
THE

A

S Q L

C R I T I Q U E

D A T A B A S E

0 F

L A N G U A G E

C.J.Date

PO Box 2647~ Saratoga
California 9~.~7(.~ USA

December 1983

The ANS Database Committee (X3H2) is currently at work on a
proposed standard relational database language (RDL)~ and has
adopted as a basis for that activity a definition of the
"structured query language" SQL from IBM [10]. Moreover~ numerous
hardware and software vendors (in addition to IBM) have already
released or at least announced products that are based to a
greater or lesser extent on the SQL language as defined by IBM.
There can thus be little doubt that the importance of that
language will increase significantly over the next few years. Yet
the SQL language is very far from perfect. The purpose of this
paper is to present a critical analysis of the language's major
shortcomings~ in the hope that it may be possible to remedy some
of the deficiencies before their influence becomes too all-
pervasive. The paper's standpoint is primarily that of formal
computer languages in general~ rather than that of database
languages specifically.

sql critique
8

I. INTRODUCTION

The r e l a t i o n a l language SQL (the acronym i s usua l l y pronounced
"sequel"), pioneered in the IBM prototype System R [i] and
subsequently adopted by IBM and others as the basis for numerous
commercial implementations, represents a major advance over older
database languages such as the DL/I language of IMS and the DML
and DDL of the Data Base Task Group (DBTG) of CODASYL.
Specifically, SQL is far easier to use than those older
languages; as a result, users in a SQL system (both end-users
and application programmers) can be far more productive than they
used to be in those older systems (improvements of up to 20 times
have been reported). Among the strongpoints of SQL that lead to
such improvements we may cite the following:

simple data structure

powerful operators

short initial learning period

improved data independence

integrated data definition and data manipulation

double mode of use

integrated catalog

compilation and optimization

These advantages are elaborated in the appendix to this paper.

The language does have its weak points too, however. In fact, it
cannot be denied that SQL in its present form leaves rather a lot
to be desired -- even that, in some important respects, it fails
to realize the full potential of the relational model. The
purpose of this paper is to describe and examine some of those
weak points, in the hope that such aspects of the language may be
improved before their influence becomes too all-pervasive.

Before getting into details, I should like to make one point
abso lu te l y c l ea r : The c r i t i c i s m s t h a t f o l l o w should not be
construed as c r i t i c i s m s of the o r i g i n a l des igners and
implementers of the SQL language. The paper i s intended s o l e l y as
a c r i t i q u e of the SQL language as such, and noth ing more. Note
also tha t the paper app l i es s p e c i f i c a l l y to the d i a l e c t of SQL
implemented by IBM in i t s products SQL/DS, DB2 , and QMF. I t i s
e n t i r e l y poss ib le t ha t some s p e c i f i c po i n t does not apply to some
other implemented d i a l e c t . However, most p o i n t s of the paper do
apply to most of the d i a l e c t s c u r r e n t l y implemented, so f a r as I
am aware.

The remainder of the paper is divided into the following

sql critique

9

sections:

lack of orthogonality: expressions

lack of orthogonality: builtin functions

lack of orthogonality: miscellaneous items

formal definition

mismatch with host languages

missing function

mi stakes

aspects of the relational model not supported

summary and conclusions

Reference [3] gives some background material -- specifically~ a
set of principles that apply to the design of programming
languages in general and database languages in particular. Many
of the criticisms that follow are expressed in terms of those
principles. Note: Some of the points apply to interactive SQL
only and some to embedded SQL only~ but most apply to both. I
have not bothered to spell out the distinctions; the context
makes it clear in every case. Also~ the structure of the paper is
a little arbitrary~ in the sense that it is not really always
clear which heading a particular point belongs under. There is
also some repetition (I hope not too much)~ for essentially the
same reason.

sql critique
I0

2. LACK OF ORTHOGONALITY: EXPRESSIONS

It is convenient to begin by introducing some nonSQL terms.

* A t~b_l_e_-eE.p.ces.si_on - is a SQL expression that yields a table --
for example, the expression

SELECT *
FROM EMP
WHERE DEPT# = ~D3'

* A ~o_ik.!mn_2_eEQce_s_si_oQ is a SQL expression that yields a single
column -- for example, the expression

SELECT EMP#
FROM EMP
WHERE DEPT# = ~D3 ~

A column-expression is a special case of a table-expression.

* A row-exQressioo is a SQL expression that yields a single row
-- for example, the expression

SELECT *
FROM EMP
WHERE EMP# = ~E2"

A row-expression is a special case of a table-expression.

* A scalar-expression is a SQL expression that yields a single
scalar value -- for example, the expression

SELECT AVG (SALARY)
FROM EMP

or t h e e x p r e s s i o n

SELECT SALARY

FROM EMP
WHERE EMP# = ~E2'

A scalar-expression is a special c:ase of a row-expression and a
special case of a column-expression.

Note t h a t t hese f o u r k i n d s of e x p r e s s i o n co r respond t o t h e f o u r
c l a s s e s of da ta o b j e c t (t a b l e , column; row, s c a l a r) suppo r ted by
SQL - - though i n c i d e n t a l l y SQL i s i n c o n s i s t e n t as t o whether i t s
e x p r e s s i o n s y i e l d v a l u e s or r e f e r e n c e s , i n g e n e r a l . Note too t h a t
(as pointed out in [3]) the four classes of object can be
partially ordered as follows:

sql critique II

table (highest)

V
col umn

V
row

V
scal ar (i owest)

(columns are neither higher nor lower than rows with respect to

this ordering).

As explained in [3] (again), a language should provide, for" each

class of object it supports, at least all of the following:

a c o n s t r u c t o r f u n c t i o n , i . e . ,
ob j ec t of the c l a s s from l i t e r a l
v a r i a b l e s of lower c l asses ;

a means for constructing an
(constant) values and/or

a means for- comparing two objects of the class;

a means for assigning the value of one object in the

to another;

class

a selector function, i.e., a means for extracting component
objects of lower classes from an object of the given class;

a general, recursively defined syntax for" expressions that
exploits to the full any closure properties the object class

may possess.

The table below shows that SQL does not really measure up to
these requirements.

sql critique 12

\ opn ~ c o n s t r u c t o r
o b . j \

t a b l e : no

÷ ÷

: only as arg to:
column : IN (host vbles:

: : & c : o n s t s o n l y) :

compare : assign : selector : gen
~ ~ ~ expr

only via : : no

no ~ INSERT - : yes : (see
SELECT : :below)

+ ~

no : no : y e s ~ no

+ ,

~ o n l y i n INSERT: ~ o n l y t o / ~ ~
r o w ~ & UPDATE (h o s t : no ~ f r o m s e t : (y e s) ~ no

~ vbles & consts: ~ of host : ~
~ o n l y) : ~ scalars : ~
÷ + ~ ÷ ~

: : : only to/ : ~
scalar : N/A : yes : from host: (yes) : no

~ ~ ~ scalar ~ ~

Let us consider table-expressions in more detail. The SELECT
statement, which., since it yields a table, may be regarded as a
table-expression (possibly of a degenerate form, e.g., as a
column-expression)., currently has the following structure:

SELECT scalar-expression-commalist
FROM tab I e-name-commal i st
WHERE predicate

(ignoring numerous irrelevant details). Notice that it is just
~l_able2name_s that appear- in the FROM clause. Completeness suggests
that it should be ta_ble__-eEQEessiQns (as Gray puts it [8].,
"anything in computer science that is not recursive is no good").
This is not just an academic consideration, by the way; on the
contrary, there are several practical reasons as to why such
recursiveness is desirable.

First, consider the relational algebra. Relational algebra
possesses the important property of closure -- that is~
relations form a closed system under the operations of the
algebra., in the sense that the result of applying any of those
operations to any relation(s) is itself another relation. As a
consequence, the operands of any given operation are not
constrained to be real ("base") relations only, but rather can
be any algebraic expression. Thus, the relational algebra
allows the user to write 0 ~ relational ~2R~i~0~ -- and
this feature is useful for precisely the same reasons that
nested expressions are useful in ordinary arithmetic.

Now consider SQL. SQL is a language that supports, directly
or indirectly, all the operations of the relational algebra

sql critique 13

(i.e., SQL is relationally complete). However, the table-
expressions of SQL (which are the SQL equivalent of the
expressions of the relational algebra) ~aQoQt be arbitrarily
nested. Let us consider the question of exactly which cases
SQL does support. Simplifying matters slightly, the expression
SELECT - FROM - WHERE is the SQL version of the nested
algebraic expression

p r o j e c t i o n (r e s t r i c t i o n (p r o d u c t (t a b l e 1 , t ab le~ ,~ . . .)))

(the product corresponds to the FROM clause, the restriction
to the WHERE clause, and the projection to the SELECT clause;
tablel, table2, ... are the tables identified in the FROM
clause -- and note that, as remarked earlier, these are simple
table-names, not more complex expressions). Likewise, the
expression

SELECT ... FROM ... WHERE ...
UNION
SELECT ... FROM ... WHERE ...

is the SQL version of the nested algebraic expression

union (tabexpl, tabexp2, ...)

where tabexpl, tabexp2~ ... are in turn table-expressions of
the form shown earlier (i.e., projections of restrictions of
products of named tables). But it is not possible to formulate
direct equivalents of any other nested algebraic expressions.
Thus, for example, it is not possible to write a direct
equivalent in SQL of the nested expression

r e s t r i c t i o n (p r o j e c t i o n (t a b l e))

Instead, the user has to recast the expression into a
semantically equivalent (but syntactically different) form in
which the restriction is applied befQ~e the projection. What
this means in practical terms is that the user may have to
expend time and effort transforming the "natural" formulation
of a given query into some different, and arguably less
"natural", representation (see Example below). What is more,
the user is therefore also required to understand exactly when
such transformations are valid. This may not always be
intuitively obvious. For example, is a projection of a union
always equivalent to the union of two projections?

Example: Given the two tables

NYC (EMP#, DEPT#~ SALARY)
SFO (EMP#, DEPT#~ SALARY)

(representing New York and San Francisco
respectively), list EMP# for all employees.

emp i oyees,

sql critique 14

" N a t u r a l " f o r m u l a t i o n (p r o j e c t i o n o f a u n i o n) :

SELECT EMP# FROM (NYC UNION SFO)

SQL f o r m u l a t i o n (u n i o n o f two p r o j e c t i o n s) :

SELECT EMP# FROM NYC
UNION
SELECT EMP# FROM SFO

We remark in passing that allowing both formulations of the
query would enable different users to perceive and express the
same problem in different ways (ideally~ of course~ both
formulations would translate to the same internal
representation~ for otherwise the choice between the two would
no longer be arbitrary).

The foregoing example tacitly makes use of the fact that a
simple table-reference (i.e.~ a table-name) QYgh~ to be just a
special case of a general table-expression. Thus we wrote

NYC UNION SFO

instead of

SELECT ~ FROM NYC UNION SELECT i FROM SFO

which current SQL would require. It would be highly desirable
for SQL to allow the expression "SELECT ~ FROM T" to be
replaced by simply "T" wherever it appears~ in the style of
more conventional languages. In other words~ SELECT should be
regarded as a statement whose function is to retrieve a table
(represented by a table-expression). Table-expressions per se
-- in particular~ nested table-expressions -- should not
require the "SELECT ~ FROM". Among other things this change
would improve the usability of the EXISTS builtin function
(see later). It would also be clear that INTO and ORDER BY are
clauses of the SELECT ~ t ~ n ~ and not part of a table- (or
column-) expression; the question of whether they can appear
in a nested expression would then simply not arise, thus
avoiding the need for a rule that looks arbitrary but is in
fact not.

A nested table-expression is permitted -- in fact required
-- in current SQL as the argument to EXISTS (but strangely
enough not as the argument to the other builtin functions;
this point is discussed in the next section). Nested column-
~E~C~iQQ~ ("subqueries") are (a) ~gu~red with the "ANY" and
"ALL" operators (includes the IN operator~ which is just a
different spelling for =ANY); and (b) Q~mitted with scalar
comparison operators (<~ >~ =~ etc.)~ if and only if the
column-expression yields a column having at most one row.
Moreover, the nested expression is allowed to include GROUP BY
and HAVING in case (a) but not in case (b). More
arbitrariness.

sql critique
IS

Elsewhere I have proposed some extensions to SQL to support
the outer join operation [4]. The details of that proposal do
not concern us here; what does concern us is the following. If
the user needs to compute an outer join of three or more
relations, then (a) that outer _join is constructed by
performing a sequence of ~!i_[!~E2 outer joins (e.g., join
relations A and B, then join the result and relation C); and
(b) it is essential that the user indicate the sequence in
which tlnose binary joins are performed, because different
sequences wi i i produce different results, in general.
Indicating the required sequence is done, precisely, by
writing a suitable nested expression. Thus, nested expressions
are @=ss]eQt~i_al_ if SQL is to provide direct (i.e., single-
statement) support for general outer joins of more than two
tel ations.

Another example (involving outer join again): Part of the
proposal for- supporting outer join [4] involves the use of a
new clause, the PRESERVE clause, whose function is to preserve
rows from the indicated table that would not otherwise
participate in the result of the SELECT. Consider the tables

COURSE (COURSE#, SUBJECT)
OFFERING (COURSE#, OFF#, LOCATION)

and consider- the query "List all algebra courses, with their
offerings if any" The two SELECT statements fol lowing
(neither of which is valid in current SQL, of course>
represent two attempts to formulate this query:

SELECT ALGEBRA. COURSE#, OFF#, LOCATION
FROM (SELECT COURSE#

FROM COURSE
WHERE SUBJECT = ~Algebra ~) ALGEBRA, OFFERING

WHERE ALGEBRA.COURSE# = OFFERING.COURSE#
PRESERVE ALGEBRA

SELECT COURSE.COURSE#, OFF#, LOCATION
FROM COURSE, OFFERING
WHERE COURSE.COURSE# = OFFERING. COURSE#
AND SUBJECT = ~Algebra'
PRESERVE COURSE

Each of these statements does list all algebra courses,
together with their offerings, for all such courses that do
have any offerings. The first also lists algebra courses that
do not have any offerings, concatenated with null values in
the OFFERING positions; i.e., it preserves information for
those courses (note the introduced name ALGEBRA, which is used
to refer to the result of evaluating the inner expression).
The second, by contrast, preserves information not only for
algebra courses with no offerings, b_L~ a.lso for al..l c Qb~rse_s
f..or_ which, t_h_e ~L~i~c_~ i__s no_t al_gebj2 ~ (regardless of whether
those courses have any offerings or not>. In other words, the

sql critique
16

first preserves information for algebra courses only (as
required)., the second produces a lot of unnecessary output.
And note that the first cannot even be formulated (as a single
statement) if nested expressions are not supported.

* In fact, SQL does alreacly support nested expressions in a
kind of "under the covers" sense. Consider the following
ex amp i e :

Base table:

S (S#., SNAME, STATUS, CITY)

View d e f i n i t i o n :

CREATE VIEW LONDON SUPPLIERS
AS SELECT S#, SNAME., STATUS

FROM S
WHERE CITY = ~London ~

Query (Q) :

SELECT *
FROM LONDONSUPPLIERS
WHERE STATUS > 50

Resulting SELECT statement (Q'):

SELECT S#., SNAME~ STATUS
FROM S
WHERE STATUS > 50
AND CITY = ~London ~

The SELECT statement Q' is obtained from the original query Q
by a process usually described as "merging statement Q is
"merged" with the SELECT in the view definition to produce
statement Q'. To the naive user this looks a little bit like
magic. But in fact what is going on is simply that the
reference to LONDON_SUPPLIERS in the FROM clause in Q is being
replaced by the expression that ~ n ~ LONDON_SUPPLIERS, as
f o l l o w s :

SELECT *
FROM (SELECT S#., SNAME., STATUS

FROM S
WHERE CITY = ~London ~)

WHERE STATUS > 50

This explanation~ though both accurate and easy to understand.,
cannot conveniently be used in describing or teaching SQL.,
precisely because SQL does not support nesting at the external
or user's level.

* UNION is not permitted in a subquery., and hence (among other
things) cannot be used in the definition of a view (although

sql critique 17

strangely enough it can be used to define the scope for a
cursor in embedded SQL). So a view cannot be "any derivable
relation", and the relational closure property breaks down.
Likewise, INSERT ... SELECT cannot be used to assign the union
of two relations to another relation. Yet another consequence
of the special treatment given to UNION is that it is not
possible to apply a builtin function such as AVG to a union.
See the following section.

We conclude this discussion of SQL expressions by noting
additional (and apparently arbitrary) restrictions.

a few

The predicate C BETWEEN A AND B is equivalent to the
predicate A <= C AND C <= B -- except that B (but not A or C!)
can be a column-expression (subquery) in the second
formulation but not in the first.

The predicate "field comparison (subquery)" must be written
in the order shown and not the other way around; i.e., the
expression "(subquery) comparison field" is illegal.

If we regard SELECT, UPDATE, and INSERT all as special kinds
of assignment statement -- in each case, the value of some
expression is being assigned to some variable (a newly created
variable, in the case of INSERT) -- then source values for
those assignments can be specified as scalar-expressions
(involving database fields, host variables, constants, and
scalar operators) for SELECT and UPDATE, but must be specified
as simple host variables or constants for INSERT. Thus, for
example, the following is valid:

SELECT :X + 1
FROM T

and so is:

UPDATE T
SET F = :X + 1

but the following is not:

INSERT INTO T (F)
VALUES (:X + 1)

Given the tables:

S (S#, SNAME, STATUS, CITY)
P (P#, PNAME, COLOR, WEIGHT, CITY)

the SELECT statement

sql cr i t ique 18

SELECT COLOR
FROM P
WHERE CITY =

(SELECT CITY
FROM P
WHERE P# = ~PI ~)

is legal, but the UPDATE statement

UPDATE P

SET COLOR = ~Blue ~
WHERE CITY =

(SELECT CITY
FROM P
WHERE P# = ~Pi ~)

is not. Worse, neither is the UPDATE statement

UPDATE P
SET CITY =

(SELECT CITY
FROM S
WHERE S# = ~$1 ~

WHERE ...

Even worse, g i v e n :

EMP (EMP#, SALARY)
BONUSES (EMP#, BONUS)

t h e f o l l o w i n g (p o t e n t i a l l y v e r y u s e f u l)
i l l e g a l :

UPDATE i s a l so

UPDATE EMP
SET SALARY = SALARY + (SELECT BONUS

FROM BONUS
WHERE EMP# = EMP. EMP#)

(Actually there is a slight problem in this last example.

Suppose a given employee number~ say e, appears in the EMP
table but not in the BONUSES table. Then the parenthesized

expression will evaluate to null for employee e, and the
UPDATE will therefore set e~s salary to null as well --
whereas what is wanted is clearly for e~s salary to remain
unchanged. To fix this problem~ we need to replace the

parenthesized expression by (say)

ROW_MAX ((SELECT BONUS ... EMP.EMP#) , (7)

where ROW_MAX is a function that operates by (a) ignoring any
of its arguments that evaluate to null and then (b) returning
the maximum of those that are left, if any, or null otherwise.
Note that ROW MAX is different in kind from the builtin
functions currently provided in SQL -- it is in fact a scalar--
valued function, whose arguments are scalar-expressions.)

sql critique 19

3. LACk-:] OF ORTIdOGONALITY: BUILTIN FUNCTIONE.;

Frankly, there is so much confusion in this area that it is
difficult to criticize it coherently. The basic point, however-,
is that the argument to a function such as SUM is a column of
scalar values and the result is a single scalar value; hence,
orthogonality dictates that (a) any column-expression should be
permitted as the argument, and (b) the function-reference should
be permitted in any context in which a scalar can appear.
However, (a) the argument is in fact specified in a most
unorthodox manner-, which means in turn that (b) function
references can actually appear only in a very small set of
special-case situations. In particular, functi on-ref erences
cannot appear nested inside other function-references. In
addition to this fact, functions are subject to a large number of
peculiar and apparently arbitrary restrictions.

Before getting into details, we should point out that SQL in fact
supports two distinct categories of function, not however in any
uniform syntactic style. We refer to the two categories
informal i y as _c o l !..! m_ n_ and table functions, respectively. We

discuss each in turn.

Column functions are the ones that one usually thinks of whenever
functions are mentioned in connexion with SQL. A column function
is a -Function that reduces an entire column of scalar values to a
single value. The functions in this category are COLJNT (excluding
COUNT(*)), SUM, AVG, MAX, and MIN. A functional notation is used
to represent these functions; however, as suggested above, the
scoping rules for representing the argument are somewhat
unconventional. Consider the following database (suppliers and
parts):

S (S#, SNAME, STATUS, CITY)
P (P#, PNAME, COLOR, WEIGHT, CITY)
SF' (S#, P#, QTY)

and consider also the following query:

SELECT SUM (QTY)
FROM SP

The argument to SUM here is in fact the entire column of QTY
values in table SP, and a more conventional representation would
accordingly be:

SUM (SELECT QTY
FROM SP)

(though once again the keyword SELECT seems rather obtrusive; QTY
FROM SF', or -- even better -- simply SP.QTY, would be more
orthodox). As another example, the query:

sql c r i t i q u e 20

SELECT SUM (QTY)
FROM SF'
WHERE P# = "F '~'

would more conventionally be represented as

SUM (SELECT QTY
FROM SP
WHERE P# = 'F'2')

or (better) as:

SUM (SF'.QTY WHERE SF'.F'# = "F'2")

As it is, the argument has to be determined by reference to the
context. An immediate consequence of this fact is that a query
such as "Find parts supplied in a total quantity of more than
1000" cannot be expressed in a natural style. First, the syntax':

SELECT P#
FROM SP
WHERE SUM (QTY) > 1000

~!~E~2 does not work, either with SQL~s rules-For argument scope
or with any other rules. The most logical formulation (but
retaining a SQL-like style) is:

SELECT DISTINCT SPX.P#
FROM SP SPX
WHERE SUM (SELECT QTY

FROM SP SPY
WHERE SPY. P# = SPX.P#)

> 100c)

(The DISTINCT is required because of SQL's rules concerning
duplicate elimination.) However, the normal SQL formulation would
be:

SELECT P#
FROM SP
GROUP BY P#
HAVING SUM (QTY) > 1000

Note that the user is not really interested in grouping per se in
this query; by writing GROUP BY, he or she is in effect telling
the system how to execute the query, which is counter to the
general philosophy of the relational model. To put this another
way, the statement begins to look more like a prescription for
solving the problem, rather than a simple description of what the
problem is.

More
the
user

important, it is necessary to introduce the HAVING clause,
justification for which is not immediately apparent to the
("Why can't I use a WHERE clause?"). The HAVING clause .E2

sql critique 21

and the GROUP BY clause alsot come to ~b~ 2 ~ !~FZ2 EE ~E~

~ [g ~ Q ~ ~9o~Qg C~]~.~ As a ma t te r of f a c t , i t i s p o s s i b l e t o
produce a SQL f o r m u l a t i o n of t h i s example t h a t does no t use GROUP
BY or HAVING at a l l , and i s f a i r l y c l o s e t o " t h e most l o g i c a l
f o r m u l a t i o n " suggested e a r l i e r :

SELECT DISTINCT P#
FROM SP SPX
WHERE 1OOO <

(SELECT SUM (QTY)
FROM SP SPY
WHERE SPY.P# = SPX.P#)

As mentioned earlier, current SQL requires the predicate in the
outer WHERE clause to be written as shown (i.e., in the order
"constant - comparison - (subquery)", instead of the other way
around).

An i m p o r t a n t consequence of a l l of t he f o r e g o i n g i s
cannot ~O09E~ ~ E ~ E ~ E ~ C ~ ~ QQ ~E~=~E~E~ 2 ~ -
the following example.

that SQL
Consider

View definition:

CREATE VIEW PQ (P#, TOTQTY)
AS SELECT P#, SUM (QTY)

FROM SP
GROUP BY P#

Attempted query:

SELECT *
FROM PQ
WHERE TOTQTY > 10OO

This query fails (it is syntactically invalid), because the
"merging" process described earlier leads to something like the
fol 1 owing :

SELECT P#, SUM (QTY)
FROM SP
WHERE SUM (QTY) > 1OOO
GROUP BY P#

and this is not a legal SELECT statement. Likewise, the attempted
query:

SELECT AVG (TOTQTY)
FROM PQ

also does not work, for similar reasons.

The following is another striking example of the unobviousness of
the scoping rules. Consider the following two queries:

sql critique 22

SELECT SUM (QTY) SELECT SUM (QTY)
FROM SP FROM SP

GROUP BY P#

In the first easel the query returns a single value; the argument
to the SUM invocation is the entire QTY column. In the second
case,, the query returns multiple values; the SUM function is
invoked multiple times, once for each of the groups created by
the GROUP BY clause. Notice how the meaning of the syntactic
construct "SUM(QTY)" is dependent on context. In fact,, SQL is
moving out of the strict tabular framework of the relational
model in this second example and introducing a new kind of data
object,, viz. a set Q~ tables (which is of course not the same
thing as a table at all). GROUP BY converts a table into a set of
tables. In the example,, SUM is then applied to (a column within)
each member of that set. A more logical syntax might look
something like the following:

APPLY (SUM~ SELECT QTY
FROM (GROUP SP BY P#))

where "GROUP SP BY P#" produces the set of tables~ "SELECT QTY
FROM (...)" extracts a corresponding set of columns,, and APPLY
applies the function specified as its first argument to each
column in the set of columns specified as its second argument,
producing a set of scalars -- i.e.~ another column. (I am not
suggesting a concrete syntax here,, only indicating a possible
direction for a systematic development of such a syntax.)

As a matter of fact,, GROUP BY would be logically unnecessary in
the foregoing example anyway if column function invocations were
more systematic:

SELECT DISTINCT SPX.P#,, SUM (SELECT QTY
FROM SP SPY
WHERE SPY.P# = SPX.P#)

FROM SP SPX

This formulation also shows~ incidentally~ that it might be
preferable to declare aliases (range variables) such as SPX and
SPY by means of separate statements before they are used. As it
is,, the use of such variables may often precede their definition~
possibly by a considerable amount. Although there is nothing
logically wrong with this,, it does make the statements difficult
to read (and write).

Yet another consequence of the scoping rules (already touched on
a couple of times) is that it is not possible to nest column
function references. Extending the earlier example of generating
the total quantity per part (i.e., a column of values,, each of
which is a total quantity),, suppose we now wanted to find the
_a2~c_ag~ total quantity per part -- i.e., the average of that
column of values.]he logical formulation is something like:

sql critique 23

AVG (APPLY (SUM, SELECT QTY
FROM (GROUP SP BY P#)))

But (as already stated) existing SQL cannot handle this problem
at all in a single expression.

Let us now leave the scoping rules and consider some additional
points. Each of SUM, AVG, MAX, and MIN can optionally have its
argument qualified by the operator DISTINCT. (COUNT @bjst have its
argument so qualified., though it would seem that there is no
intrinsic justification for this requirement. For MAX and MIN
such qualification is legal but has no semantic effect.) If (and
only if) DISTINCT is not specified., then the column argument can
be a "computed" column, i.e., the result of an arithmetic
expression -- for- example:

SELECT AVG (X + Y)
FROM T

And (again) if and only if DISTINCT is QQt
function reference can itself be an operand in
expression -- for example:

specified, the
an arithmetic

SELECT AVG (X) ~ 3
FROM T

In current SQL, null values are always eliminated from the
argument to a column .Function, regardless of whether DISTINCT is
specified. However., this should be regarded as a property of the
existing functions specifically, rather than as a necessary
property of all column functions. In fact, it would be better to
not to ignore nulls but to introduce a new function whose effect
is to reduce a given column to another in which nulls have been
eliminated (and, of course., to allow this new function to be used
completely orthogonally).

Table functions

Table functions are functions that operate on an entire table
(not necessarily just on a single column). There are four
functions in this category, two that return a scalar value and
two that return another table. The two that return a single value
are COUNT(S) and EXISTS.

COUNT(S) is basically very similar to the column functions
discussed above. Thus, most of the comments made above apply here
also. For example, the query:

SELECT COUNT(S)
FROM SP

would more logically be expressed as

sql critique 24

COUNT (SELECT
FROM SP)

or (better) as:

COUNT (SP)

COUNT (~) does
argument.

not ignore nulls (i.e.., all-null rows) in its

EXISTS., interestingly enough.,

For example:
does use a more logical syntax.

SELECT
FROM S

WHERE EXISTS

(SELECT
FROM SP
WHERE SP.S# = S.S#)

-- though the EXISTS argument would look better iT the "SELECT
FROM" could be el ided :

SELECT
FROM S
WHERE EXISTS (SP WHERE SP.S# = S.S#)

or (better still):

S WHERE EXISTS (SP WHERE SP.S# = S.S#) .

EXISTS takes a table as its argument (though that table mbjst be
expressed as a SELECT-expression., not just as a table-name) and
returns the value t r~le i f that table is nonempty., false_
otherwise. Because there is currently no BOOLEAN or BIT data type
in SQL, EXISTS can be used only in a WHERE clause, not (e.g.) in
a SELECT clause (lack of orthogonality once again).

Now we turn to the functions that return
DISTINCT and UNION.

another table, viz.

DISTINCT takes a table and returns another which is a copy of
that first table except that redundant duplicate rows have been
removed (rows that are entirely null are considered as duplicates
of each other in this process -- that is., the result will contain
at most one all-null row). Once again the syntax is
unconventional. For instance:

SELECT DISTINCT S#
FROM SP

instead o f :

DISTINCT (SELECT S#
FROM SP)

sql critique 2S

o r (better):

D I S T I N C T (S P . S #)

There is an apparently arbitrary restriction that DISTINCT may
appear" at most once in any given SELECT statement.

UNION takes two tables (each of which must be represented by
means of a SELECT-expression~ not just as a simple table-name)
and produces another table that is their union. It is written as
an infix operator. Because of the unorthodox syntax~ it is not
possible (as mentioned before) to apply a column function such as
AVG to a union of two columns.

Note: We consider UNION~ alone of the operators o~ the relational
algebra~ as a function in SQL merely because of the special
syntactic treatment it is given. SQL is really a hybrid of the
relational algebra and the relational calculus; it is not
precisely the same as either, though it leans somewhat toward the
calculus -- a dialect of the calculus that does not lend itself
very neatly to support of UNION~ however~ which is precisely why
the special treatment is necessary.

sql critique 26

4. LACK OF ORTHOGONALITY: MISCELLANEOUS ITEMS

Let F be a database field that can accept null values, and let HF
be a corresponding host variable, with associated indicator
variable HN. Then:

SELECT F
INT0 :HF:HN

i s l e g a l , and so a r e

INSERT . . .
VALUES (:HF:HN . . .)

and

UPDATE ...
SET F = :HF:HN

B u t t h e f o l l o w i n g i s n o t :

SELECT ... (or UPDATE or DELETE)
m m l

WHERE F = :HF:HN

Let C be a cursor that currently identifies a record of table T.
Then it is possible to designate the "CURRENT OF C" -- i.e., the
record currently identified by C -- as the target of an UPDATE or

DELETE statement, e.g.~ as follows:

UF'DATE T

SET ...
WHERE CURRENT OF C

Incidentally, a more logical formulation would be

UPDATE CURRENT OF C
SET ...

Specifying the table-name T is redundant (this point is
recognized in the syntax of FETCH, see later), and in any case
"CURRENT OF C" is not the same kind of construct as the more
usual WHERE-predicate (e.g. : "SALARY > 20000") . Nor is it
permitted to combine "CURRENT OF C" with other predicates and
write (e.g.) "WHERE CURRENT OF C AND SALARY > 20000". But to
return to the main argument : Ai though the (first) UPDATE

statement above is legal, the analogous SELECT statement

sql critique 27

SELECT ...
FROM T
WHERE CURRENT OF C

is not. Nor can fields within the "CURRENT OF C"
referenced -- e.g., the following is also illegal:

be directly

SELECT
FROM EMP
WHERE DEPT# =

(SELECT DEPT#

FROM DEPT
WHERE CURRENT OF D

Turning now to the FETCH statement~ we have here an example of
bundling. "FETCH C INTO ..." is effectively a shorthand for a

sequence of two distinct operations --

STEP C TO NEXT
SELECT ~ INTO ... WHERE CURRENT OF C

-- the first of which (STEP) advances C to the next record in T
in accordance with the ordering associated with C,, and the second
(if which (SELECT) then retrieves that record. As noted above,
that SELECT does not logic:ally require any FROM clause. Replacing
the FETCH statement by two more primitive statements in this way

would have the following advantages:

(a) it is clearer;

(b) it is a more logical structure (incidentally, "FETCH C"
does not really make intuitive sense -- it is not the ~J~Z~QC
that is being fetched);

(c) it would allow SELECTs of individual fields of the current

record (i.e., "SELECT field-name" as well as "SELECT ~");

(d) it would allow selective (and repeated) access to that
current record (e.g.., "SELECT F" followed by "SELECT G"., both

selecting fields of the same record);

(e) it would be extendable to other kinds of STEP operation --
e.g.,, STEP C TO PREVIOUS (say).

In fact I would go further. First., note that "CURRENT OF C" is an
example of a row-expression. Let us therefore introduce a (new)
FETCH statement,, whose argument is a row-expression (as opposed
to SELECT, whose argument is a table-expression)., and whose
function is to retrieve the row represented by that expression.
Next ., out Iaw SELECT where FETCH i s real I y i nt ended. Nex t,
introduce "(row-expression).field-name e.g., (CURRENT OF C).F
-- as a new form of scalar-expression. Finally, support all of
these constructs orthogonally. Thus, for example, all of the
following would be legal:

sql critique 2B

FETCH CURRENT OF C INTO . . .

F E T C H (C U R R E N T OF C) . F " I N T O . . .

SELECT
FROM EMP
WHERE DEPT# = (CURRENT OF C).DEPT#

UPDATE CURRENT OF C

SET ...

DELETE CURRENT OF C

The examples illustrate the point that "CURRENT OF C" is really a
very clumsy notation, incidentally, but an improved syntax is
beyond the scope of this paper. See [5] ~or a preferable
alternative.

Specifying ORDER BY in the declaration of cursor C means that the
statements UPDATE/DELETE ... CURRENT OF C are illegal (in fact,
the declaration of C cannot include a FOR UPDATE clause if ORDER
BY is specified). The rationale for this restriction is that
ORDER BY may cause the program to operate on a copy instead of on
the actual data, and hence that updates and deletes would be
meaningless; but the restriction is unfortunate, to say the
least. Consider a program that needs to process employees in
department number order and needs to update some of them as it
goes. The user is forced to code along the following lines:

EXEC SQL DECLARE C CURSOR FOR
SELECT EMP#, DEPT#,
FROM EMP
ORDER BY DEPT# ;

EXEC SQL OPEN C ;
DO WHILE more-to-come ;

EXEC SQL FETCH C INTO :EMP#, :DEPT#, ... ;
if this record needs updating~ then
EXEC SQL UPDATE EMP

SET ...
WHERE EMP# = :EMP# I~ instead of CURRENT OF C ~/ ;

END ;

EXEC SQL CLOSE C ;

The UPDATE statement here is an "out-of-the-blue" UPDATE, not the
CURRENT form. Problems:

(a) The update w i l l be v i s i b l e t h rough c u r s o r C i f and o n l y i f
C i s r unn ing th rough the r e a l da ta , not a copy.

(b) If cursor C is running through the real data, and if the
UPDATE changes the value of DEPT#~ the effect on the position
of cursor C within the table is apparently undefined.

sql critique 29

We remark also that the FOR UPDATE clause is a little mysterious
(its real significance is not immediately apparent); it is also
logically unnecessary. The whole of this area smacks of a most
unfortunate loss of physical data independence.

The keyword NULL may be regarded as a "builtin constant",
representing the null value. However, it cannot appear in all
positions in which a scalar constant can appear. PoE example, the

statement

SELECT F, NULL
FROM T

is illegal. This is unfortunate, since the ability to select NULL
is precisely what is required in order to construct an outer join
(in the absence of direct support for such an operation). See

[4].

EmQt~ sets

Let T be a table-expression. If T happens to evaluate to an empty
set, then what happens depends on the context in which T appears.
For example, consider the expressions

SELECT SALARY
FROM EMP
WHERE DEPT# = ~D3'

and SELECT AVG (SALARY)
FROM EMP
WHERE DEPT# = ~D3 ~

and suppose that department D3 currently has no employees. Note
that the second of these expressions represents the application
of the AVG function to the result of the first; as pointed out
earlier, it would more logically be written as

AVG (SELECT SALARY
FROM EMP
WHERE DEPT# = ~D3")

The statement

EXEC SQL SELECT SALARY
INTO :S:SN
FROM EMP
WHERE DEPT# = ~D3 ~ ;

gives "not
unchanged) .

found" (SQLCODE = +100, host variables S and SN

sql critique
3O

The statement

EXEC SQL SELECT AVG (SALARY)

INTO :S:SN
FROM EMP
WHERE DEPT# = ~D3'

sets host variable SN to an unspecified negative

indicate that the value of the expression is null.

on host variable S is unspecified.

value to

The effect

The statement

EXEC SQL SELECT ...

INTO :S:SN

FROM ...

WHERE field IN

(SELECT SALARY

FROM EMP

WHERE DEPT# = ~D3 ~)

gives "not found" (at the ok.!t__er_ level).

The statement

EXEC SQL SELECT ...

INTO :S:SN

FROM ...

WHERE field =

(SELECT SALARY

FROM EMP

WHERE DEPT# = ~D3') ;

also gives "not found" (at tlne outer level), though there is a

good argument for treating this case as an error, as follows:

The parenthesized expression "(SELECT SALARY ...)" should

really be regarded as a shorthand for "UNIQUE (SELECT SALARY

...)", where UNIQUE is a quantifier (analogous to EXISTS)

meaning "there exists ~ E ~ 2 QQ@ or, in other words, a

function whose effect is to return the single element from a

singleton set and to raise an error if that set does not in

fact contain exactly one member-. Note that an error be

raised in the example if the parenthesized expression yielded

a set having more than one member (which in general, of

course, it would).

The statement

EXEC SQL SELECT ...

I N]'O : S : SN

FROM . . .

WHERE field =

(SELECT AVG (SALARY)

FROM EMP

WHERE DEPT# = ~D3) ;

sql critique 31

also gives "not found" at the outer level.

(]ompare the following:

SELECT * FROM T ...

UF'DATE T . . .

DELETE FROM T ...

I N S E R T I N T O T ...

(FETCH C ...)

A more ¢:onsistent approach would be to define "table-expressions"

(as suggested earlier)., and then to recognize that SELECT,

UPDATE, etc., are each operators: one of whose arguments :is such

a table-expression. (A problem that immediately arises is that a

simple table-name is currently [Lo.~ a valid table-expression! --

i.e..~ instead of being able to write simply T, the user has to

write SELECT * FROM T.]'his point has been mentioned before, and

i s of course easi I y remedied.)

Nc:,te too that the syntax UPDATE T SET F = ... does not extend

very nicely to a form of UPDATE in which an entire record is
replac:ed en bloc (SET * = ... ?). And this touches on yet another

point., viz: SQL currently provides whole-record SELECT (and

FETCH) and INSERT operators, but no whole-record UPDATE operator.

(DELETE of course must be "whole-record".)

L..o...r'.,g ..f..l.e_!.~ .!..L_Q.N.Q Y.A~C_...H.~_ .or.).,~QUSF~.!._n._}. ~k~.b . .n 2 ~ ! .

Long fields are subjec:t to numerous restrictions.

(if them (this may or may not be an exhaustive

field:

- cannot be referenced in a predicate

- cannot be indexed

- cannot be referenced in SELECT DISTINCT

- cannot be referenced in GROUP BY

- cannot be referenced in ORDER BY

- cannot be referenced in COUNT,

would make no sense)

- cannot be involved in a UNION

- cannot be involved in a "subquery"

Here are some

1 i st) . A Iong

MAX, MIN (note: SUM and AVG

(c ol umn-ex press i (in)

sql critique 32

- cannot be INSERTed from a constant or SELECT-expression

- cannot be UPDATEd from a constant (UPDATE from
legal., however)

NULL i ~

b!~.~!Q~ ~_e ~. ~ ~. ~.._c. t. !.~o.~

UNION is not permitted on long fields or in a subquery (in

particular~ in a view definition). Also., the data types of
corresponding items in a UNION must be e,'actlv_~ ~. the same:

- if the data type is DECIMAL(p.,q)., then p must be the same
for both items and q must be the same for both items

- if the data type is CHAR(n),
both items

then n must be the same for

- if the data type is VARCHAR(n):
both i tems

then must be the same for

- if NOT NULL applies to either item.,
both

then it must apply to

Given these restrictions~ it is particularly unfortunate that a
character string constant such as ~ABC ~ is treated as a var2iog
length string -- a varying string., moreover., for which Q~!!!~ ~

Note also that UNION always eliminates duplicates. There is no

"DISTINCT/ALL" option as there is with a simple SELECT; and if
there were~ the default would have to be DISTINCT (for
compatibility reasons)., whereas the default for a simple SELECT
is ALL..

GROUP BY:

- only works to one level (it can construct a "set of tables"
but not a "set of sets of tables"., etc.) '

- can only have simple fields as arguments (unlike ORDER BY)

The fact is., as indicated in the discussion of functions earlier.,
an orthogonal treatment of GROUP BY would require a thorough
treatment of an entirely new kind of data object., namely the "set
of tables presumably a major undertaking.

Null values are implemented by hidden fields in the database.
However., it is necessary to expose those fields in the interface
to a host language such as PL/I~ because PL/I has no notion of
null. As an example~ if F and G are two fields in table T~ the

sql critique 33

UPDATE statement to set F equal to G is:

EXEC SQL UPDATE T
SET F = G ...

but the UPDATE statement to set F equal to a host variable H is

(for instance):

EXEC SQL UPDATE T
SET F = :H:HN ...

(assuming in both cases that the source of the assignment might

be null).

Indicator variables are not permitted in all contexts where
host variables can appear (as already discussed).

To test (in a WHERE clause) whether a field is null, SQL

provides the special comparison "field IS NULL". It is not
intuitively obvious why the user has to write "field IS NULL" and
not "field = NULL" -- especially as the format "field = NULL" is

used in the SET clause of the UF'DATE statement to update a field
to the null value. (In fact, the WHERE clause "WHERE field =

NULL" is illegal syntax.)

Null values are considered as duplicates of each other for the
purposes of UNIQUE and DISTINCT and ORDER BY but not for the
purposes of WHERE and GROUP BY. Null values are also considered
as greater than all nonnull values for the purposes of ORDER BY
but not for- the purposes of WHERE.

Null values are always eliminated from the argument to a
builtin function such as SUM or AVG, regardless of whether
DISTINCT is specified in the function reference -- except for the
case of COUNT(S), which counts all rows, including duplicates and
including all-null rows. Thus, for example, given:

SELECT AVG (STATUS) FROM S -- Result: x

SELECT SUM (STATUS) FROM S -- Result: y

SELECT COUNT (~) FROM S -- Result: ~

there is no guarantee that x = y/z.

As a consequence of the foregoing, the
SUM(F) (for example) is QQt_ semantically

ex pr essi on

f u n c t i o n reference
equivalent to the

f l + f 2 + . . + f n

where fl fo fn are the values appearing in field F at the
time of evaluation. Perhaps even more counterintuitively, the
expression

sql critique 34

SUM (F i + F2)

is not equivalent to the expression

SUM (Fi) + SUM (F2) .

H o_st_ variables

Host variables are permitted in the INTO clause (of SELECT and

FETCH), the SET clause (of UPDATE), and the WHERE clause (of
SELECT, UPDATE, and DELETE), but nowhere else. In particular,
table-names and field-names cannot be represented by host
variables.

Introduced names

The user can introduce names (aliases) for tables (e.g., FROM T
TX) but not for scalars (e.g., SELECT F FX). This latter facility
would be particularly useful when the scalar is in fact
represented as an operational expression -- e.g., SELECT A+B C.
The name C could be used in ORDER BY or in GROUP BY or as an
inherited name in CREATE VIEW (etc., etc.).

Certain INSERT, UPDATE, and DELETE statements are not allowed.
For example, consider the requirement "Delete all suppliers with
a status less than the average". The statement:

DELETE

FROM S
WHERE STATUS <

(SELECT AVG (STATUS)
FROM S)

is illegal, because the FROM clause in the subquery refers to the
table against which the deletion is to be done. Likewise, the
UPDATE statement

UPDATE S
!SET STATUS = O
WHERE STATUS <

(SELECT AVG (STATUS)
FROM S)

is also illegal, for analogous reasons. Third, the statement

INSERT INTO T
SELECT ~ FROM T

which might be regarded as a perfectly natural way to "double up"
on the contents of a table T, is also illegal, again for
analogous reasons.

sql critique 35

~J. FORMAL .DEFINITION

As i n d i c a t e d e a r l i e r :i.n t h i s p a p e r , i t w o u l d b e m i s l e a d i n g t o
s u g g e s t t h a t SQL d o e s n o t p o s s e s s a d e t a i l e d d e f i n i t i o n . H o w e v e r ,
a s w a s a l s o i n d i c a t e d e a r l i e r , t h a t d e f i n i t i o n [i 0] w a s p r o d u c e d
" a f t e r t h e ~ a c t " I n s o m e r e s p e c t s , t h e r e f o r e , i t r - e p r e s e n t s a
d e f i n i t i o n o f t h e w a y i m p l e m e n t a t i o n s a c t u a l l y w o r k r a t h e r t h a n
t h e w a y a " p u r e " l a n g u a g e o u g h t t o b e (a l t h o u g h i t m u s t b e s a i d
t h a t m a T y o f t h e c r i t i c i s m s o f t h e p r e s e n t p a p e r " h a v e i n d e e d b e e n
addressed in [I()]). At the same time it provides definitive

answers to some questions that are not in agreement with the way
IBM SQL act.ually works! Furthermore, there still appear- to be

some areas where the definition is not yet precise enough. We
give examples of all of "these aspects below.

L e t C b e a c u r s o r t l T a t i s c u r r e n t l y a s s o c i a t e d w i t h a s e t o f
r e c o r d s o f t y p e R. S u p p o s e m o r e o v e r t h a t t h e o r d e r i n g a s s o c i a t e d
w i t h C i s d e f i n e d b y v a l u e s o f f i e l d R . F . I f C i s p o s i t i o n e d on a
r e c o r d r a n d r i s d e l e t e d , C g o e s i n t o t h e " b e f o r e " s t a t e - -
i . e . , i t i s now p o s i t i o n e d " b e f o r e " r e c o r d r l , w h e r e r l i s t h e
i m m e d i a t e s u c c e s s o r o f r w i t h r e s p e c t t o t h e o r d e r i n g a s s o c i a t e d
w i t h C - - o r ' , i f t h e r e i s no s u c h s u c c e s s o r r e c o r d , t h e n i t g o e s
i n t o t h e " a f t e r " s t a t e - - i . e . , i t i s " a f t e ~ t h e l a s t r e c o r d i n
t h e s e t (n o t e : t h e " a f t e r s t a t e i s p o s s i b l e e v e n i f t h e s e t i s
e m p t y) .

Questions:

(a) If C is "before rl" and a new record r is inserted with a
value of R.F such that r logically belongs between rl and rl:s
predec:essor (if any), what happens to C'? [Answer:

Impl ementation-defined.]

(b) Does it make a difference if the new record r logically
precedes or follows the old record r that C was positioned on
before that record was deleted? [Answer: Implementation-

def i ned.]

(c) Does it make a difference if C
through a copy of the real set
Implementation-defined.]

was actual 1 y running
of records? [Answer:

Note for cases (a)-(c) that. it ~.~ guaranteed that
"FETCH C" will retrieve record rl (provided no other
etc. occur in the interim).

the next
DELETEs

(d) What if the new r is not an INSERTed record but an UPDATEd
record? [Answer: Not defined.]

(e) If C is positioned on a record r' and the value of field F
in that record is updated (not via cursor C, of course) ; what
happens to C? [Answer: Not defined.]

sql critique 36

Does I_OCK SHARED acquire an S lock or an SIX lock [9]? If the
answer- is S, are updates permitted'7 When are locks acquired via
LOCK TABLE released?

First, consider- the two statements:

!SELECT S#

FROM S
WHERE CITY = ~London'

ELECT P#

FROM P

WHERE CITY = ~London'

The meaning of the unqualified name CITY depends on the context
-- it is taken as S.CITY in the first of these examples and as
P.CITY in the second. But now suppose the c:olumns are renamed
SCITY and PCITY respectively, so that now the names are globally
unique, and consider the query "Find suppliers located in cities

in which no parts are stored". The obvious formulation of this
query i s:

SELECT S#
FROM S

WHERE NOT EXISTS

(SELECT
FROM P
WHERE PCITY = SCITY)

However., this statement is invalid. SQL assumes that "SCITY" is
shorthand for "P.SCITY", and then complains that no such field
exists. The following statement., by contrast, is perfectly valid:

SELECT S#
FROM S

WHERE NOT EXISTS
(SELECT

FROM P

WHERE PCITY = S.SCITY)

So also is:

SELECT S#
FROM S SX
WHERE NOT EXISTS

(SELECT

FROM P
WHERE PCITY = SX.SCITY)

Is the following legal?

scll critique 37

SELECT *
FROM S
WHERE EXISTS (SELECT *

FROM SP SPX
WHERE SPX.S# = S.S#

AND SPX.P# = ~PI ~
AND EXISTS (SELECT *

FROM SP SPX
WHERE SPX.S# = S.S#
AND SPX.P# = ~P2')

What if "FROM SP SPX" is replaced by "FROM SP" (twice) and all

other occurrences of "SPX" are replaced by "SP"? And is the

following legal?

SELECT *
FROM S

WHERE EXISTS (SELECT *
FROM SP SPX

WHERE SPX.S# = S.S#

AND SPX.P# = ~PI')
AND EXISTS (SELECT *

FROM SP SPX

WHERE SPX.S# = S.S#
AND SPX.P# = ~P2 ~)

(etc., etc.). In other words: What are the name scoping rules for
"aliases" (range variables)?

There is another point to be made while on the subject
resolution, incidentally. Consider the statement:

of name

SELECT S.S#, P.P#
FROM S, P
WHERE S.CITY = P.CITY

(we now go back to the unqualified name CITY in each of the two
tables). This statement is (conceptually) evaluated as follows:

- form the product of S and P; call the result TEMPi

- restrict TEMPi according to the predicate S.CITY = P.CITY;

call the result TEMP2

- project TEMP2 over the columns S.S# and P.P#

Butt how can this be done? The predicate "S.CITY = F'.CITY" does
not refer to any columns of TEMPi (it refers to columns of S and
P, obviously). Similarly, S.S# and P.P# are not columns of TEMP2.
In order for these references to be interpreted appropriately, it
i s necessary to :i introduce cer tai n n am_e i_n_h_e~z~_t ance ~7.t=~ l_~s,
indicating how resuit tables inherit column-names from their
source tables (which may of course may themselves also be
[intermediate] result tables, witln inherited column-names of

scll criticlue
38

t h e i r own). Such r u l e s are c u r r e n t l y d e f i n e d o n l y ve ry
i n f o r m a l l y , i f a t a l l . Such r u l e s become even more i m p o r t a n t i f
SQL i s t o p r o v i d e suppo r t f o r nested e x p r e s s i o n s .

When exactly does a cursor iterate over the real "base data" and
when over a copy?

When exactly does "~" become bound to a specific set of field-
names? [Answer: Implementation-defined -- but this seems an
unfortunate aspect to leave to the implementer, especially as the
b i n d i n g i s l i k e l y t o be d i f f e r e n t f o r d i f f e r e n t b!s_e_s of the
f e a t u r e (e . g . , i t may depend on whether the "~" appears in a
program or in a v iew d e f i n i t i o n) .]

sql critique 39

6. MISMATCH WI]H HOST LANGUAGE

The general point here is that tlnere are far too many friw~Ious
distinctions between SQL and the host language in which it
happens to be embedded; also that in some cases SQL has failed to
benefit from lessons learned in the design of those host
languages. Generally, orthogonality suggests that what is useful
on one side of the interface (in the way of data structuring and
access for "permanent" [i.e., database] data) is likely to be
useful on the other side also (for- "temporary" [i.e., local]
data); thus~ a distinct sublanguage is the wrong approach: and a
two-level store is wrong too (fundamentally so!). Some specific
points :

SQL does not exploit the exception-handling capabilities of the
host (e.g., PL/I ON-conditions). This point and (even more so)
the following one mean that SQL does not exactly encourage the
production of well-structured, quality programs, and that in some
respects SQL programming is at a lower level than tlnat of the
host.

SQL does not exploit the control structures of the host
constructs in particular). See the pr-evious point.

(i cop

SQL objects (tables~ cursors~ etc.) are not known and cannot be
referenced in the host environment.

Host objects can be referenced in the SQL enwLronment only if:

- they are specially declared (may not apply to all hosts)

- they are scalars or certain
particular, they are not arrays)

1 imited structures (in

- the references are marked with a colon prefix
only :in some contexts -- but in my opinion "some"
than "al I ")

(admittedly
is worse

- the references are constrained to certain limited contexts
(e.g.~ they can appear in a SELECT clause but not a FROM
clause)

- the references are constrained to certain limited formats
(e.g.~ no subscripting~ only limited dot qualification~ etc.)

SQL object names and host object names are independent and may
clash. SQL names do not follow the scoping rules of the host.

SQL keywords and host keywords are independent and
(e.g., PL/I SELECT vs. SQL SELECT).

may clash

SQL and host may have different name qualification rules (e.g.,
T.F in SQL vs. F OF T in COBOL; and note that the SQL form must
be used even for host object references in the SQL environment).

sql critique 40

SQL and host may have different data type conversion rules.

SQL and host may have different expression evaluation
(e.g., SQL division and varying string comparison differ
their P[_/I analogs [at least in SQL/DS]).

rules
from

SQL and host may have different Boolean operators (AND, OR, and
NOT in SQL vs. &, :, and ~ in PL/I).

SQL and host may have different comparison operators
COBOL has IS NUMERIC, SQL has BETWEEN [and many others]).

(e.g.,

SQL imposes statement ordering restrictions that are alien to
tlne host.

SQL DECLARE cannot be abbreviated to DCL, unlike PL/I DECLARE.

Null is handled differently on the two sides of the interface.

Function references have different formats on the two sides of
the interface.

SQL name resolution rules are different from those of the host.

Cursors are a clumsy way of bridging the gap between the
database and the program. A much better metlnod would be to
associate a query with a conventional ~gQ~o~! ~!~ in the host
program, and then let the program use conventional READ, REWRITE,
and DELETE statements to access that file (maybe INSERT
statements too).

The "structure declarations" in CREATE TABLE should use the
standard COBOL or PL/I (etc.) syntax. As it is, it is doubtful
whether they can be elegantly extended to deal with minor
structures (composite fields) or arrays, should such extensions
ever prove desirable (they will).

The SQL parameter mechanism is regressive, clumsy,
restrictive, and different from that of the host.

ad hoc,

sql critique 41

7. MISSING FUNCTION

(Note: I t i s o b v i o u s l y p o s s i b l e to extend the e x i s t i n g languaqe
to i n c o r p o r a t e most i f not a l l of the f o l l o w i n g f e a t u r e s . We
mention them f o r completeness.)

A b i l i t y t o o v e r r i d e WHENEVER NOT FOUND at the l eve l of an
i n d i v i d u a l s ta tement .

"Whole-record" UPDATE.

Procedure call instead of GO TO on WHENEVER.

Cursor stepping other than "next".

Cursor comparison.

Cursor assignment.

Cursor constants.

Cursor arrays.

Dynamically created cursors and/or cursor stacks.

Reusable cursors.

Ability to access a unique record and keep a cursor on it
without having to go through separate DECLAREr OPEN~ and FETCH:
e.g., "FETCH UNIQUE (EMP WHERE EMP# = ~E2 ~) SET (C) ;".

Fine control over locking.

sql critique 42

8. MISTAKES

I have argued against null values at length elsewhere [6], and I
will not repeat those arguments here. In my opinion the null
value concept is far more trouble than it is worth. Certainly it
has never been properly thought through in the existing SQL
implementations (see the discussion under "Lack of Orthogonality:
Miscellaneous Items", earlier). For example, the fact that
functions such as AVG simply ignore null values in their argument
violates what should surely be a fundamental principle, viz: !~
~ ~ ~Qc3!.~ O~2~E produce a (spuriousl~2 precise answer to
gY~E2 when the data involved in that guer2 is itself ~mprecise.
At least the system should offer the user the explicit option
either to ignore nulls or to treat their presence as an
exception.

Field uniqueness is a logical property of the data, not a
physical property of an access path. It should be specified on
CREATE TABLE, not on CREATE INDEX. Specifying it on CREATE INDEX
is an unfortunate bundling, and may lead to a loss of data
independence (dropping the index puts the integrity of the
database at risk).

The only function of the FROM clause that is not actually
redundant is to allow the introduction of range variables, and
that function would be better provided in some more elegant
manner. (The normal use, as exemplified by the expression SELECT
F FROM T, could better be handled by the expression SELECT T.F,
especially since this latter expression -- with an accompanying
but redunclant FROM clause -- is already legal SQL.)

SQL does not make a clear distinction between tables, record
types, and range variables. Instead, it allows a single symbol to
stand for any one of those objects, and leaves the interpretation
to depend on context. Conceptual clarity would dictate that it at
least be Qoss!ble always to distinguish among these different
constructs (i.e., syntactically), even if there are rules that
allow such punning games to be played when intuitively
convenient. Otherwise it is possible that -- for example --
extendability may suffer, though I have to admit that I cannot at
the time of writing point to any concrete problems. (But it
shouldn't be O ~ ~ E 2 to have to defend the principle of a one-
to-one correspondence between names and objects!)

While on the subject of punning, I might also mention the point
that SQL is ambivalent as to the meaning of the term "table".

sql c r i t i que
43

Sometimes "table" means, specifically, a b_~se table (as in CREATE
TABLE); at other times it means "base table or view" (as in
COMMENT ON TABLE). Since the critical point about a view is that
it is a table (just as the critical point about a subset is that
it is a set), I would vote for the following changes:

(a) Replace the terms "base table" arid "view" by "real
and "virtual table" r espectivelv~ .q , .

table"

(b) Use the term "table" generically to mean "real table or
virtual table";

(c) In concrete syntax, use the expressions [REAL] TABLE and
VIRTUAL TABLE (where it is necessary to distinguish them),
with REAL as the default.

"SELECT ~"

This is a good example of a situation in which the needs of the
end-user and those of the application programmer are at odds.
"SELECT ~" is fine for the interactive user (it saves
keystrokes). I believe it is rather dangerous for the programmer
(because the meaning of "~" may change at any time in the life of
the program). The use of "ORDER BY n" (where n is an integer
i n s t e a d of a f i e l d - n a m e) in c o n j u n c t i o n w i t h "SELECT ~" cou ld be
p a r t i c u l a r l y u n f o r t u n a t e . S i m i l a r remarks app ly t o the use of
INSERT w i t h o u t a l i s t of f i e l d - n a m e s .

Incidentally~ I believe that the foregoing are the on12
situations in the entire SQL language in which the user- is
dependent on the left-to-right ordering of columns within a
table. It would be nice to eliminate that dependence entirely
(except possibly for "SELECT ~"., for interactive queries only).

=ANY (etc.)

The comparison operators =ANY.,)ALL., etc.., are totally redundant
and in many cases actively misleading. The following example is
taken from "IBM Database 2 SQL Usage Guide" (IBM Form No. GG24-
1583): "Select employees who are younger than any member of
department E21" (irrelevant details omitted).

SELECT EMPNO, LASTNAME, WORKDEPT
FROM TEMPL
WHERE BRTHDATE >ANY (SELECT BRTHDATE

FROM TEMPL
WHERE WORKDEPT = ~E21 ~)

Th i s SELECT does not f i n d employees who are younger than any
employee in E21 (a t l e a s t i n the sense t h a t t h i s r equ i r emen t
would n o r m a l l y be unders tood in c o l l o q u i a l E n g l i s h) - - i t f i n d s
employees who are younger than some employee in E21.

To i l l u s t r a t e the redundancy, c o n s i d e r the query : "F ind s u p p l i e r
names f o r s u p p l i e r s who supp l y p a r t F'2". Th i s i s a v e r y s imp le

sq l c r i t i q u e 44

problem, yet it is not diffic:ult to find no less than seven at
least superficially distinct formulations for it (see below). Of
course, the differences would not be important i f al 1
formulations worked equally well, but that is unlikely.

1. SELECT SNAME
FROM S

WHERE S# IN
(SELECT S#

FROM SP
WHERE P# = ~F'2 ~)

2. SELECT SNAME

FROM S
WHERE S# ==ANY

(SELECT S#
FROM SP
WHERE P# = ~P2 ~)

3. SELECT SNAME
FROM S
WHERE EXISTS

(SELECT
FROM SP
WHERE S# = S.S# AND P# = ~P2 ~)

4. SELECT DISTINCT SNAME
FROM S, SP

WHERE S.S# = SP.S# AND P# = ~P2")

5. SELECT SNAME

FROM S
WHERE 0 <

(SELECT COUNT(U)
FROM SP
WHERE S# = S.S# AND P# = ~P2')

6. SELECT SNAME
FROM S
WHERE ~P2' IN

(SELECT P#
FROM SP

WHERE S# = S.S#)

7. SELECT SNAME
FROM S
WHERE ~P2 ~ =ANY

(SELECT P#
FROM SP
WHERE S# = S.S#)

In general, the WHERE clause

WHERE x $ANY (SELECT y FROM T WHERE p)

sql critique
45

(where $ is any one of =~ >~ etc.) is equivalent to the WHERE

clause

WHERE EXISTS (SELECT * FROM T WHERE (p) AND x $ T.y)

Likewise~ the WHERE clause

WHERE x SALL (SELECT y FROM T WHERE p)

is equivalent to the WHERE clause

WHERE NOT EXISTS (SELECT * FROM T WHERE (p)
AND NOT (x $ T.y))

As a matter of fatty it is not just the comparison operators =ANY
(etc.) that are redundant; the entire subquery construct could be
removed from SQL with effectively no loss of function. (Nested
table- and column-expressions etc. would of course still be
required~ as argued earlier.) This is ironic~ since it was the

subquery notion that was the justification for the "Structured"
in "Structured Query Language" in the first place.

sql critique 46

9. ASPECTS OF THE RELATIONAL MODEL NOT SUPPORTED

There are several aspects of the full relational model (as
defined in~ e.g. [2]) that SQL does not currently support. We
list them here in approximate order of importance. Again~ of
courser most of these features can be added to SQL at some later
point -- the sooner the better~ in most cases. However~ their
omission now leads to a number of situations in current SQL that
are extremely ad hoc and may be difficult to remedy later on~ for
compatibility reasons.

Primary keys provide the sole record-level addressing mechanism
within the relational model. That is~ the on12 system-guaranteed
method of identifying an individual record is via the combination
(R~k)~ where R is the name of the containing relation and k is
the primary key value for the record concerned. Every relation
(to be a relation) is required to have a primary key. Primary
keys are (of course) required to be unique; in the case of real
(base) relations~ they are also required to be (wholly) nonnull.

SQL currently provides mechanisms that allow users to apply the
primary key discipline for themselves (if they choose)~ but does
not itself understand the semantics associated with that
discipline. As a result~ SQL support for certain other functions
is either deficient or lacking entirely~ as we now explain.

1. Consider the query

SELECT P.P#~ P.WEIGHT, AVG (SP.QTY)
FROM P~ SP
WHERE P.P# = SP.P#
GROUP BY P.P#~ P.WEIGHT

The "P.WEIGHT" in the GROUP BY clause is logically redundant~
but must be included because SQL does not understand that
P.WEIGHT is single-valued per part number (perhaps only a
minor annoyance~ but it could be puzzling to the user).

2. Primary key support is prerequisite to foreign key support
(see the following subsection).

3. An understanding of primary keys is required in order to
support the updating of views correctly. SQL~s rules for the
updating of views are in fact disgracefully ad hoc. We
consider projection: restriction, and join views in turn
below. Further- discussion of this topic can be found in [7].

3(a). A projection is logically updatable if and only if
it preserves the primary key of the underlying relation.
However, SQL supports updates, not on projections per ~e,
but on what might be called c_ol~=!_mn_ subsets -- where a
"column subset" is any subset of the columns of the

sql critique 47

underlying table for which duplicate elimination is not
requested (via DISTINCT) -- with a "user beware" if that
subset does not in fact include the underlying primary
key. (Actually the situation is even worse than this. Even
a column subset is not updatable if the FROM clause in the
definition of that subset lists multiple tables. Moreover~
updates are prohibited if duplicate elimination is
recluested ~ even if that request can have no effect because
the column subset does include the underlying primary
key.)

3(b). Any restriction is logically updatable. SQL however
does not permit such updates if duplicate elimination is
requested (even though such a request can have no effect
if the underlying table does have a primary key)~ nor if
the FROM clause lists multiple tables. What is more, even
when it does allow updates~ SQL does not always check that
updated records satisfy the restriction predicate; hence,
an updated (or inserted) record may instantaneously vanish
from the view~ and moreover there are concomitant security
exposures (e.g.., a user who is restricted to accessing
employees with salary less than $40K may nevertheless
g.E_eatt~ a salary greater than that value via INSERT or
UF'DATE). [Note: The CHECK option, which is intended to
prevent such abuses, cannot always be specified.] Also;
the fact that SQL automatically supplies null values for
missing fields in inserted records means that it is
im_po%s.ib_le f o r such r e c o r d s t o s a t i s f y t h e r e s t r i c t i o n
p r e d i c a t e i n some cases (c o n s i d e r : f o r example: t he v iew
"employees i n depar tment D3", i f t he v iew does no t i n c l u d e
t he DEPT# f i e l d) . However, t hese l a t t e r d e f i c i e n c i e s are
n o t h i n g t o do w i t h SQL"s l ack of knowledge of p r i m a r y keys
per se.

3 (c) . A j o i n of two t a b l e s on t h e i r p r i m a r y keys i s
l o g i c a l l y u p d a t a b l e , So a l s o i s a j o i n of one t a b l e on i t s
p r i m a r y key t.o ano the r on a match ing f o r e i g n key (though
t he d e t a i l s are no t t o t a l l y s t r a i g h t f o r w a r d) . However, SQL
does no t a l l o w _a..Q2' j o i n t o be updated.

* E ~ E ~ g n ~

Fo re ign keys p r o v i d e t h e p r i n c i p a l r e f e r e n c i n g mechanism w i t h i n
t he r e l a t i o n a l model. Loose l y speaking., a f o r e i g n k'ey i s a f i e l d
i n one t a b l e whose v a l u e s are r e q u i r e d t o match v a l u e s of t he
p r i m a r y key i n ano the r t a b l e . For example, f i e l d DEPT# of t h e EMP
t a b l e i s a f o r e i g n key match ing t he p r i m a r y key (DEPT#) of t he
DEPT t a b l e .

SQL does not c u r r e n t l y p r o v i d e any k i n d of s u p p o r t f o r t he
f o r e i g n key concept a t a l l . I regard l ack of such s u p p o r t as the
major d e f i c i e n c y i n r e l a t i o n a l systems today (SQL i s c e r t a i n l y
no t a l one i n t h i s r e g a r d) . P roposa l s f o r such s u p p o r t are
documented i n some d e t a i l i n [7] .

sq l c r i t i q u e 48

SQL currently provides no support for domains at all, except
inasmuch as the fundamental data types (INTEGER, FLOAT., etc.) can
be regarded as a very primitive kind of domain.

A limited form of relation assignment is supported via INSERT ...
SELECT~ but that operation does not overwrite the previous
content of the target table, and the source of the assignment
cannot be an arbitrary algebraic expression (or SQL equivalent).

, E~.p_.ii .~it ~.q.!.!~

We mentioned earlier that explicit support for the (natural) join
operation was desirable. At that point we were tacitly discussing
the inner or regular natural join. The observation is still more
applicable to Q!,!t~£ join. Reference [4] shows how awkward it is
to extend the circumlocutory SELECT-style join to handle outer
joins. Thus., support for an explicit JOIN operator is likely to
become even more desirable in the future than it is already.

These omissions are not particularly important (equivalent
SELECT-expressions exist in each case); however, symmetry would
suggest that, since UNION .is explicitly supported, INTERSECT and
DIFFERENCE ought to be explicitly supported too. Some problems
are most "naturally" formulated in terms of explicit
intersections and differences. On the other hand, as indicated
earlier, it is usually not a good idea to provide a multiplicity
of equivalent ways of formulating the same problem, unless it can
be guaranteed that the implementation will recognize the
equivalences and will treat all formulations equally, which is
probably unlikely.

sql c r i t i que 49

10. SUMMARY AND CONCLUSIONS

This paper has discussed a large number of deficiencies in the
SQL language as currently defined~ in the hope that such a
discussion can serve as a step toward remedying those
deficiencies. In fact (as remarked earlier)~ the ANS Database
Committee (X3H2) has already remedied some of them in its "RDL"
proposal; a secondary objective for the present paper is thus to
serve as a document of justification for the changes X3H2 has
already made.

Of courser I realize that many of the shortcomings identified in
this paper- will very likely be dismissed as academic~ trivial~ or
unimportant by many people~ especially as SQL is so clearly
superior to older languages such as the DML of DBTG. However~
experience shows that "academic" considerations have a nasty
habit of becoming horribly practical a few years further down the
road. The mistakes we make now will come back to haunt us in the
future. Indeed~ the language in its present form is already
proving difficult to extend in some (desirable) ways because of
limitations in its current structure. A very trivial example is
provided by the problems of adding support for composite fields
(i.e.~ minor structures).

In conclusions let me repeat the point that many other database
languages suffer from similar shortcomings; SQL is (as stated
before) certainly not the sole offender. But the fact remains
that~ if SQL is adopted on a wide scale in its present fortm~ then
we will to some degree have missed the relational boat~ or at
least failed to capitalize to the fullest possible extent on the
potential of the relational model. That would be a pity~ because
we had an opportunity to do it right~ and with a little effort we
could have done so. The question is whether it is now too late. I
sincerely hope not.

sql critique SO

ACKNOWLEDGMENTS

I am grateful to my friends and colleagues Ted Codd, Phil Shaw,
and Sharon Weinberg for their- helpful comments and criticism.

sql critique 5!

REFERENCES

I. M.M.Astrahan et al. "System R: Relational Approach to Database
Management." ACM TODS i, No. 2 (June 1976).

2. E.F.Codd. "Extending the Database Relational Model to Capture
More Meaning." ACM TODS 4, No. 4 (December 1979).

3. C.O.Date. "Some Principles of Good Language Design." Submitted
to ACM SIGMOD Record.

4. C.J.Date. "The Outer Join." Proc. 2ncl International Conference
on Databases (ICOD-2), Cambr i dge, Engl and (August-September
1983).

5. C.J.Date. "An Introduction to the Unified Database Language
(UDL). " Proc. 6th International Conference on Very Large Data
Bases, Montreal, Canada (October 1980).

6. C.J. Date. "Nul I Values in Database Management"
paper). Proc. 2nd British National Conference on
(BNCOD-2), Bristol, England (July 1982).

(invited
Databases

7. C.J.Date. A Guide to DB2~ Addison-Wesley (to appear 1984).

8. O.N.Gray. Private communication.

9. J.N.Gray et al. "Granularity of Locks in a Large Shared Data
Base." F'roc. ist International Conference on Very Large Data
Bases, Framingham, Mass. (September 1975).

I 0. X ~ ~ -H~ (American National Standards Database Committee) Draft
Proposed Relational Database Language. Document X.~U~._, ,~_~., o.~_ i ~.o~
(August 1983).

sql c r i t i q u e B2

APPENDIX: SQL STRONGPOINTS

SQL is based on the relational model, and as such supports the
simple tabular data structure of that model. It does not support
any user-visible links between tables.

_FjQM~E-F.Lj I. Q~e_rat~r.~

SQL also supports (indirectly) all the operators of the
relational algebra, including in particular the operators SELECT
(i.e., RESTRICT), PROJECT, and (natural) JOIN (these are the ones
required most often in practice). Each of these operators is very
high-level, in the sense that it treats entire sets of records as
single operands.

It is very easy to learn enough of the SQL language to "get on
the air" and start doing real, useful work; thus, the initial
learning period is typically very short indeed -- certainly hours
rather than days or weeks.

Users are insulated, to a greater degree than with earlier
languages, from the physical structure of the database (physical
data independence). This fact means that: (a) Users can
concentrate on the logic of their application without having to
concern themselves with irrelevant physical details; (b) the
physical structure of the database can be changed without
necessitating any corresponding reprogramming. Users are also
insulated to some extent from the logical structure of the
database (logical data independence); this means that users can
concentrate on just that portion of the data that is of interest
to them (they may not even be aware of other portions), and it
also means that some limited changes can be made to the logical
structure of the database without very much reprogramming
(probably not without any, however).

SQL imposes comparatively few artificial boundaries between
definition functions and manipulation functions. For example, the
creation of a view (a definition function) involves essentially
the same SELECT operation as does the formulation of a query (a
manipulation function). This uniformity, again, makes the
language easier to learn and use.

sql critique 53

SQL can be used both interactively (i.e., as a query language)
and embedded in a program (i.e., as a database programming
language). This property is desirable for several reasons. First,
it improves communication: End-users and application programmers
are "speaking the same language" Second, it makes programmers,
as well as end-users, more productive -- the benefits sketched
above (e.g., the provision of high-level operators) apply to
programmers too. And third, the interactive interface provides a
very convenient programmer debugging facility; that is~
application programmers can take the SQL portions of their
program and debug them interactively at the terminal.

Since the database catalog is represented just like any other
data in the system (i.e., as a collection of tables), it can be
interrogated by means of SQL SELECT statements, just like any
other data in the system. Users do not have to learn two
languages, one for querying the dictionary (for the catalog is in
effect exactly that, a rudimentary, online, active dictionary),
and one for querying the database.

~ ! ~ Q Q ~ o~timization

SQL is capable of efficient implementation, via the by now well-
known compilation/optimization techniques pioneered in the IBM
prototype System R. Moreover, the fact that SQL is compiled, and
hence that systems such as System R are "early binding" systems,
does not compromise the flexibility of those systems. If a change
is made to the database (such as the dropping of an index) that
invalidates an existing compiled program, then that program --
or, more accurately, the SQL statements within that program --
will automatically be recompi led and rebound on the next
invocation. Thus the system can provide the flexibility of late
binding without incurring the interpretation overheads normally
associated with such systems.

sql critique 54

