
to run network elements virtually on
commodity platforms in a shared envi-
ronment. Akin to cloud computing’s
impact on computing resources, NFV
promises to provide significant flex-

ibility and cost savings. In theory, it
allows resources to be deployed quickly
and on-demand. This vision, however,
can have real-world impact only if the
performance of the virtual network
functions (VNFs) can match traditional
network devices’ performance at a
lower cost. In other words, this means
scaling the number of VNFs on physi-
cal servers with minimum overhead.

While the scaling and economics
in conventional clouds are well under-
stood, they don’t directly transfer to
NFV. NFV workloads differ from cloud
workloads in the ratio of network I/O
to computation resources. For instance,
a typical router’s data plane operation
can be performed in a few cycles on a
modern CPU. In contrast, processing a

10 Published by the IEEE Computer Society 1089-7801/16/$33.00 © 2016 IEEE IEEE INTERNET COMPUTING

Toward High-Performance and Scalable Network Functions Virtualization

NOVEMbER/dECEMbER 2016 11

request for a dynamically generated webpage
will require orders of magnitude more compu-
tation cycles per network packet. The number
of packets handled by a router per second is at
least a few orders of magnitude higher than a

Web server. This drastic shift has significant
implications on NFV scalability, which hasn’t
been investigated comprehensively before.

To understand the implications, we evaluate
the performance and scaling characteristics of

Related Work in Virtualizing Network Functions

Researchers have taken multiple approaches in virtualizing
network functions. Here, we discuss related work in the fol-

lowing categories: studying performance; hypervisors and con-
tainers; I/O virtualization technologies; software-based packet
processing; and packet processing in virtual machines (VMs).

Studying Performance
Lianjie Cao and colleagues1 investigate the performance of vir-
tual network functions (VNFs) at the application layer, and pro-
pose a general framework for characterizing VNF performance.
Our work is different in four major aspects. First, we investigate
VNFs at lower layers (that is, the network layer and below).
Second, our work studies configurations such as single-root
input/output virtualization (SR-IOV), data Plane development
Kit (dPdK), and non-uniform memory access (NUMA), which
aren’t studied in Cao’s work.1 Third, we investigate VNFs in
both under – and overprovisioning scenarios, with more VNFs
(63) than Cao1 (which used up to 9 VNFs); their work only
investigates the underprovisioning scenario. Fourth, we mea-
sure jitter and latency in VNFs and the throughput in our work
is multiple orders of magnitude higher than Cao’s.1

Hypervisors and Containers
Kernel-based Virtual Machine (KVM), Xen, and VMware are
hypervisor solutions in virtualization. VMware and KVM can
run an unmodified guest OS in VMs. Containers such as chroot
Jail, FreebSd Jail (the bSd stands for berkeley Software distri-
bution), Open Virtuozzo (OpenVZ), and Solaris Container are
lightweight, but they require all the VMs to run the same OS,
which limits flexibility.

I/O Virtualization Technologies
Virtio emulates I/O devices in VMs, while the overheads of
cross-layer translation and memory copy slow down its per-
formance. PCI Passthrough (see http://ibm.co/1k9Uy5o) sig-
nificantly improves performance by bypassing the virtualization
layer – but the sharing capacity is limited because it requires
assigning the whole PCI device to one VM. SR-IOV2 and Virtual
Machine device Queues (VMdq) overcome these shortcom-
ings with both direct access and sharing of physical I/O devices.

Software-Based Packet Processing
Click3 is a framework to build modular routers. Routebrick4
uses Click’s program paradigm and achieves high performance

and scalability by exploiting parallelism in inter- and intra-serv-
ers. Similar to dPdK, PFQ, PF RING, and Netmap5 are frame-
works for building fast packet processing. PacketShader6 uses
GPU for this purpose. Our work differs, because we focus on
packet processing in NFV.

Packet Processing in VMs
ClickOS7 builds small middlebox VMs in the Xen hypervisor.
NetVM8 builds mechanisms to improve inter-VM communica-
tions. These two works use a specialized guest OS or hypervi-
sor while our work doesn’t need modifications to the source
code of OS or hypervisor. Virtual Local Ethernet (VALE),9 Open
vSwitch (see http://openvswitch.org), and HyperVSwitch10 build
software switches to create a local Ethernet among VMs. While
those works focus on interVM communications, our work stud-
ies the communication performance across server boundaries.

References
1. L. Cao et al., “NFV-VITAL: A Framework for Characterizing the Perfor-

mance of Virtual Network Functions,” Proc. IEEE Conf. Network Function Vir-

tualization and Software Defined Network, 2015, pp. 93–99.

2. PCI-SIG, SR-IOV Table Updates ECN, specifications library, 2016; www.pcisig.

com/specifications/iov.

3. E. Kohler et al., “The Click Modular Router,” ACM Trans. Computer Systems,

vol. 18, no. 3, 2000, pp. 263–297.

4. M. dobrescu et al., “Routebricks: Exploiting Parallelism to Scale Software

Routers,” Proc. ACM Sigops 22nd Symp. Operating Systems Principles, 2009,

pp. 15–28.

5. L. Rizzo et al., “Netmap: A Novel Framework for Fast Packet I/O,” Proc.

Usenix Conf. Ann. Technical Conf., 2012, p. 9.

6. S. Han et al., “PacketShader: A GPU-Accelerated Software Router,” Proc.

ACM Sigcomm Conf., 2010, pp. 195–206.

7. J. Martins et al., “ClickOS and the Art of Network Function Virtualization,”

Proc. 11th Usenix Conf. Networked Systems Design and Implementation, 2014,

pp. 459–473.

8. J. Hwang, K.K. Ramakrishnan, and T. Wood, “NetVM: High Performance

and Flexible Networking Using Virtualization on Commodity Platforms,”

Proc. 11th Usenix Conf. Networked Systems Design and Implementation, 2014,

pp. 445–458.

9. L. Rizzo and G. Lettieri, “VALE, a Switched Ethernet for Virtual Machines,”

Proc. 8th Int’l Conf. Emerging Networking Experiments and Technologies, 2012,

pp. 61–72.

10. K.K. Ram et al., “Hyper-Switch: A Scalable Software Virtual Switching

Architecture,” Proc. Usenix Ann. Technical Conf., 2013, pp. 13–24.

Network Function Virtualization

12 www.computer.org/internet/ IEEE INTERNET COMPUTING

NFV. We build a test platform on commonly used
building blocks in NFV, Kernel-based Virtual
Machine (KVM) hypervisor, single-root input/
output virtualization (SR-IOV), and Intel Data
Plane Development Kit (DPDK), and subject them
to various workloads across different protocol
layers. We evaluate the performance in terms of
not only the throughput, but also latency and
jitter. To the best of our knowledge, this is the
first work that investigates all three vital net-
work metrics in an NFV performance study.

Our experiments reveal key factors and lim-
itations in NFV performance and scalability.
For instance, VNF placement is critical. Dedi-
cating CPU resources to a VNF with respect to
non-uniform memory access (NUMA) provides
the best performance. However, scalability is
limited, as the optimum placement isn’t possible
when the number of VNFs outnumbers the CPU
resources. As a consequence, significant perfor-
mance degradation occurs in overprovisioning
scenarios. We further reason the degradation
by analyzing the prolonged latency. The sched-
uling latency in hypervisor turns out to be a
bottleneck. To address the issue, we propose an
alternative NFV design that removes scheduling
overhead in high-frequency packet forwarding.
This method splits the routing and forwarding
functions of the VNFs and moves the forward-
ing function to the hypervisor, which handles
the forwarding tasks for VNFs. The less-fre-
quently operated routing function is retained
in each VNF. We build a prototype with results
showing largely improved scalability and better
performance.

This work has several contributions. The per-
formance study provides best-practices guidance
on not only how to a build an NFV platform, but
also how to achieve better performance and scal-
ability. Second, the lessons learned (along with
improvement endeavors) can help NFV research-
ers understand the limitations and their causes,
which in turn motivate more innovations to
address those challenges. Finally, because our

packet generator and test applications are open
source, our research helps the research commu-
nity to conduct similar tests easily without rein-
venting the wheel.

Experimental Design
To begin, let’s take a closer look at the elements
of our network’s design.

Selecting NFV Building Blocks
Building an NFV platform involves design choices,
from the hardware architecture to virtualization
layers. We surveyed available options and list
them in Table 1. As Intel architecture is the
most widely used in industry, we picked tech-
nologies based on Intel (for instance, DPDK) so
that our study will have the best generality. We
chose SR-IOV with Passthrough for the I/O vir-
tualization because it’s more efficient than its
peers. We won’t articulate all of the technol-
ogy here, due to space limitations, but for more
details please see the “Related Work in Virtu-
alizing Network Functions” sidebar, as well as
respective references.

Configuring the Testbed
The testbed consists of two servers. As Figure 1
shows, one server acts as the traffic genera-
tor while the other is the NFV server where the
DPDK-based VNF applications run in VMs or
baremetal. The servers have the following hard-
ware configurations:

•	 CPUs. There are two Intel Xeon E5-2650
2.00-gigahertz (GHz) CPUs. Each has eight
physical cores – that is, 32 logical cores
(lcores) with hyperthreading enabled.

•	 NIC. The network interface controller has Intel
10-Gigabit Ethernet (GbE) X520 adapters.

•	 Memory. There are eight 8-Gbyte DDR3, dual
in-line memory modules (DIMMs). The total
memory is 64 Gbytes.

•	 Storage. The servers use a 278.88-Gbyte SAS
disk.

Table 1. Network functions virtualization (NFV) building blocks.

Building blocks Options

Hardware architecture Intel,* AMd

Virtualization Kernel-based Virtual Machine (KVM),* VMware, Xen, Containers

Network interface controller (NIC) driver Kernel, data Plane development Kit (dPdK),* Netmap,1 PFQ

I/O virtualization bridge, Virtio, Passthrough,* single-root input/output virtualization (SR-IOV)2*

* Of the options, these are the technologies we used.

Toward High-Performance and Scalable Network Functions Virtualization

NOVEMbER/dECEMbER 2016 13

Servers run the Ubuntu 12.04
long-term support (LTS) operating
system and are physically intercon-
nected on one NIC port through a
full-duplex 10-Gbps small form-fac-
tor pluggable (SFP+) cable. The virtu-
alization layer uses Quick Emulator
(QEMU 1.0) and Libvirt 0.9.8. Each
VM has one virtual CPU (VCPU), 512-
Mbyte memory, 3-Gbyte disk space,
and runs Ubuntu 12.04 LTS OS.
We created virtual functions (VFs)
from the 10-GbE port using SR-IOV.
Each VM is assigned one VF, which
appears as an Ethernet interface. The
maximum number of VFs on a port
is 63, hence the maximum number of
VMs sharing one port is 63.

NFV Applications
DPDK is a set of libraries and drivers
for building fast packet-processing
applications. We build two NFV applications
using DPDK.

Layer 2 forwarding. This reads the packet’s
header to get the destination media access con-
trol (MAC) address, which then is replaced with
the packet generator MAC address and forwards
the packet back. There’s one receive (RX) queue
and one transmission (TX) queue. This appli-
cation has basic packet modification and for-
warding operations with minimal queue/core
configuration. Hence, it serves as the baseline
scenario for studying software packet-process-
ing performance in baremetal and virtualiza-
tion environments.

Layer 3 forwarding using Cuckoo hashing. Com-
pared to layer 2 forwarding, layer 3 forwarding
has sophisticated packet processing and provides
the router’s core functionality, which basically
reads a packet’s IP header and searches the rout-
ing table to find the transmitting port. Example
layer 3 applications in DPDK lack practicality,
as they only support small routing tables. To
make it more realistic and efficient, we lever-
age the CuckooSwitch technologies proposed by
Dong Zhou and colleagues3 and build a layer 3
forwarding application supporting 1 billion for-
warding information base (FIB) entries and line-
rate throughput (10 Gbps) with 256-byte or larger
packets.

Layer 2 and layer 3 forwarding represent
basic data plane operations shared across all
VNFs: receiving, processing, and forwarding
packets. Hence, our experiments reveal the VNF
data plane performance on layer 3 and lower.
The performance on higher layers can be stud-
ied using application-level VNFs such as video-
server middleboxes,4 which is out of the scope
of this article.

Traffic Generator
Pktgen-DPDK (see https://github.com/Pktgen/
Pktgen-DPDK) is a DPDK-based traffic genera-
tor running on a commodity x86 server. It gen-
erates 10-Gbps traffic with 64-byte network
frames. However, it can’t measure latency and
jitter so we built an enhanced open source ver-
sion available on github (see https://github.com/
chengweiwang/Pktgen-DPDK-Latency-Jitter).

The traffic generator sends packets to the
NFV server. The DPDK applications in either
VMs or the baremetal server forward the pack-
ets back to the traffic generator, which then
captures the performance metrics. To test layer
2 forwarding performance in baremetal, the
traffic generator sends packets with a line-rate
of 10 Gbps. Fixing the total traffic throughput,
we vary the packet sizes from 64 to 1,024 bytes.
To study VNFs, the traffic generator generates
packets with the N MAC addresses in a round-
robin, assuming there are N VNFs. Each VNF

Figure 1. Testbed. One server acts as the traffic generator while the other is
the NFV server. (VF stands for virtual functions.)

Traf�c
generator

NFV server

10
G

 p
or

t

10
G

 p
or

t

Virtual machine (VM)

DPDK APPs

DPDK APPs

DPDK APPs

V
F

V
F

1 to 63 VMs

KVM hypervisor

Network Function Virtualization

14 www.computer.org/internet/ IEEE INTERNET COMPUTING

receives the packet with its MAC address and
forwards it back to the traffic generator, which
then captures the aggregated performance
measurements. In the layer 3 forwarding test,
besides configuring MAC addresses in a round-
robin, the traffic generator randomly picks one
of the M IP addresses in a VNF’s lookup table
and writes it to the packet header. In this way,
lookup keys are evenly distributed among hash
table entries in each VNF.

Performance Study
Here, we consider the performance of our net-
work in a variety of scenarios.

Underprovisioning Scenario
The x86 server has a NUMA architecture, in
which lcores, NIC ports, and memory units con-
nected to the same CPU socket are considered
in the same NUMA domain. Communication
between different NUMA domains is through
Intel QuickPath Interconnect (QPI). Accessing
local memory is significantly faster than access-
ing memory in another NUMA domain. Our tes-
tbed has 32 lcores; 16 of them are in the same
NUMA domain as the NIC port, which is shared
by all the VMs. When the number of lcores is
larger than the number of VNFs, there are three
VNF placement strategies: the NUMA-aware
strategy, which statically assigns a local lcore to
each VM; the random strategy, which relies on
the Linux kernel scheduler to dynamically allo-
cate CPU resources at runtime; and the worst-
case strategy, in which each VM was statically
assigned an lcore in the remote NUMA domain.

In the layer 2 forwarding application, the
packet generator evenly distributes 10 Gbps of
traffic to all the VNFs. As Figure 2 shows, the

VNFs have overall lower performance than
baremetal, even though in the baremetal case
the host uses only one lcore, while the VMs use
one lcore each to forward the same amount of
traffic. For instance, in Figure 2b, the latency of
baremetal is lower than the latency of the VMs
with any strategy. This result points to the impor-
tance of looking at all the metrics other than just
throughput: if we solely looked at throughput, the
performance difference between NUMA-aware
and baremetal would have been negligible.

Based on the results, we learn that even
with sufficient resources, NFV has lower per-
formance than baremetal. With worst-case
placement, VNFs need to access remote lcores
through QPI. As VNFs compete for using QPI,
the packet-processing time is prolonged, leading
to queuing delay and packet loss. With random
placement, the remote access penalties and QPI
contention are reduced because each VNF has a
probability to have a local lcore. When a VNF is
allocated in a remote NUMA domain, however,
the packet processing will be delayed. NUMA-
aware placement dedicates one local lcore for
each VNF, so it has the performance closest to
baremetal. However, NFV has an extra virtu-
alization layer, the overhead in which largely
contributes to the end-to-end latency. We pro-
vide latency analysis later in the article.

From a scalability perspective, the NFV
performance generally decreases as the num-
ber of VMs increases. Among the three place-
ment strategies, scale has the smallest impact
on NUMA-aware placement. In contrast, as
the number of VNFs increases, the worst-case
strategy’s performance further declines as
the resource contention on the QPI increases
accordingly. The increased processing time

Figure 2. Layer 2 forwarding performance in the underprovisioning scenario. (a) Throughput. (b) Latency. (c) Jitter.

Worst case Random NUMA Bare metal

0

2

4

6

8

10

12

14

1 2 4 8 16

T
hr

ou
gh

pu
t

(G
bp

s)

No. of VMs

1 2 4 8 16

No. of VMs

100

101

102

103

104

La
te

nc
y

(m
ic

ro
se

co
nd

s
lo

g
10

)

1 2 4 8 16

No. of VMs

0

20

40

60

80

100

120

Jit
te

r
(m

ic
ro

se
co

nd
s)

0.60.6 0.6 0.6 0.6

(a) (b) (c)

Toward High-Performance and Scalable Network Functions Virtualization

NOVEMbER/dECEMbER 2016 15

leads to significantly prolonged queuing delay
in both hypervisor and VNF, causing about
70 percent of the packets to be dropped. From
this, we learned that NUMA-aware scales well,
whereas using random or worst-case strategy,
packet drop, and performance degradation
increase significantly as NFV scales.

In the layer 3 forwarding experiments, each
VNF has 1 million entries in the lookup table
and the counterpart baremetal lookup table has
a table size equal to the sum of all the entries
in all VNFs for each given scenario. Figures 3
illustrates the performance (as a function of
packet size) of 16 VNFs and the baremetal per-
formance with 16 million entries. The through-
put increases as the packet size increases,
because the number of packets decreases when
the total incoming traffic is fixed at 10 Gbps.
The comparison among the three allocation
strategies provides the same insight we obtained
on NFV performance versus baremetal. We also
find that for small packets (64 and 128 bytes),
16 VNFs have better throughput performance
than baremetal. The reason is 16 VNFs have
16 lcores to look up the 16 routing tables in par-
allel, while baremetal uses one lcore to search a
16-times-larger routing table.

We ran layer 3 experiments with different
VNF quantities and found similar results that
validate our lessons on NFV scalability. For brev-
ity, we don’t present the detailed results here.

Overprovisioning Scenario
In the overprovisioning scenario, where there
are more VNFs than lcores, it isn’t possible to
pin a local lcore to every VNF as the NUMA-
aware placement, with neither worst-case strat-
egy allocating to each VM a different dedicated

remote lcore. Therefore, we use the Linux sched-
uler here for VNF placement.

Figure 4 shows the layer 2 forwarding perfor-
mance of 32 and 63 VNFs (in our test, 63 is the
maximum number of virtual functions supported
by SR-IOV on one NIC port). It’s apparent that
baremetal substantially outperforms NFV. From
the layer 3 forwarding results shown in Figures 5
and 6, 32 and 63 VNFs have packet loss at all
packet sizes, whereas baremetal reaches the line-
rate when packet size is 512 bytes or larger. Over-
provisioning also has higher latency and jitter
in most cases. The 63 VNFs have slightly lower
latency than baremetal with small packets sizes
(64 and 128 bytes), because they use all 32 lcores
but baremetal only uses one lcore. The increase in
CPU resources offsets the virtualization’s impact
on latency.

We also study the scalability transition
from underprovisioning to overprovisioning in
Figure 4. We find that no more than 16 VNFs
with the NUMA-aware strategy are able to sus-
tain 10 Gpbs without packet loss. Scaling the
number of VNFs over 16 can’t avoid substantial
packet loss, ranging from approximately 40 to
60 percent.

Hosting VNFs more than total lcores will
result in NUMA violation, which delays the
packet processing. The resource contention and
context switch between VNFs increases the vir-
tualization overheads. This lets us conclude that
NFV performance declines substantially in the
overprovisioning scenario as VNFs compete for
resources and violate NUMA locality.

Latency Anatomy
To study bottlenecks causing performance degra-
dation in overprovisioning, we first use 2.5-Gbps

Figure 3. Layer 3 forwarding performance in the underprovisioning scenario. (a) Throughput. (b) Latency. (c) Jitter.

Worst case Random NUMA Bare metal – 16M

0

2

4

6

8

10

12

64 128 256 512 1,024

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

G
bp

s)

Packet size (bytes)

64 128 256 512 1,024

Packet size (bytes)

La
te

nc
y

(m
ic

ro
se

co
nd

s
lo

g
10

)

64 128 256 512 1,024

Packet size (bytes)

0

20

40

60

80

100

1.5 0.8 1,7Jit
te

r
(m

ic
ro

se
co

nd
s)

(a) (b) (c)

100

101

102

103

104

105

Network Function Virtualization

16 www.computer.org/internet/ IEEE INTERNET COMPUTING

input traffic (25 percent of the link capacity) to
rule out traffic congestion effects. Figures 7a and
7b show the same insights learned from full load
scenarios. NUMA-aware placement with dedi-
cated cores (the underprovisioning case) outper-

forms other strategies as well as ones without
dedicated cores (the overprovisioning case).
Overall, the latency is significantly lower than
the latency with full-load input traffic. Espe-
cially, the 16 VNFs with NUMA-aware strategy

Figure 4. Layer 2 forwarding performance in oversubscription scenario. (a) Throughput. (b) Latency. (c) Jitter.

0
2
4
6
8

10
12
14
16

T
hr

ou
gh

pu
t

(G
bp

s)

64 128 256 512 1,024

Packet size (bytes)(a)

64 128 256 512 1,024

Packet size (bytes)
La

te
nc

y
(m

ic
ro

se
co

nd
s

lo
g

10
)

(b)

64 128 256 512 1,024

Packet size (bytes)

0

20

40

60

80

100

120

140

0.10.5 0.7 0.6 1.4

Jit
te

r
(m

ic
ro

se
co

nd
s)

(c)

16 VMs NUMA 16 VMs random 32 VMs 63 VMs Bare metal

100

101

102

103

104

Figure 5. Layer 3 forwarding performance of 32 virtual network functions (VNFs). (a) Throughput. (b) Latency. (c) Jitter.

Random Bare metal − 32M

0

2

4

6

8

10

12

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

G
bp

s)

64 128 256 512 1,024
Packet size (bytes)

La
te

nc
y

(m
ic

ro
se

co
nd

s
lo

g
10

)

64 128 256 512 1,024
Packet size (bytes)

0.8

64 128 256 512 1,024
Packet size (bytes)

Jit
te

r
(m

ic
ro

se
co

nd
s

lo
g

10
)

(a) (b) (c)

100

101

102

103

100

101

102

103

104

105

Figure 6. Layer 3 forwarding performance of 63 VNFs. (a) Throughput. (b) Latency. (c) Jitter.

Random Bare metal − 63M

0

2

4

6

8

10

12

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

G
bp

s)

64 128 256 512 1,024
Packet size (bytes)

100

101

102

103

104

105

La
te

nc
y

(m
ic

ro
se

co
nd

s
lo

g
10

)

64 128 256 512 1,024
Packet size (bytes)

100

101

102

103

64 128 256 512 1,024
Packet size (bytes)

Jit
te

r
(m

ic
ro

se
co

nd
s

lo
g

10
)

0.9

(a) (b) (c)

Toward High-Performance and Scalable Network Functions Virtualization

NOVEMbER/dECEMbER 2016 17

have near-baremetal latency, which suggests
that NFV can perform well when traffic is low.
The latency of 32 VNFs is higher than that of 63
VNFs, because their load per VNF nearly dou-
bles. Results in Figure 7c validate the reasoning,
because with the same load per VNF the latency
increases as the number of VNFs increases.
The same reasoning applies to Figure 2b,
where the latency of 16 VNFs is lower than
8 VNFs.

The end-to-end latency includes three parts:
the packet generator latency spent in the traf-
fic generator; the VM latency spent in the
VM to process the packets; and the hypvervi-
sor latency spent in the virtualization layer
for activities such as queuing and scheduling.
Results in Figure 8 show that the hypervisor
consumes up to 80 percent of the end-to-end
latency in both the partial- and full-load sce-
narios. Furthermore, the percentage of hypervi-
sor latency increases when the traffic increases
from 2.5 to 10 Gbps, showing exaggerated over-
heads in the virtualization layer when the NFV
server has more traffic.

Lessons Learned
This empirical performance study teaches us
the following lessons:

•	 It’s difficult to scale the number of VNFs to
more than the number of lcores without sub-
stantial performance loss or low link use.

•	 A static, NUMA-aware placement strategy
is crucial for achieving reliability and high
performance.

Based on these lessons, we can derive a
generic model to extend our empirical study to
multiple NIC ports and analyze the maximum
number of VNFs on any commodity NUMA
server with the following: a ports and a maxi-
mum of b VFs per port; and c lcores on d sock-
ets with e NIC ports per socket. We assume that
each VNF only has one lcore, the server has
sufficient memory and disk resources, and all
packet processing is in VNF.

There are d NUMA domains and the number
of lcores per NUMA domain is c/d. For each port

Figure 7. Latencies with various load use. Non-uniform memory access (NUMA)-aware and worst-case placements are
unavailable when the number of VNFs ≥ 32. (a) Layer 2 forwarding. (b) Layer 3 forwarding. (c) Layer 3 forwarding 156
Mbps/virtual machine.

Worst case Random NUMA Bare metal

0
2 4 8 16 32 63

5

10

15

20

25

30

35

40

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of VMs
2 4 8 16 32 63

0
5

10
15
20
25
30
35
40
45

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of VMs
16 32 63

100

101

102

103

La
te

nc
y

(m
ic

ro
se

co
nd

s)

No. of VMs(a) (b) (c)

Figure 8. Latency breakdown. The hypervisor
consumes up to 80 percent of the end-to-
end latency in both the partial- and full-load
scenarios.

0
20
40
60
80

100
16

 V
M

32
 V

M

63
 V

M

16
 V

M

32
 V

M

63
 V

M

Pe
rc

en
ta

ge

Hypervisor
Packet generator
VM

2.5 Gbps 10 Gbps

Network Function Virtualization

18 www.computer.org/internet/ IEEE INTERNET COMPUTING

on a socket, the max number of lcores this port
can use will be ∗c d e . Therefore, the maximum
number of VNFs sharing an individual port is
{ }()∗c d e bmin , , because each VNF requires

one VF and one lcore to guarantee performance.
Overall, the maximum number would be

{ }()∗ ∗a c d e bmin , . Because d ∗ e = a, the max-
imum number is finally min{a ∗ b, c}, where
a ∗ b is the maximum number of VFs and c is
the total number of lcores.

From this model, the number of VNFs on
a server is limited by the smaller of the lcore
quantity and the max number of virtual I/O
functions. For example, in our NFV server,
the maximum number of lcores is 32 and the
maximum number of VFs on all four ports is
252 (63 ∗ 4), so we can run at most 32 VNFs
on the server without substantial performance
loss. Because a large server that could support
252 cores is substantially more expensive on a
per-core basis and has an even more complex
NUMA design than a mainstream two-socket
system, the maximum number of VNFs in
any practical NFV system today is limited by
CPU resources rather than SR-IOV limitation.
The issue will worsen because a 100-Gbps NIC
entering the mainstream as the CPU scalability
can’t keep up with the increased rate of network
speed.

Rethinking NFV Architecture
Taking the lessons learned from our study, here
we consider what works best when designing an
NFV architecture.

FIB Offload Architecture
A conventional NFV architecture puts the data
plane function (that is, packet forwarding) and

control plane function (such as rout-
ing protocols and the firewall deci-
sion engine) in VNFs. Our layer 3
forwarding application represents
such an architecture (see Figure 9a).
Each VNF processes volumes of pack-
ets continuously, leading to high-
frequency hypervisor scheduling in
an overprovisioning scenario with
significant overheads (as we saw in
the performance study).

To address this issue, we pro-
pose a new NFV design, aggregating
VNF forwarding functions into the
hypervisor while maintaining the

control function within the VNFs (see Figure 9b).
By doing so, the high-frequency packet pro-
cessing can be handled in one place without
scheduling VNFs.

This architecture is functionally similar to
what Open vSwitch (see http://openvswitch.
org) could support using OpenFlow5 to sepa-
rate control and data planes. However, using the
long latency OpenFlow protocol will increase
FIB update overheads by orders of magnitude,
considering that the CuckooSwitch can support
64,000 updates per second.3 As we show in the
next section, our prototype yields better perfor-
mance than Open vSwitch as well.

Prototype and Performance Evaluation
We implement a prototype using the new archi-
tecture. In the hypervisor, a layer 3 Cuckoo
hashing-based forwarder processes data packets
rather than relaying it to VNF. It uses the sum
of all the VNF FIBs as a routing table. When
control packets arrive, the forwarder sends it
through a bridge to the VNF, which then writes
update messages to the bridge. Upon receiving
the message, the hypervisor updates the FIB.

We test the prototype’s performance on
63 VNFs. The control plane traffic is set to 1
Kbps (approximately two updates per second).
As Figure 10 shows, the new NFV architecture
shows promising performance. The through-
put and latency are close to the counterpart
baremetal performance. The jitter is about 40
percent longer than baremetal, especially when
the packet size is 1,024 bytes, which indicates
the disturbance by update operations.

We also compare the prototype with Open
vSwitch. The original Open vSwitch’s (OVS) per-
formance is significantly improved by DPDK.

Figure 9. NFV architectures. (a) Default architecture. (b) Proposed architecture.

RIB RIB

VM VM

Control
plane

Data
plane

Hypervisor

RIB FIB RIB FIB

VM

Hypervisor

Control
plane

Data
plane

VM

(a) (b)

FIB

Toward High-Performance and Scalable Network Functions Virtualization

NOVEMbER/dECEMbER 2016 19

Hence, we use the DPDK-based OVS
as a reference in this experiment.
We test the layer 2 forwarding per-
formance in our prototype and OVS.
We configure Open vSwitch’s flow
table simply to forward traffic back
to the traffic generator when packets
are received. The results illustrated
in Figure 11 shows that the offload-
ing mechanism has generally better
throughput and latency than DPDK-
based OVS, especially with small-
sized packets.

T his article studies the perfor-
mance and scalability of NFV. We

investigated NFV performance holistically by
measuring throughput, latency, and jitter. We
found that VNF placement respecting NUMA
and dedicated VCPU mapping are crucial to
obtain reliable and high performance. We also
discerned that NFV’s scaling difficulty is due
to virtualization overheads. We then derived a
generic model to show that scalability of NFV is
essentially restrained by the number of cores on
the physical server. Based on these insights, we
proposed an alternative NFV architecture that
offloads high volume-forwarding functionality
into the hypervisor while leaving control func-
tionality in VNFs. Our evaluation shows that
this solution significantly improves performance
and scalability. Going forward, we plan to fur-
ther explore novel NFV architectures, aiming
to build a system with full-fledged features and
to compare it with other work such as Virtual
Local Ethernet (VALE) and Berkeley Extensible
Software Switch (BESS).

References
1. L. Rizzo et al., “Netmap: A Novel Framework for Fast

Packet I/O,” Proc. Usenix Ann. Technical Conf., 2012, p. 9.

2. PCI-SIG, SR-IOV Table Updates ECN, specifications

library, 2016; www.pcisig.com/specifications/iov.

3. D. Zhou et al., “Scalable, High-Performance Ethernet

Forwarding with Cuckoo Switch,” Proc. 9th ACM Conf.

Emerging Networking Experiments and Technologies,

2013, pp. 97–108.

4. L. Cao et al., “NFV-VITAL: A Framework for Character-

izing the Performance of Virtual Network Functions,”

Proc. IEEE Conf. Network Function Virtualization and

Software Defined Network, 2015, pp. 93–99.

5. N. McKeown et al., “OpenFlow: Enabling Innovation

in Campus Networks,” Proc. Sigcomm Computer Comm.

Rev., vol. 38, no. 2, 2008, pp. 69–74.

Chengwei Wang is a senior inventive scientist at AT&T

Labs – Research. His research interests include cloud com-

puting, NFV, and packet processing. Wang has a PhD in

computer science from the Georgia Institute of Technology.

Figure 10. Offload performance. (a) Throughput. (b) Latency. (c) Jitter.

0

2

4

6

8

10

12

64 128 256 512 1,024
Packet size (bytes)

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

G
bp

s)

(a)

0

2

4

6

8

10

12

64 128 256 512 1,024
Packet size (bytes)(c)

Jit
te

r
(m

ic
ro

se
co

nd
s)

La
te

nc
y

(m
ic

ro
se

co
nd

s
lo

g
10

)

64 128 256 512 1,024
Packet size (bytes)(b)

Of�oad Bare metal − 63M

100

101

102

104

103

105

Figure 11. Offload versus DPDK-based Open vSwitch (OVS). (a) Throughput.
(b) Latency.

0

2

4

6

8

10

12

14

A
gg

re
ga

te
d

th
ro

ug
hp

ut
 (

G
bp

s)

(a)
64 128 256 512 1,024

Packet size (bytes) (b)
64 128 256 512 1,024

Packet size (bytes)
La

te
nc

y
(m

ic
ro

se
co

nd
s

lo
g

10
)

Of�oad OVS

100

101

102

104

103

105

Network Function Virtualization

20 www.computer.org/internet/ IEEE INTERNET COMPUTING

Contact him at flinter@research.att.com or visit

www.research .at t .com/people/Wang_Chengwei/

index.html.

Oliver Spatscheck is a research fellow at AT&T Labs –

Research. His research interests include network-

centric systems, network measurements, and network

security. Spatscheck has a PhD in computer sci-

ence from the University of Arizona. Contact him at

spatsch@research.att.com or visit www.spatscheck.

com/oliver.

Vijay Gopalakrishnan is a director in the Network and

Service Quality Management Center at AT&T Labs –

Research. His research focuses on systems challenges

in the architecture, protocols, and management of net-

works. Gopalakrishnan has a PhD in computer science

from the University of Maryland, College Park. Contact

him at gvijay@research.att.com.

Yang Xu is a senior inventive scientist in AT&T Labs –

Research. His research interests include software-defined

networking, NFV, network protocols, and network

optimizations. Xu has a PhD in operations management

with a focus on network optimizations from Rutgers

University. Contact him at yxu@research.att.com.

David Applegate worked on this research while he was

AT&T Labs – Research, and the copyright/IP for this

work is owned by AT&T. Currently, he is a researcher

at Google Research. His research interests include inte-

ger programming, combinatorial optimization, discrete

algorithms, and parallel optimization. Applegate has a

PhD in computer science from Carnegie Mellon Uni-

versity. He is a member of the IEEE Communications

Society and a recipient of the following prizes: Fred-

erick W. Lanchester, William R. Bennett, and Beale-

Orchard-Hays. Contact him at dapplegate@google.com.

Experimenting with your hiring process?
Finding the best computing job or hire shouldn’t be left to chance.
IEEE Computer Society Jobs is your ideal recruitment resource, targeting
over 85,000 expert researchers and qualified top-level managers in software
engineering, robotics, programming, artificial intelligence, networking and
communications, consulting, modeling, data structures, and other computer
science-related fields worldwide. Whether you’re looking to hire or be hired,
IEEE Computer Society Jobs provides real results by matching hundreds of
relevant jobs with this hard-to-reach audience each month, in Computer
magazine and/or online-only!

http://www.computer.org/jobs

The IEEE Computer Society is a partner in the AIP Career Network, a collection of online job sites for scientists, engineers, and
computing professionals. Other partners include Physics Today, the American Association of Physicists in Medicine (AAPM), American
Association of Physics Teachers (AAPT), American Physical Society (APS), AVS Science and Technology, and the Society of Physics
Students (SPS) and Sigma Pi Sigma.

IEEE_half_horizontal_Q6:Layout 1 4/21/11 4:21 PM Page 1

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

